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Abstract 

This paper introduces an automatic learning algorithm based on genetic programming to derive local and 
multipole expansions required by the Fast Multipole Method (FMM). FMM is a well-known approximation method 
widely used in the field of computational physics, which was first developed to approximately evaluate the product 
of particular N × N dense matrices with a vector in O(N log N) operations, while direct multiplication requires O(N2) 
operations. Soon after its invention, the FMM algorithm was applied successfully in many scientific fields such as 
simulation of physical systems (Electromagnetic, Stellar clusters, Turbulence), Computer Graphics and Vision (Light 
scattering) and Molecular dynamics. However, FMM relies on the analytical expansions of the underlying kernel 
function defining the interactions between particles, which are not obvious to derive. This is a major factor that 
severely limits the application of the FMM to many interesting problems. Thus, the proposed automatic technique 
in this article can be regarded as a very useful tool helping practitioners to apply FMM to their own problems. 
Here, we have implemented a prototype system and tested it on various types of kernels. The preliminary results 
are very promising, and so we hope that the proposed method can be applied successfully to other problems in 
different application domains. 
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1 Introduction 

There are a large number of systems (physical, biological, etc.) that can be studied by simulating 
the interactions between the particles constituting the system. In many cases, the simulation of 
such systems requires evaluating all pairwise interactions between particles because each particle 
influences every other particle. Examples of such systems can be found in a wide variety of 
scientific domains, including: sociology, biology, physics, chemistry, ecology, economy, etc. 
The challenge of efficiently carrying out the related calculations is generally known as the        
N-body problem. 

   Since it is impossible to solve the equations of motion for a large ensemble of particles in 
closed form, N-body problems are solved using iterative methods. In an iterative method, the 
force on each particle is computed at each cycle, and this information is then used to update the 
state (i.e., the position and velocity) of each particle. Assuming N particles, a direct computation 
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of the forces requires O(N2) work per iteration. This O(N2) complexity severely limits the 
number of particles that can be simulated because of its rapid growth with N. In other words, the 
O(N2) complexity required by direct methods, makes large-scale simulations extremely 
expensive in some cases, and prohibitive in many other cases. 

   Several techniques have been proposed that may be used to reduce the complexity per iteration. 
Among these techniques, one can refer to the Fast Multipole Method (FMM) as one of the most 
successful ones. The FMM is an approximation algorithm originally proposed by Rokhlin as a 
fast scheme to accelerate the numerical solution of the Laplace equation in two dimensions [1]. It 
was further improved by Greengard and Rokhlin when applied to particle simulations [2, 3], and 
has since been identified as one of the ten most important algorithmic contributions in the 20th 
century [4]. FMM can reduce the complexity of evaluating all pairwise interactions in large 
ensembles of N particles to O(N log N). This is a significant improvement over the O(N2) time 
required by direct methods, especially for very large values of N (N > 106).  

   Since its inception, FMM has been successfully applied to a wide variety of problems arising 
in diverse areas such as astrophysics, plasma physics, molecular dynamics, fluid dynamics, 
acoustics, electromagnetic, scattered data interpolation, and many more. Furthermore, It has 
found some applications in domains as seemingly unrelated as light scattering and radiosity 
calculations in computer graphics and vision [5, 6]. Recently, in [7, 8], the authors have 
introduced the potential use of the FMM in agent-based simulations, when there are a large 
number of interacting agents with complex interaction rules such as a physics-based flocking 
model.   

   However, the main problem with FMM is that its implementation relies on analytical 
expansions to approximate (in a suitable sense) the kernel function. That is, such expansions 
need to be carried out differently for different kernels. The kernel function is a function which 
defines the interaction laws between particles in the problem at hand. For a typical example of an 
interaction kernel, one can refer to the inverse square law such as Newton’s gravitation law 
defining the interactions between bodies or Coulomb’s law of electrostatics defining the 
interactions between charges. Even though many such approximations, often involving Legendre 
polynomials, Spherical Harmonics and Bessel functions, have been derived for many 
applications, many users find it very difficult or cumbersome to derive new expansions for new 
kernels, assuming such expansions can be found analytically. 

