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Abstract: Generally, the input of a fuzzy system can be a crisp value or a fuzzy linguistic 
value. The input of most fuzzy systems is a crisp value while a fuzzy linguistic input is 
employed in a few of them. The Max-Min algorithm is used to identify matching degree, 
when the input is a fuzzy linguistic input. This method suffers from some drawbacks which 
are discussed in this paper. An alternative approach which is called Surface Matching Degree 
(SMD) is proposed. It can manage all mentioned disadvantages of the common approach. 
This new method which applies an adaptive and parametric equation to determine matching 
degree can be adapted to any kind of applications. 
 
Key words: Surface Matching Degree; Fuzzy Inference; Adaptive Matching; Max-Min 
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INTRODUCTION 
 
Fuzzy logic inference is used as inference engine of a fuzzy expert system (Zadeh, A., 1973; 

Zadeh, 1975; Verikas, 2010; Borroto, 2010). Suppose A'B' to be an if-then rule in the rule base of a 
fuzzy expert system. Inference engine makes a mapping between input fuzzy variable, A′, and output 
fuzzy variable, B′ (Lee, 1990). A fuzzy if-then rule is interpreted as a fuzzy relationship between the 
input and output of product space, U×V (Wang, Li-Xin. 1997). If the fuzzy rule base only consists of a 
single rule, the mapping from the fuzzy variable A′ defined in U, to the fuzzy variable B′ defined in V, 
will be specified by generalized modus ponens (Wang, Li-Xin. 1997; Duboisa, 1984; Gupta, 1985). If 
the fuzzy rule base consists of more than one rule, then the fuzzy inference engine will infer from a set 
of rules (Fukami, 1980; Baldwin, 1980; Baldwin, 1980). 

There are two ways to infer from a set of rules: (a) composition-based inference and (b) individual-
rule-based inference (Mamdani, 1974; Sugeno, 1985; Lee, Chuen, 1990). Generally, the operations are 
divided into three main parts in an individual-rule-based inference:  

(i) To determine the membership degree between the input and the rule-antecedent.  
(ii) To compute the rule consequences.  
(iii) To aggregate the rule consequences using the fuzzy control-action set (Zimmermann, Hans- 

Jürgen. 1996; Mamdani, 1977). 
At the first step, usually Max-Min approach is used (Mamdani, 1974; Mamdani, 1977; Zadeh, 

1979). 
This approach is discussed in more details in section 2. We address the problems of the Max-Min 

method in section 3. The problems which we discuss in detail in section 3 are our motivation to offer a 
new alternative method. We propose a new adaptive approach in section 4. This new idea which is 
originally the results of our works (Alizadeh, 2007; Alizadeh, 2008) is an adaptive surface-based 
approach. It can be applied to all kinds of inference engines. It improves the performance and the 
convergence speed, in fuzzy systems, especially, for oscillatory systems. This new method is Surface 
Matching Degree (SMD). Finally, section 5 concludes this paper. 
 
2. Related Works: 

Suppose that A(x) is the antecedent part of a rule in a fuzzy system, and the crisp value u0 is the 
input of the system, then the matching degree, α, has been derived from equation 1: 
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When the input fuzzy term is A′(x), the matching degree can be obtained by equation 2:  
}^{max )(')( xAxA

x
         (2) 

If we use the Min operator for the intersection, the equation 2 will be reformulated into equation 3 
(Tsukamoto, 1979; Sugeno, 1983; Wangming, Wu. 1990). 

 
},{minmax )(')( xAxA

xx
         (3) 

3. Problem and Motivations: 
Again suppose the fuzzy input term which is the antecedent part of the rule illustrated in Fig1, is 

denoted by A. The inputs of the system u0 include a crisp zero and three fuzzy triangular term values 1, 
2, 3 and 4. The drawbacks of Max-Min approach are as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: The draw backs of Max-Min approach. 
 
First, the matching degree is fixed on changes of input membership values. As it is shown in Fig 1, 

the point α, is the matching degree obtained by Max-Min method. Inspire from the fact that the input 
membership values are different from each other, this point is expected not to be fixed. The 
membership value for each of the inputs, including the crisp input 0 and fuzzy input terms, 1, 2, 3 and 
4, is equal to 0.5. As you can observe the matching degree is fixed by changing the input values. 

Suppose that the fuzzy input term is an isosceles. The center of this term is its center of gravity. As 
it is shown in Fig 1, the inputs 3 and 4 cut the fuzzy input term A, in the fixed point α. The input 4 is 
wider than 3 and therefore is fuzzier than it. Also, the gravity center of the input value 4 is more distant 
from antecedent term A than the gravity center of the input value 4. In the same situation, the fuzziness 
of the input increases, when the gravity center of input gets away. It should be logical that, the value of 
matching degree decreases, whatever the input term is more distant from than point α. However, the 
input 4 is wider and fuzzier than 3, the matching degrees are the same. It is equal to 0.5 for all of those 
inputs. In reality, in this approach, the distance between center of input and point α, does not influence 
in determining the matching degree. It is the second challenge of common approach to determine the 
matching degree. 

