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Abstract 

 
Recently, there have been many studies on artificial neural network models with nonequilibrium 
dynamics. For example, Ishii et al.’s model, which is an improvement version of Kaneko’s 
globally coupled map (GCM) model, is called globally coupled map using the symmetric map (S-
GCM). A new learning method for S-GCM is proposed in this paper. In the proposed method, we 
use modified saprse matrix for learning method. Both the theory analyses and computer 
simulation results show that the performance of S-GCM can be improved greatly by using the 
MIMS learning method. Our learning method named as More Iterate More Store (MIMS) 
learning. The method is like sparse method, with difference in sparse method. This method to 
recur the stored patterns and in result it will be dependent on the sequence of storing the patterns, 
on the other hand, primary patterns have more effect in creating the weight matrix in comparison 
to the patterns will be stored finally, it means they are recurred more and consequently they are 
stored and stick better in the memory. It seems this method of learning is more similar to the 
man’s way of learning, as the patterns which we repetition during time we will keep them in our 
long-term memory better. 
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1. Introduction 
Recently, chaotic dynamical behavior has attracted a great deal of attention in many 
research fields, and a great deal of progress in chaotic study has been made [1-5]. Many 
people are certain that chaotic dynamic behavior plays an important role in real neurons 
and neural networks [6,7]. Many researchers have attempted to model artificial neural 
networks with chaotic dynamics on the basis of deterministic differential equations or 
stochastic models. Aihara et al. [8] have proposed deterministic difference equations, 
which describe an artificial neural network model, composed of chaotic neurons. This 
model has advantages in terms of computational time and memory for numerical analyses 
due to the spatiotemporal complex dynamics of the neurons. Adachi et al. [9] proposed a 
system based on model proposed by Aihara et al. A model based on coupled chaotic 
elements, called globally coupled map model, is proposed by Kaneko [10], and an 
improvement version of this model, called globally coupled map using the symmetric 
map, is proposed by Ishii et al. [11]. Ishii et al.’s studies show that in S-GCM both 
memory capacity and the basin volume for each memory are larger than those in the 
Hopfield model applying the same learning rule. Moreover, Inoue et al. [12,13] have 
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presented a chaotic neuro-computer in which a neuron is composed of a pair of coupled 
oscillators. The neuro-computer runs on a deterministic rule, but it is capable of 
stochastic searching and solving difficult optimization problems. Ishii’s modified global 
coupled chaotic system and Inoue’s chaotic neuro-computer are two main chaotic neural 
networks used for pattern recognition and associative memory. Zhang et al. [14,15] 
proposed a one-dimensional, two-way coupled map network and a modified definition of 
an auto-associative matrix. Ishii et al. [16] proposed an associative memory system based 
on parametrically coupled chaotic elements. The proposed system was obtained by 
adding a new parameter control to Ishii’s previously proposed system. A chaotic activity 
in an early association stage makes an efficient association over the memories that are 
stored by means of autocorrelational learning. When the system successfully recalls the 
target memory, the system's motion is dominated by a spatially coherent oscillation, 
while unstable motions remain when the system fails to make the association. This 
system had a large memory capacity. In addition, Zheng et al. [17] proposed a new parameter 
control method for S-GCM. With the proposed method, the changes of the parameters are 
decided not only by the value of system partial energy, but also by the difference value of 
the partial energy. Results showed that the performance of S-GCM could be improved 
greatly by using the new parameter control method. 
In the other hand, Menhaj et al. [18] proposed a learning method for Hopfield network, named 
sparse learning. They showed that the method learning is compatible to energy function of 
Hopfield model, and it cans storage target patterns in attractors with minimum energy. 
Additionally, they proved this learning method has more storage rate and more speed 
convergence contrast with modified Heb learning method. Based on an analysis of above-
mentioned chaotic neural network models and their applications in information processing, to 
increase the recall speed and capacity of S-GCM, we proposed a new learning method 
named MIMS learning. Analyses show that the performance of S-GCM can be improved 
by using the MIMS learning method. Computer simulation results show that the recall 
speed is increased greatly by using the new method, too. 
The rest of this paper is as following. In Section 2, the S-GCM is reviewed briefly. In 
Section 3, the MIMS learning method is clarified. In Section 4, computer simulation 
results of solving associative memory problem, by using the conventional learning 
method and new method, respectively, are presented. Some conclusions are given in 
Section 5. 