   So far, a few methods have been developed to deal with the above problem [9-13]. These 
methods are generally known as kernel-independent fast multipole methods in the sense that they 
do not rely on any analytic expansions and utilize only kernel evaluations. Unfortunately, these 
methods have not received enough attention, despite their scientific and technological 
contributions.   



   Based on our previous experiences in implementing and working with such methods as 
described in [7, 8], we believe that one explanation for this could be the complexity that these 
methods introduce to the FMM. FMM on its own is a very complicated algorithm, and these 
methods make the situation even worse. However, the most important reason could be related to 
the fact that these methods are usually less accurate compared to the FMM, and at the same time 
they are computationally more expensive. These undesired features significantly decrease their 
chances to be used in scientific computation and real-time applications, which are the main target 
domains for the original FMM. Additionally, these methods usually make some limiting 
assumptions about the kernel which are invalid for many kinds of kernels.  

   This article introduces a new GP-based automatic learning technique, which can be used to 
derive different expansions required in the FMM. Contrary to the kernel independent methods, 
this approach does not have any negative impact on the efficiency and accuracy of the FMM 
(except the time required to run the GP system to find analytical expansions needed by FMM, 
which is completely negligible to the time required by FMM to simulate a large ensemble of 
particles). Several experiments performed on different kernels confirm that the GP system can be 
used to evolve exact analytic expansions of the kernel which can be served to construct an 
accurate and efficient implementation of the FMM algorithm, if a sufficient amount of time is 
provided to the system. Moreover, the GP system can be used as a “black box” method which is 
applicable to arbitrary kernels. Therefore, applying the method should then simply be a matter of 
installing a library and providing a user-defined routine to evaluate the kernel at a given point. 
Thus, in contrast to the kernel independent methods, the complexity of our proposed technique is 
completely hidden from the end-user. 

   The rest of this paper is organized as following: Section  2 defines the problem of finding 
analytical expansions for a given kernel in more detail. Section  3 describes the GP system which 
is used to solve our target problem in this article. Some experimental results are discussed in 
Section  4. Finally, a summary of this work along with some future research guidelines is 
provided in Section  5. 

2  FMM and kernel expansions 

Let us assume that there are N source densities 𝑢𝑖 located at 𝑥𝑖 {1 ≤ 𝑖 ≤ 𝑁} in a d-dimensional 
space (d = 2 or 3). All we need is to compute the potential 𝑣𝑗  at M target points 𝑦𝑗  {1 < 𝑗 ≤ 𝑀} 
induced by a kernel K using the following summation: 

 𝑣𝑗 = �𝐾�𝑥𝑖 ,𝑦𝑗�𝑢𝑖

𝑁

𝑖=1

= �𝐾𝑖𝑗𝑢𝑖

𝑁

𝑖=1

,   𝑗 = 1, … ,𝑀 (1)  

 

 



 

Figure 1 A 2D particle distribution (left) and its corresponding quadtree (right). 

   Clearly, a direct implementation of the above summation requires O(MN) operations to 
compute all pairwise interactions between source points and target points. In many applications, 
the set of source points and targets points are identical (each point induces some potential on 
other points, and at the same time it is influenced by other points). In such cases, we have M = N, 
and the complexity is thus equal to O(N2), which is obviously prohibitive for large values of N. 
The FMM algorithm can reduce the complexity of the above computations from O(N2) to       
O(N log N), which is a significant reduction specially for a very large N (N ≥ 106). 

   FMM achieves its performance by introducing a hierarchical partition of a bounding square D, 
enclosing all particles, and two series expansions for each box at each level of the hierarchy. 
More precisely, the root of the tree is associated with the square D and referred to as level 0. The 
boxes (squares) at the level l + 1 are obtained recursively, subdividing each box at level l into 
four squares, referred to as its children. The tree is constructed so that the leaves contain no more 
than a certain fixed number of particles, say s. For non-uniform distributions, this leads to a 
potentially unbalanced tree, as shown in Figure 1 (which assumes s = 1). This tree is the main 
data structure used by the FMM. 

