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Precise image registration is a fundamental task in many computer vision algorithms including superresolution methods. The well
known Lucas-Kanade (LK) algorithm is a very popular and efficient method among the various registration techniques. In this
paper a modified version of it, based on the Structural Similarity (SSIM) image quality assessment is proposed. The core of the
proposed method is contributing the SSIM in the sum of squared difference, which minimized by LK algorithm. Mathematical
derivation of the proposed method is based on the unified framework of Baker et al. (2004). Experimental results over 1000 runs
on synthesized data validate the better performance of the proposed modification of LK-algorithm, with respect to the original
algorithm in terms of the rate and speed of convergence, where the signal-to-noise ratio is low. In addition the result of using the
proposed approach in a superresolution application is given.
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1. Introduction

One of the most critical aspects of many applications in
image processing and computer vision, including Super-
Resolution, is the accurate estimation of motion, also known
as image registration. The Super-Resolution (SR) techniques
fuse a sequence of low-resolution images to produce a higher
resolution image. The low-resolution (LR) images may be
noisy and blurred and have some displacements with each
other. These methods utilize information from multiple
observed images to achieve restoration at resolutions higher
than that of the original data. It is widely recognized that
the accuracy of motion estimation is arguably the limiting
factor in Super-Resolution restoration performance [1, 2],
and so any fruitful consideration of this problem promises
significant returns.

In SR literatures a variety of registration approaches
have been presented. They can be classified into two main
approaches: feature-based methods and area-based methods.
Usually the motion parameters can be roughly estimated
by a feature-based method before being refined by an area-
based method [3]. One of the famous registration method
is the pioneering work of Lucas and Kanade [4]. This is

an area-based method which is based on using of a Taylor
series approximation of the images. The motion parameters
are the unknowns in the approximation, and they can be
computed from the set of equations that can be derived from
this approximation. Recently Baker et al. [5] introduced a
unified framework for Lucas-Kanade algorithm, and we will
use their formulation for explaining our method in the rest
of this paper.

Recent advances in Super-Resolution techniques show
trends toward methods which consider some prior knowl-
edge or models as the additional input of the SR algorithm
[3, 6, 7]. The model-based approaches import plausible high-
frequency textures from an image database into the High-
Resolution (HR) image. Based on the mentioned hypothesis,
in [8], we described a method for increasing the resolution,
using an HR training image, in which the entire of HR
training image is mapped and fused onto LR image. Its
registration stage is a feature-based method using SIFT key-
points, which sometimes leads to inaccurate mapping. In
[9] we used the LK algorithm for refining the result of the
mentioned feature-based registration stage and proposed a
method for specifying magnification factor automatically.
In this paper we proposed a new version of LK-algorithm
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Figure 1: A portion of [10, Figure 7]. (h) and (i) are the contrast
inverted of SSIM maps, and (k) and (l) are absolute error maps. The
SSIM map shows that the structural differences are better than the
other one. For the complete figure, please see Wang et al. [10].

which is better than its original form, when the LR image
is under heavy noise. In the proposed method we used the
Structural Similarity [10] as a weighting term to the objective
function of LK algorithm. The chief idea of our approach is
that the contrast-inverted form of SSIM shows the structural
differences of two images, very better than absolute error
map when the signal-to-noise is low. Experimental results
show the better performance of the new variation of LK-
algorithm with respect to its original form.

The rest of this paper is organized as follows. In Section 2
we first have a brief look at unifying framework of LK
algorithm and Structural Similarity, which are the basis
of the proposed method and then explain how to drive
the Lucas-Kanade formulation based on SSIM. Section 3
provides the empirical validation of the proposed approach
via experimental results with synthesized and real data. The
last section is dedicated to the concluding Remarks.

2. The Proposed Method

We will use the unified framework of Baker et al. [5] for
derivation of our extension to original LK-algorithm. Hence
it is necessary to be familiar with the main parts of the unified
framework, which is the subject of Section 2.1. Structural
Similarity (SSIM) is introduced by Wang et al. [10] as a
measurement for quality assessment of images. Section 2.2
is devoted to its summery and our definitions of Structural
Dissimilarity (SDIS) based on it. The last subsection explains
the proposed method in details.

Similar of SSIM map image, we define SDIS map image
as the structural dissimilarity map of two images. More
structural difference leads to higher value of SDIS.