The highlighted area in Fig 2, denoted by A1, is the communal area between input value A′ and 
fuzzy term A. This area is a section of input that can be considered as true part of the rule antecedent A. 
The ratio of communal area to total input area is denoted by R. R value shows that how much of input 
ratio is true in the rule. In the same situation, it can be meaningful that the greater value of R the greater 
matching degree. There are some cases between fuzzy input term and the rule antecedent that yield R to 
be negligible; whereas the matching degree obtained by Max-Min method is significant (like fuzzy 
input number 4 in Fig 1). It does not take into account the value of input that is true of rule antecedent. 
It was the third shortcoming of above mentioned approach. This ratio is 0.17 for fuzzy input value 4. It 
is also 0.58 for fuzzy input value 1. However, while the ratio for each of them is considerably different, 
the matching degrees for both of them by Max-Min method are equal values (here 0.5). Thus, the Max-
Min approach does not consider R. 

To sum up, the problem is as follow: 
1. Unchanging the matching degree facing with changes of input membership values. 
2. Uncareness of the gravity of the fuzzy input. 
3. Disgracing the intersection ratio between the fuzzy input and the rule antecedent. 
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We propose a new adaptive approach to determine matching degree. This method inspires from the 
approach that we have already proposed it on [25, 26]. The paper contribution is three folded: 
1. Illustration of the drawbacks of the Max-Min method, in determining matching degree.  
2. Proposing a new matching degree method which manages the motioned drawbacks of the Max-

Min method 
3. Illustration of a straightforward way to compute it in a very fast time, i.e. O(1). 

It can be applied for all kinds of inference engines. It improves the performance and the 
convergence speed, in fuzzy systems, especially, for oscillatory systems. 

In this section, three drawbacks of the common approach to determine the matching degree have 
been investigated. It has been shown that the above mentioned method does not operate logically, on 
the discussed cases. 
 
4. Surface Matching Degree: SMD 

The main contribution of the paper is to use the communal area between the fuzzy input term value 
and the rule antecedent. The aim is to find a method that compensates the drawbacks of Max-Min 
method as well. The R value is used as a parameter in determining the matching degree. Considering its 
drawbacks explained in section 3, it depends on input shape, amount of fuzziness of input term and the 
value of R. 

 
 
 
 
 
 
 
 

 
Fig. 2: The ratio of areas (R). 
 
Depend on A1 and A2 that are shown in Fig 2, we define the ratio of areas (R) as equation 4: 

2

1

A

A
R         (4) 

Where A1 is the communal area and A2 is the total input area. R will be faded, if fuzzy inputs are 
wider and fuzzier. Therefore, it can be considered as a good parameter to model the fuzziness of input 
and the distance from point α. This ratio, R, for fuzzy input term values 4, 3, 2 and 1 and in boundary 
state for crisp input value 0 are respectively equal to 0.17, 0.25, 0.37, 0.58, and 0.75. It can be observed 
that this parameter makes different values for different fuzzy inputs intersecting the antecedent term in 
the same fixed point α. 

In other words, by getting the center of fuzzy input away from α, the changes of R, tend to fade. In 
fact, this is what the equation 3 is lacked. A very well-suited aspect of this parameter is its adaptation. 
It is able to adapt itself to input transformation. By using this parameter with its adaptability feature in 
definition of the matching degree, we will have an adaptive matching degree. Also, we can use R as 
another parameter combined with the parameter α (derived from equation 3). This combination can 
yield a dynamic and adaptive way to determine the matching degree. It will have the advantages of 
both Max-Min and the proposed approaches, simultaneously. 

Our proposition to define SMD is to combine the parameters, normalized R and α, as it is in 
equation 5: 

21

21 )()(
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gwRfw
RSMD n

n 



        (5) 

Where Rn is the normalized ratio of surfaces, α is the value that comes from equation 3. f and g are 
two functions in range [0,1] that can be chosen depending on the problem. Also, w1 and w2 are two 
weights in [0,1]. By defining the equation 5, we can profit from both approaches by weights w1 and w2. 
 
4.1. Computation of R: 

In this section, the ratio R is computed in three states between isosceles fuzzy terms. These three 
possible states between fuzzy input terms and rule antecedent are shown in Fig 3. 

State 1 shows that the input A′ and rule antecedent A cut each other at just one point. The junction 
point in this state is called µ. State 2 shows that the input A′ and rule antecedent A cut each other at two 
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points, when A′ is smaller than A. State 3 shows that the input A′ and rule antecedent (A) cut each 
other at two points, when A′ be larger than A. In two recent states, the larger and smaller points are 
called µ and µ2, respectively. 