   The idea behind the space partitioning is to group source points into clusters (boxes in 2D 
space and cubes in 3D space) and consider the whole cluster as one point which approximates 
the influence of the source points to well-separated targets. The same idea can be applied to 
target points. That is, when the target points are far enough from the source points, targets can 
also be grouped into clusters. This way, it is possible to evaluate the contribution of the source 
points inside A to target points inside B at a single step, reducing the amount of computational 
efforts needed, assuming that A and B are two well-separated clusters. The situation is shown in 
Figure 2.  



 

Figure 2 A and B are two well-separated clusters. Cluster A contains some source points marked with “+” and 
cluster B contains some target points marked with “∆”. Instead of computing the pairwise interaction between each 
source from A and each target from B, The FMM algorithm computes the potentials of target points inside B due to 
source points inside A in a single computational step. 

The above idea in FMM is implemented using expansion operations. In fact, two types of 
expansions are used in the FMM: the multipole expansion and the local expansion. The 
multipole expansion for a box B encodes the contribution of B due to the source densities inside 
it to the far-field (non-adjacent boxes). Inversely, the local expansion for B encodes the 
contribution from the far-field to the target points inside B. For a box B, the multipole expansion 
depends only on the source points inside it, and hence it can be computed only once and then can 
be reused for any target box in the far-field. Similarly, the local expansion for box B depends 
only on the targets inside it, and again, it can be computed only once and reused for any source 
box in the far-field. This way, FMM can save a large amount of computations. 

2.1 MULTIPOLE AND LOCAL EXPANSIONS 

The implementation of the FMM relies on the analytic expansions (both multipole and local 
expansion) of the underlying kernel function. That is, if the kernel 𝐾�𝑥𝑖,𝑦𝑗� is separable then it 
can be factorized as 

 𝐾�𝑥𝑖,𝑦𝑗� = � 𝑎𝑚(𝑥𝑖 , 𝑥∗)𝑓𝑚�𝑦𝑗 , 𝑥∗�
∞

𝑚=0

≅ � 𝑎𝑚(𝑥𝑖, 𝑥∗)𝑓𝑚�𝑦𝑗 , 𝑥∗�
𝑝−1

𝑚=0

 (2)  

where 𝑥∗ is any point other than 𝑥𝑖 in the plane and represents the center of expansion. Note that 
in the above factorization, the first function 𝑎𝑚(𝑥𝑖, 𝑥∗) depends only on variable 𝑥𝑖 (source 
points) and the second function 𝑓𝑚�𝑦𝑗 , 𝑥∗� depends only on variable 𝑦𝑗 (target points). These two 
functions depend on the kernel function, and hence vary from one kernel to another. As an 
example, please refer to Section 2.1.1 and Section 2.1.2 to see the factorization for kernel 
function 𝐾�𝑥𝑖 ,𝑦𝑗� = log�𝑦𝑗 − 𝑥𝑖� and the corresponding functions 𝑎𝑚(𝑥𝑖, 𝑥∗) and 𝑓𝑚�𝑦𝑗 , 𝑥∗�. 

   Now the potential 𝑣𝑗 , defined in (1), can be evaluated in the following way: 



𝑣𝑗 = �𝐾�𝑥𝑖 ,𝑦𝑗�𝑢𝑖

𝑁

𝑖=1

 

≅�� 𝑎𝑚(𝑥𝑖 − 𝑥∗)𝑓𝑚�𝑦𝑗 − 𝑥∗�𝑢𝑖

𝑝−1

𝑚=0

𝑁

𝑖=1

 

 = ��𝑎𝑚(𝑥𝑖 − 𝑥∗)𝑓𝑚�𝑦𝑗 − 𝑥∗�𝑢𝑖

𝑁

𝑖=1

𝑝−1

𝑚=0

 

= � 𝑓𝑚�𝑦𝑗 − 𝑥∗��𝑎𝑚(𝑥𝑖 − 𝑥∗)𝑢𝑖

𝑁

𝑖=1

𝑝−1

𝑚=0

  

= � 𝑐𝑚𝑓𝑚�𝑦𝑗 − 𝑥∗�
𝑝−1

𝑚=0

  

Where 𝑐𝑚 = ∑ 𝑎𝑚(𝑥𝑖 − 𝑥∗)𝑢𝑖𝑁
𝑖=1 .  