2.1. LK-Algorithm, the Unified Framework. The goal of
Lucas-Kanade is to align a template image T(x) to an input

image I(x), by minimizing the following Sum of Squared
Differences (SSDs) between two images:

SSD =
∑

x

[
I(W(x; p))− T(x)

]2, (1)

where W(x; p) denote the parameterized set of allowed
warps, p = (p1, . . . , pn)T is a vector of parameters, I(W(x; p))
is image I warped back onto the coordinate frame of the
template T , and x = (x, y)T is a column vector containing
the pixel coordinates. The warp W(x; p) takes the pixel x
in the coordinate frame of the template T and maps it to
the subpixel location W(x; p) in the coordinate frame of the
image I [5]. The warp model may be any transformation
model such as affine, homography, or optical flow. But in
this paper we concentrated on homography model. The
minimization of the expression in (1) is performed with
respect to p, and the sum is performed over all of the pixels x
in the template image T .

The Lucas-Kanade algorithm assumes that a current
estimate of p is known and then iteratively solves for
increments to the parameters Δp; that is, the following
expression is minimized with respect to Δp, and then the
parameters are updated:

∑

x

[
I
(

W
(

x; p + Δp
))− T(x)

]2, (2)

p←− p + Δp. (3)

These two steps are iterated until the estimates of the
parameters converge. Δp is calculated as follows:

Δp = H−1
∑

x

[
∇I ∂W

∂p

]T[
T(x)− I(W

(
x; p

))]
, (4)

where H is the approximate Hessian matrix:

H =
∑

x

[
∇I ∂W

∂p

]T[
∇I ∂W

∂p

]
, (5)

and ∇I = (∂I/∂x, ∂I/∂y) is the gradient of image I
evaluated at W(x; p), ∂W/∂p is the Jacobian of the warp, and
∇I(∂W/∂p) is the steepest descent images. For further details
about the mentioned terms please see [5].

2.2. Error Measurement Based on SSIM. Mean Structural
Similarity (MSSIM) for quality measurement introduced by
Wang et al. [10] is defined as follows:

MSSIM(X ,Y) = 1
M

M∑

j=1

SSIM
(
xj , yj

)
, (6)

where X and Y are the reference and the distorted images,
respectively, xj and yj are the image contents at the jth local
window,M is the number of local windows of the image, and
SSIM(x, y) is defined as follows:

SSIM
(
x, y

) =
(

2μxμy + C1

)(
2σxy + C2

)

(
μ2
x + μ2

y + C1

)(
σ2
x + σ2

y + C2

) , (7)
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Figure 2: The frequency of convergence, average number of cycles until convergence, and mean time of convergence over 1000 runs, with
LK algorithm and the proposed method on “Takeo” dataset.
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Figure 3: The average RMS Error over 1000 runs on “Takeo”
dataset.

where C1 and C2 are some constants for avoiding instability;
μx, σx, and σxy are estimates MSSIM of local statistics defined
in Wang et al. [10]. The MSSIM(X ,Y) is defined so that
measurement similarity is closer to 1 when the images
X ,Y are more similar. SSIM is defined for each pair of
correspondence pixels. The image Z, which produced by

(a) The input LR image under
heavy noise (288× 196 pixels)

(b) HR image, with good
quality, from the same scene
but taken from different view
points (288× 176 pixels)

Figure 4: Two images from bas relief of Darius. The goal is to
enhance the region of the left image, corresponding to the right
image. The resolution, view point, illumination, and color of two
images are different.

computing the SSIM between each pixel pair, is named by
Wang et al. [10] as SSIMmap image. An inversion or negative
form of this criterion shows the structural differences of
two images. This fact was mentioned by Wang et al. [10],
where they compared the absolute error map and a contrast
inverted SSIM map of two images. For clarity a portion
of [10, Figure 7] is illustrated here in Figure 1. As can be
seen, SSIM captures structural errors better than absolute
error. Hence one can expect that contributing the SSIM
onto the LK-algorithm’s minimization function promises
better result than its original form which is based on usual
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(a) I(W(x; p)) (b) Template (T)

(c) Error image, T(x)−
I(W(x; p)) in the first itera-
tion

(d) SDIS error map image in
the first iteration

(e) Error image, T(x)−
I(W(x; p)) in the last iteration

(f) SDIS error map image in
the last iteration

Figure 5: Various intermediate results of executing the proposed
method shown in Algorithm 1.

image difference. Among the various inverted forms of SSIM,
such as “1/SSIM”, “1-SSIM”, and “−SSIM”, we choose its
negative form and called it SDIS as Structural Dissimilarity
measurement:

SDIS
(
x, y

) = -SSIM
(
x, y

)
. (8)

2.3. Derivation of LK Algorithm Based on SDIS Map Image.
In the proposed method, the defined error map, SDIS map
imag,e is used as a weighting term of the error function.
For convenience we call the SDIS map image of two images
I(W(x; p)) and T(x) as ESDIS. Hence our goal will be the
minimization of the following function:

∑

x

ESDIS ·
[
I(W(x; p))− T(x)

]2, (9)

where dot denotes the element by element multiplication as
“·∗” operator in MATLAB. For minimizing (9) in an iterative
manner similar to (2), we have to minimize the following
function:

∑

x

ESDIS ·
[
I
(

W(x; p + Δp)
)− T(x)

]2, (10)

where ESDIS is evaluated at W(x; p). Performing a first-order
Taylor expansion on I(W(x; p + Δp)) gives

SSD =
∑

x

ESDIS ·
[
I
(

W(x; p)
)

+∇I ∂W
∂p

Δp− T(x)

]2

.

(11)

Finding the optimum value of Δp can be done by
differentiating (11) with respect to Δp, setting the result to
equal zero and solving it:

∂SSD
∂Δp

= 2
∑

x

ESDIS ·
[
∇I ∂W

∂p

]T

×
[
I
(

W
(

x; p
))

+∇I ∂W
∂p

Δp− T(x)

]
,

∂SSD
∂Δp

= 0

=⇒
∑

x

ESDIS ·
[
∇I ∂W

∂p

]T
∇I ∂W

∂p
Δp

+
∑

x

ESDIS ·
[
∇I ∂W

∂p

]T[
I
(

W
(

x; p
))− T(x)

] = 0

(12)

Hence we have

Δp = H−1
∑

x

ESDIS ·
[
∇I ∂W

∂p

]T[
T(x)− I(W

(
x; p

))]
,

(13)

where H is

H =
∑

x

ESDIS ·
[
∇I ∂W

∂p

]T[
∇I ∂W

∂p

]
. (14)

The unified framework of Lucas-Kanade algorithm [5]
is illustrated in Algorithm 1. In the original form of LK
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algorithm, Δp and the Hessian matrix were computed by
(4) and (5), but in the proposed method, they are computed
based on (13) and (14), respectively. For consistency with the
unified framework, we have not described the computation
of ESDIS needed in (13) and (14), explicitly in Algorithm 1.

Experimental results showed that the proposed method
produced better results with respect to original LK algorithm,
when the rate of signal-to-noise is low.

3. Experimental Results

In the first part of this section we will mention the
experimental results for image registration using synthesized
data. In the second part we will use the proposed method on
an image superresolution application using real data.

3.1. Empirical Validation Using Synthesized Data. The exper-
imental here has been done in a way similar to Baker et al. [5].
Every synthesized experiment was done as in the following
manner. A 100×100 pixel template T(x) is manually selected
from image I(x). For producing a random projective warp
W(x; p), 4 canonical points at the corners of the template
are chosen, and then those points are randomly perturbed
with additive white Gaussian noise of a certain variance. The
warping model is computed with the method described in
[11, Chapter 4]. Then I(x) is warped with this model, and
the two algorithms will run, starting from the identity warp.

Since 8 parameters in the projective warp have different
units, the following error measure has been used rather than
the errors in parameters. For each estimated warp, the RMS
is computed over 4 canonical points of the distance between
their current and correct locations.

We computed average RMS error, average frequency of
convergence, average cycles needed, and average time taken
until convergence over 1000 runs of randomly generated
data. Before explaining the mentioned criteria used here,
we describe our meaning of convergence. We say that an
algorithm is converged if

(1) its last RMS error is smaller than its first error,

(2) after the last iteration the RMS error in canonical
point locations is less than 1.0 pixels.

If an algorithm does not satisfy the second condition in its
last iteration, it is considered as diverged even if allowing
more iterations leads to RMS less than 1. In the following
results, “Takeo” database of Baker et al. [5] has been used.
The initial perturbation variance of canonical points was set
to 4 pixels. Hence the initial RMS is always greater than 1
pixel, and thus the first condition is satisfied if the second
condition is hold.

3.1.1. Frequency of Convergence. It is the percentage of runs,
in which each algorithm converged over all 1000 runs. As
can be seen in Figure 2(a), the proposed method converged
more times than the original LK-algorithm. Note that LK
stands for LK-algorithm, and LK-SSIM denotes the proposed
method.

