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Abstract- Majority and inverter gates together make a 

universal set of Boolean primitives in Quantum-dot Cellular 

Automata (QCA) circuits. However, an experimental 

evaluation has shown that MV is not efficiently used during 

technology mapping by existing logic-synthesis tools. In this 

paper, we propose an approach, based on Genetic 

Algorithm, which reduces the area size of QCA circuits. 

Simulation results show that the proposed method is able to 

reduce area in QCA circuits design. 

Key words: majority gate, AOI gate, Genetic Algorithm, QCA, 

area reduction. 

I. Introduction 

 

QCA is a new nanotechnology that attempts to create 

general computational functionality by controlling the 

position of single-electrons. It is anticipated that these 

technologies can achieve a density of 1012 devices/cm2 

and operate at terahertz frequencies [1]. QCA is a possible 

candidate to replace CMOS IC design [3]. 

GA is a search heuristic that mimics the process of natural 

evolution. This heuristic is routinely used to generate 

useful solutions for optimization and search problems. 

Genetic algorithms belong to the larger class of 

evolutionary algorithms (EA), which generate solutions 

for optimization problems using techniques inspired by 

natural evolution, such as inheritance, mutation, selection, 

and crossover. In a GA, a population of strings (called 

chromosomes or the genotype of the genome), which 

encode candidate solutions (called individuals, creatures, 

or phenotypes) to an optimization problem, evolves 

toward better solutions [2]. As an example, in 1999, 

Carlos et.al used a genetic algorithm to design digital in 

logic circuit with gate counts constraint. This paper we 

present a novel QCA chromosome. This chromosome 

uses the AND-OR-INVERTER (AOI) gate, introduced in 

[7], as well as Majority gates and inverter gates. 

We have simulated a 3 input logic circuit using the 

proposed chromosome and compared the results with 

results of another GA optimized design. A performance 

improvement of about 30% was achieved. 

The rest of this paper is organized as follows: in section 2 

some related background materials are presented. The 

proposed chromosome is introduced in section 3 and in 

section 4 simulation results are shown. Finally section 5 

concludes the paper. 

 

II. background materials 

 

A: QCA Basics 

 

QCA technology is based on the interaction of bi-stable 

QCA cells. A QCA cell is a square nanostructure of 

electron wells which confine free electrons. Each cell has 

quantum dots. These quantum dots are to hold a single 

electron per dot. At each of the four corners of the cell, a 

dot is located and two electrons are injected into the cell 

[3]. Due to Columbic repulsion, the two electrons reside 

in opposite corners. This results in two possible 

polarizations as seen in Fig. 1. This basic cell has made it 

possible to realize QCA-based storage elements, wires, 

and logic gates [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

B: Majority Voter (MV) and Inverter (INV) gates 

QCA implementation of logic design based on Majority 

and inverter gates consists of interconnecting MVs and 

INVs. The QCA MV gate is a device which implements a 

majority function. The device cell always assumes a 

majority polarization. The reason for this action is that it 

is in the polarization state in which the Columbic 

 

Figure.1 Two polarized QCA cell [4] 
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Figure 2: a) QCA majority gate b) inverter gate 

 

 

Figure 3: QCA AOI gate 

 

Figure4: A chromosome for M (A,C’,M(A,B,1)’) 

repulsion between electrons in the input cells is 

minimized. The Logic function of the majority gate is: 

M (A, B, C) =AB+AC+BC  

Where A, B and C are the inputs. By fixing the 

polarization of one input as logic ’1’ we can obtain an OR 

gate and by fixing the polarization of one input as logic 

’0’ we can obtain an AND gate, respectively. In a QCA 

inverter, cells oriented at 45° with respect to each other 

take on opposing polarizations [5]. Fig. 2 shows QCA 

circuit for MV and INV gates. 

C: And Or Inverter (AOI) gate: 

The AOI gate, which is introduced in [7], has seven cells. 

Five of these cells act as inputs, one as a device cell and 

the last cell is the output cell. 