As shown in Fig 4, suppose that the half bases of terms A′ and A are respectively I and r. Then to 
compute the ratio of areas in state 1, R1, we have: 
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Then: 
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By substituting equation 7 in equation 4, we have: 
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The equation 9 will be obtained by summarizing of equation 8: 
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Fig. 3: three possible states between fuzzy input term and rule antecedent. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: computation of Rn . 

 
Similarly, it has been proved that R2 and R3 for states 2 and 3 obtained from the equations 10 and 

11(Alizadeh, H. 2007): 
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4.2. Normalization Of R By Fixed µ: 

It is apparent from equation 1, that the matching degree for the crisp input is the membership value 
in the antecedent part of rule at junction point. Since this value is determined by human expert 
(Mizumoto, 1982; Mizumoto, 1987; Mamdani, 1976), the value of R must be normalized such it is µ 
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f and g are chosen identical.

for crisp input. Therefore, when a fuzzy input tends to crisp input (crispness), the value of R has to tend 
to μ. 

As shown in Fig 5, if we go from input 2 toward narrower input 1, the R1 will be replaced with R2. 
With a fixed point α (here, as µ), whatever we go from input 1 toward 0 ( 0I ), the ratio of R goes 
from R2 to its. In the other hand, whatever the fuzziness of input decreases, R goes to its maximum 
limit value. It has been shown that this value occurs in state 2 (R2) and its value trends to 2µ-µ2 
(Alizadeh, 2007) So we have: 

2
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Since this value is obtained from limit state of fuzzy input, it must be such normalized that it 
becomes equal to µ. 
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So, the normalized ratio of areas (Rn) has been defined as: 

2

2


R
Rn        (14) 

This equation is a normalized equation that returns the true value for crisp input. By applying this 
equation to equation 5, we can reach to a parametric and adaptive relation. We can select the functions 
f and g, depending on the problem. 
 
4.3. Choice Of Parameters: 

Equation 5 is the main contribution which has been introduced in this paper. Until here, the term 
Rn from the equation 5 is computed. Now we can replace it in the general equation. 
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The functions f and g, and the weights w1 and w2 can be chosen depends to the problem. We can 
tune the effect of Rn with respect to α by changing the weight values w1 and w2. By choosing the 
functions f and g as identical functions and w1=w2=0.5 from equation 5, we will have: 
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Replacing Rn as equation 14 in equation 15 SMD will be: 
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Equation 16 performs an averaging between Max-Min and SMD methods. It means that, we can 
average over both common and proposed methods to simultaneously benefit from both of them. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: comparison between α and SMD for fuzzy input “very warm” by R=0.25, α=µ=0.5. 
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Fig. 6: comparison between α and SMD for fuzzy input “fairly very very warm” by R=0.17, α=µ=0.5. 

 
4.4. Example And Comparison: 

By illustrating two examples in this section, we try to make a comparison between the Max-Min 
method (which chooses α) and SMD. 

 
The reader can infer from Fig 5 and Fig 6 that "the wider the input fuzzy term, the smaller SMD" 

and also "the more distant the center of gravity of the input fuzzy term, the smaller SMD". 
 

Table 1: A comparison between α and SMD for fuzzy input terms in figure 1. 

Crisp input 0 Input 1 Input 2 Input 3 Input 4  

0.5 0.5 0.5 0.5 0.5 W1=0,SMD=Max  Min=α 

0.5 0.46 0.41 0.38 0.35 W1=W2=0.5, SMD 

0.5 0.42 0.31 0.25 0.21 W2=0, SMD=Rn 

 
In Table 1, SMD is computed for input terms of Fig 1. Table 1 shows that, while α is 0.5 for all of 

those inputs, however SMD is adaptively different, depending on shape of inputs.  
 

Table 2: A comparison between α and SMD in limit states by a fixed µ. 
The limit value for fuzzy input by infinite 
amount of fuzziness 

The limit value for crisp input 
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Table 2, shows the matching degree values obtained using common and SMD method, in limit 

states. 
Two points in Tables 1 and 2 are worthy to note: (a) while, the values obtained from common 

approach are fixed for mentioned states, different values are obtained from SMD for them. Second, the 
SMD values with any parameter choices are trended to µ', in limit state. 
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5. Conclusion: 

In this paper, three shortcomings of common Max-Min approach to determine the matching degree 
is illustrated. Then, an adaptive method called “Surface Matching Degree (SMD)” is proposed to 
handle them. We can change and adapt the parameters of SMD depends on the kind of inference engine 
and its application. It can help the inference engine in different applications. However, the values 
obtained from Max-Min method are fixed for the states of inputs that have a same µ; different values 
are obtained from SMD, adaptively. It depends on input shape and the amount of input term that is true 
of the rule antecedent. 

In addition, SMD has the following benefits: first it seems that using SMD can be more logical 
than common approach. Second, emphasizing to the ratio of input which is satisfied in the rule affect 
the stability of the fuzzy system. It can cause to faster convergence by decreasing fuzziness in feedback 
systems. 
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