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ABSTRACT 

Particle swarm optimization is a population-based algorithm and used for optimization in a wide range of problems. In this article, a 

method that is called Hybrid Particle Swarm Optimization or HPSO is proposed. It is composed of some versions of particle swarm 

optimization algorithms, which have subgroups in their structures. They are DMS-PSO, PS2OS and MCPSO. In fact, a hierarchical 

structure is used to compose a new version of optimization algorithm and combine the results of other structures of PSO. Proposed 

structure has been tested on four unimodal and four multimodal test functions. Although the memory usage has no difference with 

other compared versions, it is much faster in many cases. Also the rank of fitness values, are good and suitable in all test functions. In 

addition, it is possible to execute it concurrently.   
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1. INTRODUCTION 
Kennedy and Eberhart [1] proposed the idea of Particle Swarm Optimization in 1995. They initially wanted to produce some form of 

computational intelligence by using social relationship that does not need individual ability. Their attempts led to a robust optimization 

algorithm called Particle Swarm Optimization or PSO algorithm. This algorithm has been inspired from social behavior of animals 

such as bird’s flocking and fish movement. PSO is a population-based algorithm, and this population is consisted of some particles. 

Although these particles have not enough intelligence separately, they show an excellent intelligence as a whole by following their 

leader and using their own experience. The implementation of PSO is simple and a few parameters are needed to be valued. However, 

this algorithm has its own disadvantages such as low speed convergence and trapping in local optimum in some cases, so different 

versions of this algorithm is suggested. All of them try to improve different aspects of it and cover its weakness. In [2] a dynamic 

model is introduced that particles are divided into many small groups and each group executes PSO separately. The groups exchange 

some of their particles randomly to exchange information. It is used for preventing from trapping in local optimums. The same 

structure is used in [3, 4] however a local search that employs Quasi-Newton method is used in it. In [4] this structure is applied for 

large-scale optimization. Hanning Chen et all [5] designed hierarchical structure called hierarchical swarm optimization. They try to 

simulate natural hierarchical systems. Particles are divided into separate groups. Each group executes PSO independently and the best 

particles of each group are selected as their representative, and make higher level. In this level, the PSO is executed and best particle is 

selected as the global best. Ben Nui et al [6, 7] introduced a Master-Slave PSO. Particles are divided into some groups. One of them is 

master and others are slaves. Slaves groups execute PSO separately. In master group, particles’ positions are updated using their own 

knowledge and slave groups’ experiences. Yen and Daneshyari [8] propose a method to exchange information among multiple swarms 

in particle swarm optimization. This Method is developed to solve problems that have a high number of local optima. [9] proposes a 

multi-swarm algorithm based on fast particle swarm optimization for dynamic optimization problems. It employs a method to track 

multiple peaks by preventing overcrowding at a peak and a fast particle swarm optimization algorithm as a local search method. Chen 

[10] proposes a hierarchical particle swarm optimization. In the suggested algorithm, all particles are arranged in a regular tree 

structure and move up or down in the tree based on their fitness value. The velocity update of each particle depends on the position of 

each particle in the tree. A mutation operator is also added into the proposed approach. Bergh and Engelbrecht [11] present a 

cooperative behavior to improve the performance of the standard algorithm. This is done by using multiple swarms to optimize 

different components of the solution vector cooperatively. Most of these structures are using different groups in order to improve the 

quality of PSO. 

There are also some surveys that discuss and compare different aspects of PSO [12, 13]. Author in [12] comprises a snapshot of 

particle swarming from the authors’ perspective, including variations in the algorithm, current and ongoing research, applications and 

open problems. In [13] the history, various methods, and taxonomy of PSO are discussed and its different applications together with an 

analysis of these applications are evaluated. Sierra and Coello [14] did a comprehensive review of the various Multi-Objective Particle 

Swarm Optimizers. It includes a classification of the approaches, and the main features of each proposal. In the last part of it, they list 

some of the topics within this field that are considered as promising areas of future research.  
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In this research, standard PSO is described in section two. Section three introduces the proposed methodology. Section four and five 

explain experimental results and conclusions respectively.  

 

2. REVIEW OF STANDARD PSO 
PSO is inspired from nature and is based on iteration. It is like many other evolutionary algorithms such as Genetic Algorithms and 

Ant Colony Optimization, because all of them use an initial random population. Each component of population of the algorithm is 

called a particle. Each particle is initialized with a random velocity and position. These particles move in an n-dimensional space 

repeatedly. The dimension of the problem is equal to parameters of function that should be optimized. Each particle not only 

remembers the best position that has achieved so far but also the global best position among all other particles. By using these data, the 

particles set their movements in next iteration. In order to find the optimal solution, in each iteration both the velocity and position of 

each particle are updated using equations 1 and 2 respectively. 