3.1.2. Average Number of Cycles Until Convergence. It is the
average iterations needed until the convergence of each
algorithm. The first iteration number in which the RMS of
algorithm is below 1 pixel is considered as its number of
cycles needed for convergence at that run. Figure 2(b) shows
that in average the proposed method converges in fewer
iterations. To avoid the results being biased by cases when
one algorithm diverged, we included in the computation of
this and the following criteria only those runs, which both of
the two algorithms converged.

3.1.3. Running Time Until Convergence. The overhead for
computing ESDIS makes the running time of the proposed
method longer than the LK-algorithm in each iteration.
Thus for a predefined maximum iteration number, the LK-
algorithm ends faster, but since the average number of cycles
until convergence of our method is very less than the LK-
algorithm, the average running time of our approach until
convergence is smaller than that of LK-algorithm. Figure 2(c)
shows the average running time of the two algorithms.

3.1.4. Average RMS Errors. The average RMS error is plotted
over iteration numbers, for each method in Figure 3. Since
all runs are performed on two specified images, averaging of
RMS errors over all runs for each algorithm is meaningful.
This value for each algorithm is its average RMS errors. As
can be seen the proposed method is better.

The above results show the superior performance of the
proposed method with respect to original LK-algorithm.

Our experimental results with other SNR values of image
I showed that our approach is better than LK-algorithm
when SNR is less than 30 dB. Also we used some other
images, and the results do not significantly differ with those
reported here.

3.2. Superresolution Application. The proposed method can
be used in every computer vision algorithm which requires
image registration, such as panorama and super-resolution.
Here, we tested the proposed method on a super-resolution
problem in which the goal is to increase the resolution of
some part of an LR image using an HR image. In many
situations [9] someone may have an LR image or a video
frame with low quality and a few HR images from some
parts of the LR image with high quality. In this case he/she
may desire to increase the quality or the resolution of his/her
LR image using HR images. Consider the example shown in
Figure 4; our goal is to enhance a region in noisy LR image
4(a), corresponding to HR image 4(b). The LR image is very
noisy and color and resolution of images are different. The
view point of two images has also slightly different. The LR
and HR images in Figure 4(b) are our images I and T in
Algorithm 1, respectively.

For enhancing the proper region of LR image, first we
have to find an accurate transformation model for mapping
HR image T onto LR image I and then fuse the resulting
mapped image with LR image. This process is described
in more details in [9]. With a feature-based stage a rough
estimation of warp model is found, and the area-based
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Input: The reference image I and template image T
Output: Registration parameters p = (p1, . . . , pn)T as the warp model W(x; p)
(1) repeat
(2) Warp I with W(x; p) to compute I(W(x; p))
(3) Compute the error image T(x)− I(W(x; p))
(4) Warp the gradient∇I with W(x; p)
(5) Evaluate the Jacobian ∂W/∂p at (x; p)
(6) Compute the steepest descent images∇I(∂W/∂p)
(7) Compute the Hessian matrix using (14)
(8) Compute [∇I(∂W/∂p)]T and [T(x)− I(W(x; p))]
(9) Compute Δp using(13)
(10) Update the parameters p← p + Δp
(11) until||Δp|| ≤ ε or Reaching to Maximum Iteration allowed

Algorithm 1: The Lucas-Kanade Algorithm using Structural Dissimilarity as a weighting term of error function.

(a) LK (b) LK-SSIM

Figure 6: Using LK-algorithm and LK-SSIM algorithm as area-
based image registration stage of Amintoosi et al. [9] for enhancing
the LR image 4(a) using HR image 4(b). A close-up demonstration
is shown in Figure 7.

(a) Replication (b) Bicubic (c) LK (d) LK-SSIM

Figure 7: Close-up of replication and bicubic resizing method, the
method introduced in Amintoosi et al. [9] for enhancing the image
shown in Figure 4(a) using HR image 4(b) with LK-algorithm and
the proposed method as the area-based registration stage.

stage tunes the result by a version of LK algorithm. The
used feature-based stage is based on Lowe’s [12] SIFT key-
points and Fischler and Bolles [13] RANSAC method. Here
we compare the original LK-algorithm and the proposed
modified version by using them as the tuning stage.