 
2. Globally Coupled Map using the Symmetric map (S-GCM) 
This section provides a brief introduction of S-GCM. Ishii et al. give the system.  
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Where )(txi denotes the i th unit value at time t , N is the number of units, and t  is the 

discrete-time,   is a constant parameter. The cubic function f , which has a symmetric 
function shape, can produce chaos with a specific value of its bifurcation parameter  . 



The characteristics of S-GCM are determined mainly by the values of its parameters,   
and  . The parameter   indicates the strength of each unit chaotic, and the parameter   
indicates the strength of the coupling. Therefore, as   becomes large the S-GCM 
becomes chaotic, and as   becomes large the S-GCM becomes coherent. By using S-
GCM for associative memory, one of the most crucial works is to convert the stored 
patterns into the parameters of S-GCM. There are two methods to complete this work: 
adjusting parameter i  and adjusting parameter i . The principles of these two methods 

are similar. Both of them employ the covariance-learning rule, which is broadly used in 
associative memory neural networks. So, here we only introduce the method for adjusting 
parameter i (note: the value of parameter   in Eq. (1) is a constant with this method). 

The general strategy of constructing association memory by S–GCM is as follows: An N-
dimensional binary coding function C , which converts a state vector, Nx ]1,1[ to a 

binary vector NxC }1,1{)(  is defined as: 
                          

)2(
1

1
)(

*

Otherwise

xx
xC i

i








 

 
Where *x denotes the stationary point of the S–GCM, which is equal to 0. Using this 

binary coding function C , an S–GCM state can be translated into a N -bit binary 

representation. The N-dimensional function V  converts a binary vector  NI 1,1  into a 

state vector NIV ]1,1[)(  . Function V  is defined as follows: 
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Where x  and x (   xx 0 ) denote the two-cycle periodic solutions of the 
asymmetric cubic map with 4.3min   , namely   xxf )( and   xxf )( . The 
notation rand  represents a small random value. 
When the S–GCM is regarded as an associative memory system, which processes an N-

dimensional binary vector  NI 1,1 to an N-dimensional binary output vector 

 NO 1,1 , the general strategy of S–GCM for associative memory is: 
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S–GCM has two working modes, namely unit map and random evolution, or the 
preserving mode and the destroying mode. The two modes are all global. If the 
parameters of each neuron could be controlled, the two modes can switch partially. Let 

  Nkm 1,1,...,, 21  be a set of N-dimensional binary patterns to be stored. k
i  



denotes the i th unit value in the k th binary pattern, and M is the number of stored 
patterns. The evolution of parameter i  in Eq. (4) is given by: 
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Where max , min and   are constant parameters. ix  and )(tEi  are the i th system state 

and the i th partial energy, respectively. Matrix ][ ijw  is called covariance matrix. The 

system energy is defined as ( 
i

iEE ). The S-GCM searches for a local minimum of 

the energy function by making each partial energy, iE , small and negative as follows. If 

iE  is high and positive, which means the i th unit value ix  does not suit the covariance 

matrix, then i  increases according Eq. (4) and the unit becomes disturbed. During the 

course of this disturbance, the unit-wise processing mode is changed from the preserving 
mode to the destroying mode. Before this mode change occurs, the unit is preserving its 
input. Once the mode is changed, the unit is disturbed enough to make a chaotic motion, 
which enables the unit to search for proper state. When the unit suits the covariance 
matrix, iE  becomes small and negative, and i  becomes small. In this case the unit-wise 

processing mode is changed from the destroying mode to the preserving mode. When 
each iE  becomes small and negative, it finally becomes min i  for all t , and the 

system output is equal to the stored pattern required. 
 

3. The MIMS learning method 
Studies show that one of the disadvantages of S-GCM is that the recall speed is slow 
[14,15,17]. Additionally, another of the disadvantages of S-GCM is that the memory 
capacity is low [16]. To increase the recall speed and memory capacity of S-GCM, we 
use the following learning method instead of modified Heb learning. 