)()(
2211

oldglobalBestoldstpersonalBeoldnew pprpprvwv −××Γ+−××Γ+×=  (1) 

newoldnew vpp +=  (2) 

Where v is velocity of particle, p is position of particle, r1 and r2 are random numbers uniformly distributed between [0, 1], Γ1 and Γ2 

are learning rates, ppersonalBest is the best position that a particle has found yet and pglobalBest is the best global position. w is inertia weight 

that causes the particle to continue to its way although it reaches the best position. 

According to the equation 1, it is clear that the motion of a particle is influenced by three factors: (i) its best position that the particle 

has found so far, (ii) Best position that is founded so far by all particles and (iii) The previous path of the particle. 

 

3. A HIERARCHICAL STRUCTURE FOR PSO 
As it is mentioned, different versions of PSO have been suggested. Their main goal is improving PSO efficiency. In comparison, each 

version has better results in some cases and functions, and worse results in some others. The main goal is finding an algorithm, which 

has the best efficiency on all functions as fast as possible. One way to achieve this goal is finding a method to combine efficient 

algorithms in the best way. The obstacle to do this is the different structures of algorithms, and it is why their combination is not easy. 

In this research, three different versions of PSO is used and combined. They are selected because not only they have good efficiency 

but also they have nearly same structure. It makes their combination easier. They are DMS-PSO[2], PS2OS [5] and MCPSO [6]. Table 

1 shows their average results of 20 times execution of algorithms on some test functions which are introduced in table 2. Also this 

structure can be used to combine other versions of PSO. 

Table 1. The mean of fitness values of 20 times execution on different functions in 30 dimensions 

T
y
p

e
 

Function Name 
Algorithm Name 

PSO PS2OS MCPSO DMS-PSO 

U
n

im
o
d

a
l 

Step 40 10.2 0 0 

Sum of Different Powers 6.68307E+16 61063177863 1.50713E+13 0 

Rosenbrock 2634.983 2051.209 57.12211 5.252174 

Sphere 3920.4 871.2 6.92832E-88 0 

M
u

lt
im

o
d

a
l 

Rastrigin 136.1682 80.3533 73.57082 6.56673 

Schwefel 5755.476 3522.819 4394.075 5825.996 

Griewangk 27.15134 4.525284 0.00849 0.00234 

Ackley 7.781164 1.041985 7.8948E-08 2.66454E-15 

 

It is clear in table 1, that each version has better result on some functions. For example, DMS-PSO has the best result on almost all 

functions except Schwefel, which PS2OS is the best on this function. But Otherwise DMS-PSO is very slow and takes a long time to 

find optimum. Otherwise PS2OS is very faster and find solution with higher speed and lower time. We can combine their advantages 

using proposed structure. 

In DMS-PSO, velocity update is happened in two steps. At 90% of iterations that form first step, particles are arranged in different 

groups and their movements are affected by the best position that a particle has ever found; stpersonalBeP , and the best position that is 

found by its neighborhood particles in its group; localBest
P  . Then in 10% of iterations that form second step, particles movements are 

affected by the global best between all particles; globalBest
P  instead of local bests. In the first step, a regroup operation is done in some 

predefined iterations in which some particles move from one subgroup to another one. 
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In PS2OS, particles are arranged in different groups and their movements are affected by the best position each particle has ever found, 

the best position its neighborhoods have found and global best position. 

MCPSO divides particles into N groups. One group is master and others are slaves. Particle movement in slave groups are affected by 

the best position each particle found and the best position that found by the other particles in its group. In master group particle 

movement are affected by previous best position of the master swarm; M

i
p , best global position of the master swarm; 

M

g
p  and 

previous best position of the slave swarms; S

i
p . 