   Clearly, 𝑐𝑚 is only dependent on the source points and thus it can be computed for a group of 
source points only once and can be reused for several different target points. 

2.1.1 Multipole expansion 

It is more convenient to describe FMM using a simple example kernel. Here, we use the simple 
kernel 𝐾�𝑥𝑖,𝑦𝑗� = log�𝑦𝑗 − 𝑥𝑖� for this purpose. As mentioned earlier, the main idea of FMM is 
to represent the potentials of a set of source densities using multipole and local expansions at 
places far away from these sources. Let’s assume that n source densities are located inside a disk 
centered at 𝑥∗ with radius r, as shown in Figure 3. Then for every point y outside the disk with 
radius R (R > r), the potential vy at y due to the source densities inside the smaller disk can be 
represented by a set of coefficients 𝑐𝑚(0 ≤ 𝑚 < 𝑝), where 

 𝑣𝑦 = 𝑐0 log(𝑦 − 𝑥∗) + �
𝑐𝑚

(𝑦 − 𝑥∗)𝑚

𝑝−1

𝑚=1

+ O�
𝑟𝑝

𝑅𝑝�
 (3)  

in which O �𝑟
𝑝

𝑅𝑝
� is a residual term and 𝑐𝑚 satisfies: 

 𝑐0 = �𝑢𝑖

𝑛

𝑖=1

,   𝑐𝑚 = �
−(𝑥𝑖 − 𝑥∗)𝑚

𝑚
∙ 𝑢𝑖

𝑛

𝑖=1

  

   The expansion defined by (3) is called multipole expansion. Comparing this result with the 
equation defined in (2), gives the following factorization of the kernel 𝐾�𝑥𝑖 ,𝑦𝑗� = log�𝑦𝑗 − 𝑥𝑖�: 

 𝑎𝑚(𝑥𝑖, 𝑥∗) = �
1,                               𝑚 = 0

−
(𝑥𝑖 − 𝑥∗)𝑚

𝑚
, 𝑚 ≥ 1

� (4)  



 

Figure 3 Multipole expansion at center 𝑥∗ which is valid only outside the bigger disk (the gray region in the figure) 

and 

 𝑓𝑚�𝑦𝑗, 𝑥∗� = �
log�𝑦𝑗 − 𝑥∗�        𝑚 = 0

1

�𝑦𝑗 − 𝑥∗�
𝑚 , 𝑚 ≥ 1

� (5)  

   In this article, our goal is to develop a system to derive these two functions which can be used 
to construct the multipole expansion (or local expansion) required by the FMM method. 

2.1.2 Local expansion 

On the other side, if the source densities are all located outside the disk with radius R, then the 
potential vy at any point y inside the disk with radius r can be represented with a set of 
coefficients 𝑐𝑚(0 ≤ 𝑚 < 𝑝), where 

 𝑣𝑦 = � 𝑐𝑚 ∙ (𝑦 − 𝑥∗)𝑚
𝑝−1

𝑚=0

+ O�
𝑟𝑝

𝑅𝑝�
 (6)  

with cm satisfying: 

 𝑐0 = �𝑢𝑖 log(𝑥∗ − 𝑥𝑖)
𝑛

𝑖=1

,   𝑐𝑚 = �
−1

𝑚 ∙ (𝑥𝑖 − 𝑥∗)𝑚 ∙ 𝑢𝑖

𝑛

𝑖=1

  

   This is called local expansion. In both expansions, the truncation number p is usually a small 
constant determining from the desired accuracy of the result. A larger value for parameter p 
generally results in more computational times and at the same time increases the accuracy of 
computations. 