 Let   Nkm 1,1,...,, 21  be a set of N-dimensional binary patterns to be stored. 
k
i  denotes the i th unit value in the k th binary pattern, and M is the number of stored 

patterns. 
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Matrix ][ ijw  is called MIMS matrix. The method is like sparse method, with this difference 

that in sparse method, T  matrix in firstly built according through stored patterns and then 



TT T   product is considered as weight matrix. But in the innovative method, by adding 
every new pattern, the previous T  matrix is also considered and TT T   producet is 
calculated and is added to the previous weight matrix. This process will continue till 
training all patterns. This way of creating the weight matrix will result this method to 
recur the stored patterns and in result it will be dependent on the sequence of storing 
patterns. In other words, primary patterns have more effect in creating the weight matrix in 
comparison to the patterns will be stored finally, it means they are recurred more and 
consequently they are stored and stick better in the memory. It seems this method of learning is 
more similar to the man’s way of learning, as the patterns which we repetition during time we 
will keep them in our long-term memory better. The method learning is compatible to energy 
function of Hopfield model. It cans storage target patterns in attractors with minimum 
energy. Additionally, will prove this learning method contrast with Heb learning method 
Have more capacity storage and more speed convergence. For the system, we proposed 
the following energy function:  
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In the following, we prove every change in 
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Let’s assume there would be a change in r  unit, so Eq. (7) should be: 
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The difference of Energy function is as follows: 
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Because of the symmetry of the net ( jiij ww  ), so E  will be obtained as follows: 
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At first, we show that Eq. (8) is consistent when just one pattern is stored in memory: 
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 is the weighted sum of the enterd inputs to the r th node. 

 The first status ( 1
1
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r ): for r  is changed from 1  in to 1 , 

therefore  
j

rji w 0  and 0211  r  thus 0E . 

 The secondt status ( 1
1

r  and 1
2

r ): for r  is changed from 1  in to 1 , 

therefore  
j

rji w 0  and 0211  r  thus 0E . 

As a result, it is seen that with every change in r , energy function will decrease. Now 
assuming that the issue is consistent for the time when 1m  patterns are stored in the 
system, we will verify that it is also consistent for m  patterns. 
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According to Induction, it is consistent for m  patterns. So that E  is always negative or 
zero. To continue, we will analyze the rule of learning in S-GCM and will notice its 
performance in this network. 
The system energy is defined as 

i
iEE . The S-GCM with this method learning 

searches for a local minimum of the energy function by making each partial energy, iE , 

small and negative as follows. If iE  is high and positive, which means the i th unit value 

ix  does not suit the MIMS matrix, then i  increases according Eq. (4) and the unit 

becomes disturbed. During the course of this disturbance, the unit-wise processing mode 
is changed from the preserving mode to the destroying mode. Before this mode change 
occurs, the unit is preserving its input. Once the mode is changed, the unit is disturbed 
enough to make a chaotic motion, which enables the unit to search for proper state. When 
the unit suits the MIMS matrix, iE  becomes small and negative, and i  becomes small. 

In this case the unit-wise processing mode is changed from the destroying mode to the 
preserving mode. When each iE  becomes small and negative, it finally becomes 

min i  for all t , and the system output is equal to the stored pattern required. 

 
 



4. Experimental results and analysis 
We use the conventional learning method and the new method to realize associative 
memory. Using Eqs. (4), (5) for the conventional method (System-1), and Eqs. (4), (6) for 
the new one (System-2), and the value of the parameters for the both methods are: 

1.0,4,4.3,100,2 maxmin   N  
The training set contains five binary patterns (Fig. 1), and the size of each pattern is 10 by 
10. 

           
 

Fig. 1. Patterns to be stored. 
 

The initial value of i  is 4max  , and the value of i  is updated once with Eq. (4) 

every 2 time steps. To test the effectiveness of the proposed method, for each character 
we built 3 different patterns by adding 0%, 5%, and 10%, random pepper and salt noise 
to each pattern. Fig. 2 shows time-series of the overlap in S-GCM with these two 
methods when the initial overlap is set at various values. All of test patterns can be 
retrieved correctly and systems can recall the target pattern from a fairly distant initial 
state. Similar associations have been obtained for other stored patterns. 