Table 2: List of functions 

Name Definition Interval 
Global 

Minimum 
Optimal Point 

Step 
2

1

])5.0([floor)( ∑
=

+=
n

i

i
xxf  

-100 ≤ xi ≤ 100 0 xi=0 , i=1,…,n 

Sum of 

Different  

Powers 

∑
=

+
=

n

i

i

i
xxf

1

1
)(  

-1 ≤ xi ≤ 1 0 xi=0 , i=1,…,n 

Rosenbrock ∑
−

=
+ −+−=

1

1

222

1 ])1()(100[)(
n

i

iii
xxxxf  

-2.048 ≤ xi ≤ 2.048 0 xi=0 , i=1,…,n 

Sphere ∑
=

=
n

i

ixxf
1

2)(  
-5.12 ≤ xi ≤ 5.12 0 xi=1 , i=1,…,n 

Rastrigin ∑
=

−+=
n

i

ii
xxnxf

1

2 )]2cos(10[10)( π  -5.12 ≤ xi ≤ 5.12 0 xi=0 , i=1,…,n 

Schwefel nxxxf
n

i

ii 9829.418)]sin([)(
1

+−=∑
=

 -500 ≤ xi ≤ 500 0 
xi=420.9687 , 

i=1,…,n 

Griewangk ∏∑
==

+−=
n

i

i
n

i

i
i

x
xxf

11

2 1)cos(
4000

1
)(  

-600 ≤ xi ≤ 600 0 xi=0 , i=1,…,n 

Ackley 

ex
n

x
n

xf

n

i

n

i

++−

−−=

∑

∑

20))2cos(
1

exp(

)
1

2.0exp(20)(

1

1

2

π

 
-30 ≤ xi ≤ 30 0 xi=0 , i=1,…,n 

 

In the proposed method that is a hybrid algorithm and is called HPSO, we use a hierarchical structure and particles are divided into 

three groups. Each group has some subgroups. Groups have equal number of particles. The first group executes DMS-PSO, the second 

one executes PS2OS, and the third one executes MCPSO. These algorithms have been chosen because they have good efficiency to 

some extent and also same structure in creating subgroups. Creating subgroups in all of these algorithms is illustrated in figure 1. In 

DMS-PSO and PS2OS, particles are affected by local best particles, which are members of predefined subgroups. In MCPSO, both 

master and slave groups are considered as subgroups. Figure 2 shows the Pseudo Code of this algorithm. They can be executed on 

separate processor. After each iteration, information is exchanged between the groups. This information is the best position that groups 

have been founded so far. Each algorithm found its own global best. Then the best one among these three bests is chosen as a global 

best and all other algorithms use it from now on. If the best positions of each group are named gBestDMSPSO, gBestPS2OS and 

gBestMCPSO, then: 

),,(
2 MCPSOOSPSDMSPSOALL

gBestgBestgBestBestgBest =  (3) 

The Best(.) function chooses the best one. Update equations in DMS-PSO, PS2OS and MCPSO are changed respectively as equations 

4, 5 and 6. 
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Fig 1: HPSO structure 

 

Algorithm HPSO 

Divide population into 3 groups randomly, with equal population in each group 

Initialize particles position and velocity 

Set globalBest as the best position of particles 

Repeat 

 Do PS2OS, MCPSO and DMS-PSO in parallel using equations 4 to 6 

 When all process finished update globalBest using equation 3 

Until a termination condition is met 

Fig 2: Pseudo-code for the HPSO algorithm 

 

4. EXPERIMENTAL RESULTS 
HPSO is tested on four unimodal and four multimodal test functions. These functions are shown in table 2. Table 3 shows parameters 

values that are needed for different algorithms. In DMS-PSO algorithm, regrouping happens after ten iterations. Population size of 

particles, the number of iterations, group number and dimension in all algorithms are 100, 10000, 5 and 30 respectively. Each 

algorithm is executed 20 times and the mean of fitness value are shown in table 4. The best values, standard deviations and execution 

time are shown in table 5, 6 and 7 respectively. Also figure 3 shows the evolutionary process of proposed structure and other 

algorithms. In this figure, horizontal axis shows number of iterations and vertical axis shows logarithm of fitness. As it is obvious from 

table 4 and figures 3 that our algorithm rank is not worse than second in all test functions and in some of them such as Rosenbrock and 

DMS-PSO 

PS2OS MCPSO 

Group 
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Level 1 
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Griewangk is the best. However, as it is clear in table 7 the most remarkable point about the results is its time cost. Although the 

number of particles is constant, execution time is often shorter than other algorithm except standard PSO. We do not consider standard 

PSO because of its very low efficiency. In Sum of Different Powers and Rosenbrock functions, HPSO algorithm has second and third 

rank. However, in other functions it is the fastest algorithm. In Rastrigin, Schwefel and Ackley functions, execution speed is about two 

times faster than others are. 