Assuming A, B, C, D and E as inputs, the logic function 

of the AOI gate is: 

AOI (A, B, C, D, E) = DE + (D+E) (A’C’ + A’B + BC’) 

Fig. 3 shows the QCA AOI gate. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D: chromosome structure introduction and fitness 

function 

 

   In [8], a chromosome is introduced which follows a tree 

structure. In this chromosome, internal nodes are either 

MV or INV gates and external nodes (leafs) are circuit 

inputs or constants. This chromosome has been used in 

[7-9] for their related designs. The chromosome’s 

structure, implementing the function F (A, B, C) = 

A’B’C’ + AC’, is shown in Fig. 4. 

To introduce the fitness function, we define it based on 

the similarity of the chromosome to the expected logical 

function. Also as known, the chromosome is preferred 

when it has fewer nodes. Suppose n is the number of input 

variables, F is the Boolean function, and C is the 

chromosome. The fitness function is defined as [8]: 
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Where N (F,Ci) is the number of identical minterms 

between chromosome C and function F.  In a condition in 

which a chromosome has the same minterms as the 

function F, the fitness function presented in  

(1) Will have its maximum value. In that case, a different 

fitness function is used in order to include the number of 

nodes used in the chromosome. 
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Where Nodes(Ci) denotes the number of nodes in Ci. 

 

E: Mutation and Crossover  

 

Mutation, in normal states, just changes one or more 

genomes in a population which include other genomes 

from problem space. But the process has a complication 

level in our structure. As an example, suppose we are to 

replace the inverter node with the majority or AOI node. 

Since the number of inputs in the structure of inverter gate 

is different from the number of inputs of the majority or 



 

 

AOI gate, this process becomes infeasible. To solve this 

complication, we use a new method of mutation which 

works properly in our situation. In the new method, a 

random genome and its sub-tree is generated. Then the 

new genome replaces a genome (including its sub-tree) 

that has the worst fitness in the population. This 

replacement will be done in some specific probability in 

generations. This new gnome can be a combination of 

both MV and INV gates, together with AOI gate.   For 

crossover, a random node and its sub-tree in one 

chromosome is exchanged by a random node and its sub-

tree in another chromosome [9]. 

 

III. Proposed chromosome 

Here we present our proposed chromosome’s structure. In 

this structure, we use AOI gate in addition to the majority 

gate and the inverter gate. An example of the proposed 

chromosomes which implements the function F (A, B, C) 

= A’B’C’ + AB’+ ABC’, is shown in Fig. 5. Simulation 

results for implementation of different logic function 

using this chromosome show that it is possible to achieve 

considerable decrease in used area, in comparison with 

using older methods. As known, used area is one of the 

most important parameters in QCA circuit design. The 

proposed chromosome’s structure, which has two 

crossover points, is presented in Fig. 6.  

Figure 7 shows the result of mutation on the chromosome 

of Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

IV. Simulation Results 

After simulating our proposed algorithm and the resulted 

circuit, we compare our simulation results with simulation 

results of presented methods in older studies. The circuits, 

which were used in comparisons, are 13 standard three-

input functions, which are introduced in [10]. Through 

implementation of these 13 functions we can realize all 

possible three-input functions. The simulation results are 

presented in Table 1. 

As it can be figured out we have about 29.8% of 

performance improvement in used area. The achievement 

concludes that using gates of only two types in QCA 

circuit design is not wise and we have to use gates of all 

three MV, INV and AOI types, based on the needs of the 

target circuits. 

 

V. CONCLUSION 

 

In QCA designs, low area usage has a high importance. In 

this paper, we introduced a chromosome structure which 

uses AOI gate, in addition to the majority and inverter 

gates. Implementation results show that over 29.8% 

performance improvement in used area is achieved. In 

future studies, we can work on decreasing the level count 

and/or the required clock number for implementation of 

different functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure5: Our proposed chromosome for                  

F (A, B, C) = A’B’C’ + AB’+ ABC’ 

Figure6: Crossover; a) Before Crossover b) After Crossover 
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Figure7: Mutation; a) Before Mutation b) After Mutation 
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