 

Figure 4 Local expansion at center 𝑥∗ which is valid only inside the smaller disk (the gray region in the figure). 

2.2 THE FMM ALGORITHM 

After partitioning the space into clusters and constructing the hierarchical tree structure, in which 
every node corresponds to a geometric box in the computational domain, FMM performs two 
passes on the tree: the upward pass and the downward pass. The upward pass is a bottom-up 
traversal of the tree in which a p-term multipole expansion is formed at every node of the tree. At 
the finest level, the multipole expansions are computed directly, while the multipole expansions 
of internal nodes at higher levels of the tree are formed by shifting the multipole expansions of 
the child nodes to the center of their parents and adding them together.  

   Having the multipole expansions at every node, a top-down traversal of the tree starts to 
compute the local expansions at every node. The local expansion at a child node is constructed 
by shifting the local expansion at the parent to the child’s center, shifting the multipole 
expansions of well-separated children of the nearest neighbors of the parent of the node to its 
center and adding them together. Finally, the local expansions at every leaf node are evaluated to 
compute the contribution from far-field to the particles inside that node. This far-field 
contribution it then added to the near-field interactions computed by iterating over all the source 
points in the neighborhood of the target box to obtain the potential of each target point. For a 
more detailed description of the FMM algorithm, see [14]. 

   Next section describes a GP system that can be used to automatically derive the two functions 
𝑎𝑚(𝑥, 𝑥∗) and 𝑓𝑚(𝑦, 𝑥∗) for both factorizations in multipole expansion and local expansion of 
any arbitrary kernel.  

3 Genetic Programming 

Evolutionary computation, as the name suggests, is a kind of computation inspired from the 
process of natural evolution.  It involves a family of algorithms called Evolutionary Algorithms 
(EA). Each algorithm in the family implements the same idea of genetic search in a different 
way. One of the main differences between the members is the data structure (chromosome) they 
use to encode a candidate solution. They can use simple structures like binary strings or more 
complex structures such as trees or graphs.   



 

Figure 5 a tree structure for the model: (𝑥 − 𝑥∗)𝑚 𝑚⁄  

Genetic Programming (GP), first introduced by Koza [15], uses tree structures (e.g. syntax tree) 
to represent solutions to a given problem. So GP can be viewed as a good candidate whenever 
candidate solutions to a problem can be naturally represented by trees. This representation is 
extremely flexible, since trees can represent computer programs, mathematical equations or 
complete models of process systems. In this application, our goal is to find formulas which best 
approximate multipole or local expansions in the FMM method and so it seems rational to use 
GP for this application. Another advantage of using GP for this problem is that unlike other 
methods such as neural networks, the solution found by GP (the expression trees representing 
analytical expansions of the underlying kernel) is easily readable and comprehensible for human. 
Furthermore, unlike some other function approximation approaches, the user can apply GP to its 
own problem without the need to be familiar with computer programming or advanced 
mathematical techniques. This becomes more important if we consider that the users of the FMM 
come from many different and diverse areas like those mentioned in the introduction section. 

   Like any other evolutionary algorithm, GP works with a set of individuals which together form 
a population of candidate solutions. At each cycle, the algorithm evaluates the individuals of the 
current population, selects better ones for reproduction, generates new individuals by performing 
genetic operators such as crossover and mutation operators, and finally creates the new 
population by replacing some of the old individuals with the new ones. The new generation goes 
through the same process to create another generation. This process is repeated until a 
termination criterion (such as finding a solution with required quality, spending a specified 
amount of time, or a combination of both) is satisfied. The fittest individual in the process serves 
as the final solution. 

3.1 MODEL REPRESENTATION IN GP 

In contrast to the common optimization methods, in which potential solutions are represented as 
numbers, in GP the potential solutions are usually represented by a nonlinear structure consisting 
of several symbols. