

Cell Number Optimization for Quantum Cellular Automata based on AND-

OR-INVERTER

Zohre Beiki

a
, Satar Mirzakuchaki

b
, Mohsen Soryani

a
, Naser Mozayani

a

a Computer Engineering Department, Iran University of Science and Technology, Tehran, Iran
b Electrical Engineering Department, Iran University of Science and Technology, Tehran, Iran

z_beiki@comp.iust.ac.ir, (m_khuchaki, soryani, mozayani)@iust.ac.ir

Abstract- Majority and inverter gates together make a

universal set of Boolean primitives in Quantum-dot Cellular

Automata (QCA) circuits. However, an experimental

evaluation has shown that MV is not efficiently used during

technology mapping by existing logic-synthesis tools. In this

paper, we propose an approach, based on Genetic

Algorithm, which reduces the area size of QCA circuits.

Simulation results show that the proposed method is able to

reduce area in QCA circuits design.

Key words: majority gate, AOI gate, Genetic Algorithm, QCA,

area reduction.

I. Introduction

QCA is a new nanotechnology that attempts to create

general computational functionality by controlling the

position of single-electrons. It is anticipated that these

technologies can achieve a density of 1012 devices/cm2

and operate at terahertz frequencies [1]. QCA is a possible

candidate to replace CMOS IC design [3].

GA is a search heuristic that mimics the process of natural

evolution. This heuristic is routinely used to generate

useful solutions for optimization and search problems.

Genetic algorithms belong to the larger class of

evolutionary algorithms (EA), which generate solutions

for optimization problems using techniques inspired by

natural evolution, such as inheritance, mutation, selection,

and crossover. In a GA, a population of strings (called

chromosomes or the genotype of the genome), which

encode candidate solutions (called individuals, creatures,

or phenotypes) to an optimization problem, evolves

toward better solutions [2]. As an example, in 1999,

Carlos et.al used a genetic algorithm to design digital in

logic circuit with gate counts constraint. This paper we

present a novel QCA chromosome. This chromosome

uses the AND-OR-INVERTER (AOI) gate, introduced in

[7], as well as Majority gates and inverter gates.

We have simulated a 3 input logic circuit using the

proposed chromosome and compared the results with

results of another GA optimized design. A performance

improvement of about 30% was achieved.

The rest of this paper is organized as follows: in section 2

some related background materials are presented. The

proposed chromosome is introduced in section 3 and in

section 4 simulation results are shown. Finally section 5

concludes the paper.

II. background materials

A: QCA Basics

QCA technology is based on the interaction of bi-stable

QCA cells. A QCA cell is a square nanostructure of

electron wells which confine free electrons. Each cell has

quantum dots. These quantum dots are to hold a single

electron per dot. At each of the four corners of the cell, a

dot is located and two electrons are injected into the cell

[3]. Due to Columbic repulsion, the two electrons reside

in opposite corners. This results in two possible

polarizations as seen in Fig. 1. This basic cell has made it

possible to realize QCA-based storage elements, wires,

and logic gates [4].

B: Majority Voter (MV) and Inverter (INV) gates

QCA implementation of logic design based on Majority

and inverter gates consists of interconnecting MVs and

INVs. The QCA MV gate is a device which implements a

majority function. The device cell always assumes a

majority polarization. The reason for this action is that it

is in the polarization state in which the Columbic

Figure.1 Two polarized QCA cell [4]

(a)

(b)

Figure 2: a) QCA majority gate b) inverter gate

Figure 3: QCA AOI gate

Figure4: A chromosome for M (A,C’,M(A,B,1)’)

repulsion between electrons in the input cells is

minimized. The Logic function of the majority gate is:

M (A, B, C) =AB+AC+BC

Where A, B and C are the inputs. By fixing the

polarization of one input as logic ’1’ we can obtain an OR

gate and by fixing the polarization of one input as logic

’0’ we can obtain an AND gate, respectively. In a QCA

inverter, cells oriented at 45° with respect to each other

take on opposing polarizations [5]. Fig. 2 shows QCA

circuit for MV and INV gates.

C: And Or Inverter (AOI) gate:

The AOI gate, which is introduced in [7], has seven cells.

Five of these cells act as inputs, one as a device cell and

the last cell is the output cell.

Assuming A, B, C, D and E as inputs, the logic function

of the AOI gate is:

AOI (A, B, C, D, E) = DE + (D+E) (A’C’ + A’B + BC’)

Fig. 3 shows the QCA AOI gate.

D: chromosome structure introduction and fitness

function

 In [8], a chromosome is introduced which follows a tree

structure. In this chromosome, internal nodes are either

MV or INV gates and external nodes (leafs) are circuit

inputs or constants. This chromosome has been used in

[7-9] for their related designs. The chromosome’s

structure, implementing the function F (A, B, C) =

A’B’C’ + AC’, is shown in Fig. 4.

To introduce the fitness function, we define it based on

the similarity of the chromosome to the expected logical

function. Also as known, the chromosome is preferred

when it has fewer nodes. Suppose n is the number of input

variables, F is the Boolean function, and C is the

chromosome. The fitness function is defined as [8]:

 ������� =	

��,��

��
 (1)

Where N (F,Ci) is the number of identical minterms

between chromosome C and function F. In a condition in

which a chromosome has the same minterms as the

function F, the fitness function presented in

(1) Will have its maximum value. In that case, a different

fitness function is used in order to include the number of

nodes used in the chromosome.

 			������� = �������	+	
�

����	���

(2)

Where Nodes(Ci) denotes the number of nodes in Ci.

E: Mutation and Crossover

Mutation, in normal states, just changes one or more

genomes in a population which include other genomes

from problem space. But the process has a complication

level in our structure. As an example, suppose we are to

replace the inverter node with the majority or AOI node.

Since the number of inputs in the structure of inverter gate

is different from the number of inputs of the majority or

AOI gate, this process becomes infeasible. To solve this

complication, we use a new method of mutation which

works properly in our situation. In the new method, a

random genome and its sub-tree is generated. Then the

new genome replaces a genome (including its sub-tree)

that has the worst fitness in the population. This

replacement will be done in some specific probability in

generations. This new gnome can be a combination of

both MV and INV gates, together with AOI gate. For

crossover, a random node and its sub-tree in one

chromosome is exchanged by a random node and its sub-

tree in another chromosome [9].

III. Proposed chromosome

Here we present our proposed chromosome’s structure. In

this structure, we use AOI gate in addition to the majority

gate and the inverter gate. An example of the proposed

chromosomes which implements the function F (A, B, C)

= A’B’C’ + AB’+ ABC’, is shown in Fig. 5. Simulation

results for implementation of different logic function

using this chromosome show that it is possible to achieve

considerable decrease in used area, in comparison with

using older methods. As known, used area is one of the

most important parameters in QCA circuit design. The

proposed chromosome’s structure, which has two

crossover points, is presented in Fig. 6.

Figure 7 shows the result of mutation on the chromosome

of Figure 5.

IV. Simulation Results

After simulating our proposed algorithm and the resulted

circuit, we compare our simulation results with simulation

results of presented methods in older studies. The circuits,

which were used in comparisons, are 13 standard three-

input functions, which are introduced in [10]. Through

implementation of these 13 functions we can realize all

possible three-input functions. The simulation results are

presented in Table 1.

As it can be figured out we have about 29.8% of

performance improvement in used area. The achievement

concludes that using gates of only two types in QCA

circuit design is not wise and we have to use gates of all

three MV, INV and AOI types, based on the needs of the

target circuits.

V. CONCLUSION

In QCA designs, low area usage has a high importance. In

this paper, we introduced a chromosome structure which

uses AOI gate, in addition to the majority and inverter

gates. Implementation results show that over 29.8%

performance improvement in used area is achieved. In

future studies, we can work on decreasing the level count

and/or the required clock number for implementation of

different functions.

Figure5: Our proposed chromosome for

F (A, B, C) = A’B’C’ + AB’+ ABC’

Figure6: Crossover; a) Before Crossover b) After Crossover

(a)

(b)

Reference

[1] M. Askari, M. Taghizadeh, KH. Fardad, “Digital

Design Quantum-Dot Cellular automata (A Nanotechnology

Method)”, International Conference on Computer and

Communication Engineering, 2008, page(s): 952-955.

[2] Mitchell Melanie, an Introduction to Genetic Algorithms, a

Bradford Book the MIT Press, Cambridge, Massachusetts,

London, England, fifth printing 1999.

[3] M.R. Azghadi, O.Kavehei and K.Navi, “A Novel

Design for Quantum-dot Cellular Automata Cells and Full

Adders”, Journal of Applied sciences, 2007, 7(22), page(s):

3460-3468.

 [4] C.S. Lent, P.D. Tougaw, W. Porod, G.H. Bernstein,

“Quantum Cellular Automata”, Journal of Nanotechnology,

1993, 75(3), page(s): 49-57.

 [5] K. Walus and G.A. Jullien, “Design Tools for an

Emerging SoC Technology: Quantum-Dot Cellular Automata”,

Proceedings of IEEE 2006, 94(6), page(s): 1225-1244.

[6] M.R. Bonyadi, “A New Hybrid Genetic-Based

Reduction Method in Nanoelectronic Circuits”, World Applied

Sciences Journal, 2010, 9(6), Page(s): 666- 673.

[7] M. Momenzadeh, J. Huang, M.B. Tahoori, F.

Lombardi, “Characterization, Test, and Logic Synthesis of And-

Or-Inverter (AOI) Gate Design for QCA Implementation”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 2005, 24(12), page(s): 1881-1893.

[8] M.R. Bonyadi1 ,S.M.R. Azghadi, N.M. Rad, K. Navi,

E. Afjei, “Logic Optimization for Majority Gate-Based

Nanoelectronic Circuits Based on Genetic Algorithm”,

International Conference on Electrical Engineering, 2007,

Page(s): 1 – 5.

[9] M. Houshmand, S. H. Khayat, R. Rezaei, “Genetic

Algorithm based Logic Optimization for Multi-Output Majority

Gate-Based Nano-electronic Circuits”, IEEE International

Table 1: Simulation Results

Functions Previous Algorithm[6] Proposed Algorithm

Number

of MV

Number

of INV

Effective

Area (AMV)

Number

of AOI

Number

of MV

Number

of INV

Effective

Area (AMV)

Improvement

%

1 F= AB’C 2 0 2 1 0 0 1.771 11.45

2 F=AB 1 0 1 0 1 0 1 0

3 F=A’BC+A’B’C’ 3 2 6.334 1 1 1 4.438 29.93

4 F=A’BC+AB’C’ 5 3 10 2 1 0 4.54 54.5

5 F=A’B+ BC’ 2 0 2 1 0 0 1.771 11.45

6 F=AB’ +A’BC 4 2 7.334 1 1 0 2.771 62.2

7 F=A’BC+ABC’+A’B’C’ 4 3 9.001 2 1 1 6.209 31.01

8 F=A 1 0 1 0 1 0 1 0

9 F=AB+AC+BC 1 0 1 0 1 0 1 0

10 F=A’B+B’C 3 1 4.667 1 1 0 2.771 40.6

11 F=A’B+BC+AB’C’ 5 3 10 1 2 1 5.43 45.6

12 F=AB+A’B’ 3 2 6.334 1 1 0 2.771 56.2

13 F=ABC’+A’B’C’+AB’C+A’BC 3 3 8.001 1 1 1 4.438 44.53

Average 2.84 1.46 5.28 0.92 0.92 0.3 3.07 29.8

 (a)

(b)

Figure7: Mutation; a) Before Mutation b) After Mutation

Conference on Intelligent Computing and Intelligent Systems,

2009, Page(s): 584 – 588.

[10] R.Zhang, K.Walus, W.Wang, G.A.Jullien, “A Method

of Majority Logic Reduction for Quantum Cellular Automata”,

IEEE Transaction on Nanotechnology, 2004, 3(4), page(s): 443-

450.