 

 

Fig. 2. Time-series of the overlap in S-GCM with two learning methods, P = 5 = 0.05N. 
(a) Heb learning method. (b) MIMS learning method.  The abscissa denotes continuous-
time t. 
Let us show an example association process. When memorizes five 100-bit binary 
patterns shown in Fig. 1, and the input binary vector I is a 15% reversed pattern of "A", it 
associates "A" after scores of transitions. Figures 3(a) and 3(b) show this association 

(a)  (b)  



process. In Fig.3 (b), the abscissa denotes the association time t and the ordinate the time-
series of overlap values. In this figure, highly chaotic motions are observed at the early 
association stage. As time elapses, these motions become quiet, and the association is 
completed when the system falls into a 4-cluster frozen attractor. At this time, its binary 
representation O is successfully equivalent to "A" as Fig. 3(a) shows. Fig. 3(c) shows the 
time-series of every unit's partial energy iE . Fig. 3(d) shows the time-series of every 

unit's i  value. As this figure shows, at the early stage of association, some of the 

i values are large, which make the unit search for a proper state. However, as time 

elapses, they become small, and finally all of them come to be equal to min , which make 
the system equivalent to the S-GCM and frozen with four clusters.  

 

     

     

(a)  (b)  

(c) (d)  



Fig. 3. Time-series in S-GCM with MIMS learning methods for A, (a) output values of 
all neurons (b) overlap association process (c) every unit's partial energy iE , (d) every 

unit's i  values. 

 
In this system, there will be similar results for the three patterns, which are stored at the 
beginning, but for the two last patterns, there would not be an appropriate result. If we 
alter the sequence of storing the patterns, the result would be proper for the primary 
patterns and inappropriate for the final patterns. We offer a solution to solve this problem. 
Additionally, to contrast memory storage of these two learning methods, we store 100 
Random patterns of 120 patterns (Fig. 4), and the size of each pattern is 10 by 10 for both 
methods. Then, in retrival stage, we use stored patterns as input patterns.  

 

 

 

 

   
  



  

 
Fig. 4. Patterns to be selected and then stored. 

 
Fig. 5 shows time-series of the overlap of “A” pattern in retrival stage when the initial 
overlap is set at 1. As you see, in MIMS learning method, input pattern convergenses to 
target pattern, but in Heb learning method the system cannot recall the target pattern. 
Similar associations have been obtained for other stored patterns that stored first. 
Therefore, using MIMS learning method for S-GCM is caused capacity storage of model 
increased. But for the patterns stored finally, if we give each of the target patterns as 
input patterns to the system, we will face 5% error, which is again an acceptable result. 



 
Fig. 5. Time-series of the overlap in S-GCM with two learning methods, P = 100 = N. 

The abscissa denotes continuous-time t. 
 

The most important point of strength in our system is that for the first-stored patterns, i.e. 
even at the time the storage rate is high, if we give them as inputs with random noise, our 
system will be able to correct the noise upto 5%. In the Fig. 6 have shown time-series of 
the overlap in S-GCM with two learning methods. As shown in this figure, the output of 
system-1 (Fig. 6(b)) is completely gone far from the target patterns while system-2 (Fig. 
6(b)) has done 3% error correction. In general, when the storage rate is high, system-1 is 
not only unable to correct the error, but also by giving the target pattern itself, it will go 
completely for as an input. While system-2 will perform the error correction for the 
primary-stored patterns even when the storage rate is so high. 

  
)b(  )a(  



       
Fig. 6. Time-series of the overlap in S-GCM with two learning methods, P = 100 = N. 

The abscissa denotes continuous-time t. 
 

The weakest point in the method of MIMS learning is in the final patterns or on the other 
hand, in the case of the patterns which has less influence in creating weight matrix. In 
order for the system to have suitable success rate for the final patterns, we will perform 
the method of learning as follows: for this purpose, we will store the patterns from the 
beginning to the end once and another time we store the same patterns from the end to the 
beginning. The result of our implementation indicates that applying this method will 
increases the final patterns of success rate, especially when the storage rate is low is more 
conspicuous. The reason for the final patterns of the success rate to be less than the 
primary patterns is that applying this method will not result in removing the sensitivity in 
sequence of the pattern storage. The strength of the final patterns in creating the weight 
matrix wil increases more only to some extent, but yet, the primary patterns have more 
influence in creating the weight matrix. 
 
5. Conclusion 
In this paper, MIMS learning method for S-GCM is proposed. The core of this method is 
that using MIMS matrix instead of covariance matrix for learning S-GCM. Experimental 
results show that the performance of S-GCM is increased greatly with the new method. 
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