Figure 5 shows some intermediate results of Algorithm 1.
Figure 5(a) shows the initial point of I(W(x; p)), in which
W(x; p) is estimated by the feature-based registration stage
for mapping 4(b) onto 4(a). Comparing Figures 5(c) and
5(d) clears that SDIS reduces the effect of noise, while
preserving the structural differences of two images. In
addition these images show that the most inaccuracy of
initial warp model is about the upper-right area of the
template, related to spear in the hand of the soldier. As
can be seen SDIS error map Figure 5(d) highlighted these
differences more better than usual difference (Figure 5(c)).
Figures 5(e) and 5(f) show the mentioned error maps in the
final iteration, in which the differences are reduced.

From our derivation of Δp and Hessian in (13) and (14),
it is obvious that the proposed method benefits from original
steepest descent images ∇I(∂W/∂p) and SDIS information
via ESDIS · ∇I (∂W/∂p).

Figure 6 shows the result of enhancing the LR image
shown in Figure 4(a) using HR image 4(b) with the method
proposed in Amintoosi et al. [9]. The magnification factor
is set to 2. Figures 6(a) and 6(b) show the result when the
LK-algorithm and the proposed method are used for the
area-based registration stage. Here the blending stage is a
combination of Wavelet fusion method [14] and multiband
blending approach [15]. In these experiments the maximum
iteration allowed is set to 15. For enforcing the equal timing
for two algorithms, the warping model returned by the
proposed method in the appropriate iteration number (here
14) is used for reporting.

Figure 7 shows a subjective comparison between different
methods on a magnified portion of their results. The
proposed method (Figure 7(d)) produced the best result. In
Figures 7(c) and 7(d) the seamless blending approach has
not been applied, to make the border of the fused regions
more obvious. The better result of the proposed method is
apparent by investigating the white boxes in two figures.
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It should be mentioned that the size of SSIM map image
returned by Wang’s implementation (available online at:
http://www.cns.nyu.edu/∼lcv/ssim/) is smaller than both of
the two images. But for the proposed method (in (13) and
(14)) it is necessary that the SDIS map image is equal to
the size of each image. Hence we modified Wang’s imple-
mentation according to our requirements.(available online
at: http://webpages.iust.ac.ir/mamintoosi/Research.htm).

4. Conclusion

Feature-based and area-based methods are two broad
categories in image alignment. When the ratio of signal-to-
noise is very low, the feature-based approaches produce poor
results, which can be refined by an area-based method. In this
paper a new version of the famous area-based registration
method, Lucas-Kanade algorithm, was proposed, which
produces better results when the image is very noisy. The
main idea of the proposed method is contributing SSIM,
the Structural Similarity measurement of two images,
into the formulation of LK-algorithm. Based on SSIM, a
structural difference measurement, named as SDIS, was
defined, which better reflects the dissimilarity of the two
images compared to the usual image difference. The various
objective comparisons showed that the proposed registration
method outperforms the original LK-algorithm, in terms of
convergence rate and speed. The subjective comparison in
a superresolution problem in which the goal is to enhance
an LR image with heavy noise using an HR image with good
quality also showed the better performance of the proposed
method.
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With the advent of the so-called Internet of Things (IoTs),
we will witness an unprecedented growth in the num-
ber of networked terminals and devices. In attaining this
IoT vision, a class of energy- and, in general, resource-
constrained systems like Wireless Sensor Networks (WSNs),
networks of cooperating objects and embedded devices
such as RFIDs, or networks for Device-to-Device (D2D)
and Machine-to-Machine (M2M) communications are to
play a fundamental role. The paradigm shift from general-
purpose data networks to application-oriented networks
(e.g., for parameter or random field estimation, event
detection, localization, and tracking) clearly calls for further
optimization at the physical, link, and network layers of
the protocol stack. Interestingly, the above-mentioned esti-
mation/detection/localization/tracking problems have been
addressed for years by the signal processing community,
this resulting into a number of well-known algorithms.
Besides, some inspiration could be also borrowed from
other communication schemes, such as MIMO and beam-
forming techniques or cooperative communications that
were traditionally developed for wireless data networks, or
even from other fields such as mathematical biology (e.g.,
networks of coupled oscillators). However, the challenge
now is to enhance such algorithms and schemes and make
them suitable for decentralized and resource-constrained
operation in networks with a potentially high number
of nodes. Complementarily, the vast literature produced
by the information theory community, on the one hand,
reveals the theoretical performance limits of decentralized
processing (e.g., distributed source coding) and, on the
other, offers insight on the scalability properties of such
large networks and their behavior in the asymptotic regime.
Realizing the information-theoretic performance with prac-
tical decentralized networking, radio resource management
schemes, routing protocols, and other network management
paradigms is a key challenge.