Table 3: Different algorithms parameters 

 Γ1 Γ1 Γ1 χ
 

PS2OS --- --- --- 0.4693 

MCPSO 2.05 2.05 0.5 --- 

DMS-PSO 1.3667 1.3667 1.3667 --- 

 

 

Table 4: Fitness value averages 

T
y
p

e
 

Function Name 

Algorithm Name 

PSO PS2OS MCPSO DMS-PSO HPSO 

U
n

im
o
d

a
l 

Step 40 10.2 0 0 0 

Sum of Different Powers 6.68307E+16 61063177863 1.50713E+13 0 6.0666E-202 

Rosenbrock 2634.983 2051.209 57.12211 5.252174 1.994196 

Sphere 3920.4 871.2 6.92832E-88 0 5.57791E-74 

M
u

lt
im

o
d

a
l 

Rastrigin 136.1682 80.3533 73.57082 6.56673 10.24808 

Schwefel 5755.476 3522.819 4394.075 5825.996 3994.704 

Griewangk 27.15134 4.525284 0.00849 0.00234 0.000863 

Ackley 7.781164 1.041985 7.8948E-08 2.66454E-15 5.86198E-15 

 

 

Table 5: Bets fitness values 

T
y
p

e
 

Function Name 

Algorithm Name 

PSO PS2OS MCPSO DMS-PSO HPSO 

U
n

im
o
d

a
l 

Step 0 0 0 0 0 

Sum of Different Powers 1.1101E+11 0 11094.69 0 1.7509E-253 

Rosenbrock 3.074407 2.875E-25 0.806731 0.439654 0.001026 

Sphere 1.41077E-56 0 3.17009E-92 0 3.0032E-156 

M
u

lt
im

o
d

a
l 

Rastrigin 63.91875 52.73256 9.984942 2.984877 4.974795 

Schwefel 4059.869 2576.789 3099.119 5596.943 23820.421 

Griewangk 0 0 0 0 0 

Ackley 6.21725E-15 6.21725E-15 7.8948E-08 2.66454E-15 2.66454E-15 
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Rosenbrock Sphere 

 

 

Rastrigin Schwefel 

  

Griewangk Ackley 

Fig 3: Evolution of average fitness on test functions 
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Table 6: Standard deviation of fitness values 

T
y
p

e
 

Function Name 

Algorithm Name 

PSO PS2OS MCPSO DMS-PSO HPSO 

U
n

im
o
d

a
l 

Step 50.26247 30.71533 0 0 0 

Sum of Different Powers 2.25161E+17 2.23092E+11 3.6763E+13 0 0 

Rosenbrock 4380.078 4084.7441 54.4867 2.777684 2.568101 

Sphere 3128.413191 1787.665 1.79984E-87 0 1.2786E-142 

M
u

lt
im

o
d

a
l 

Rastrigin 43.91864 21.79923 35.44007 2.026243 3.114714 

Schwefel 727.9518 742.4373 689.716 201.5004 812.225 

Griewangk 42.52906 20.22434 0.008932 0.005562 0.002685 

Ackley 8.093677935 3.1937318 2.28128E-07 0 2.27631E-15 

 

Table 7: Mean of 20 times execution of algorithms in second 

T
y
p

e
 

Function Name 

Algorithm Name 

PSO PS2OS MCPSO DMS-PSO HPSO 

U
n

im
o
d

a
l 

Step 33.96467 951.3122 931.9807 994.7493 680.4106 

Sum of Different Powers 63.88169 2153.533 2096.571 2759.359 2469.466 

Rosenbrock 45.84556 2187.975 2144.549 2469.64 2488.982 

Sphere 34.80072 1179.87 1120.856 1252.537 781.094 

M
u

lt
im

o
d

a
l 

Rastrigin 42.7889 1475.199 1545.962 1678.039 719.9123 

Schwefel 56.3996 1470.374 1395.198 1583.201 775.41 

Griewangk 50.42329 2434.045 2360.87 2618.147 2203.812 

Ackley 42.39741 1213.938 1223.791 1305.369 784.7638 

 

5. CONCLUSIONS 
In this paper, a hybrid PSO that is called HPSO has been proposed. It is composed of three version of PSO i.e. DMS-PSO, PS2OS and 

MCPSO. In this algorithm, a hierarchical structure is used .Population is divided into three groups and each group executes a different 

algorithm. Meanwhile, they use the best global best position that each algorithm has ever found. Then it is compared with its 

components algorithms. They are tested on four unimodal and four multimodal test functions. The performance of HPSO is better in 

some cases meanwhile its speed is often much better than the algorithms that composed it. 
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