The objective of this Special Issue (whose preparation
is carried out under the auspices of the EC Network
of Excellence in Wireless Communications NEWCOM++)
is to gather recent advances in the areas of cooperating
objects, embedded devices, and wireless sensor networks.

The focus is on how the design of future physical, link,
and network layers could benefit from a signal processing-
oriented approach. Specific topics for this Special Issue
include but are not limited to:

• Decentralized parameter estimation
• Estimation of random fields
• Distributed MIMO and beamforming
• Decentralized and cooperative time and frequency

synchronization
• Cooperative event detection
• Data gathering and data fusion
• Data-centric multihop techniques and routing
• Scalability and asymptotic laws for in-network dis-

tributed estimation/detection
• Energy-saving algorithms and protocols
• Feedback-limited scheduling and MAC protocols
• Decentralized joint source-channel coding
• Cooperative localization and tracking
• Topology control in resource-constrained networks
• Low-complexity opportunistic networking protocols
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journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/wcn/guidelines.html. Prospective au-
thors should submit an electronic copy of their complete
manuscript through the journal Manuscript Tracking Sys-
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This special issue is devoted to distributed algorithms and
theoretical methods in the context of wireless ad hoc and
sensor networks. Recent research in mobile ad hoc networks
and wireless sensor networks raises a number of interesting,
and difficult, theoretical and algorithmic issues. While much
work has been done in protocol and system design, simula-
tion, and experimental study for wireless ad hoc and sensor
networks, the theoretical research, however, falls short of the
expectation of the future networking deployment. The needs
to push the theoretical research forward for a deeper under-
standing about wireless ad hoc and sensor networking and to
foster cooperation among networking researchers and theo-
reticians establish the motivation behind this special issue.

The objective of this special issue is to gather recent
advances in the areas of wireless ad hoc and sensor networks,
with a focus on theoretical and algorithmic aspect. In
particular, it will concentrate on distributed algorithms, ran-
domized algorithms, analysis and modeling, optimizations,
and theoretical methods in design and analysis of networking
protocol (at link layer or network layer) for wireless ad hoc
and sensor networks. Specific topics for this special issue
dedicated to theoretical and algorithmic foundations include
but are not limited to:

• Channel assignment and management
• Distributed and localized algorithms
• Dynamic and random networks
• Dynamic graph algorithms
• Energy conservation methods
• Localization and location tracking
• Mechanism design and game theory
• Modeling and complexity analysis
• Routing, multicast, and broadcast
• Scheduling and synchronization
• Throughput optimization and capacity

Before submission, authors should carefully read over the
journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/wcn/guidelines.html. Prospective au-
thors should submit an electronic copy of their complete
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Cooperative communication is an overwhelming research
topic in wireless networks. The notion of cooperative com-
munication is to enable transmit and receive cooperation
at user level by exploiting the broadcast nature of wireless
radio waves so that the overall system performance including
power efficiency and communication reliability can be
improved. However, due to the half-duplex constraint in
practical systems, cooperative communication suffers from
loss in spectral efficiency. Network coding has recently
demonstrated significant potential for improving network
throughput. Its principle is to allow an intermediate network
node to mix the data received from multiple links for subse-
quent transmission. Applying the principle of network cod-
ing to wireless cooperative networks for spectral efficiency
improvement has recently received tremendous attention
from the research community. Physical-layer network coding
(PLNC) is now known as a set of signal processing techniques
combining channel coding, signal detection, and network
coding in various relay-based communication scenarios,
such as two-way communication, multiple access, multicas-
ting, and broadcasting. To better exploit this new technique
and promote its applications, many technical issues remain
to be studied, varying from fundamental performance limits
to practical implementation aspects. The aim of this special
issue is to consolidate the latest research advances in physical-
layer network coding in wireless cooperative networks.
We are seeking new and original contributions addressing
various aspects of PLNC. Topics of interest include, but not
limited to:

• Fundamental limits of relay channels with PLNC
• Protocol design and analysis for PLNC
• Cross-layer design for systems with PLNC
• Joint channel coding, modulation, and PLNC
• PLNC with Turbo/LDPC codes
• PLNC with fountain codes
• Channel estimation and synchronization of PLNC
• Scheduling and resource allocation with PLNC
• PLNC with MIMO and OFDM
• PLNC in cooperative and cognitive networks
• Implementation aspects of PLNC

• Random network coding
• Other issues related to PLNC
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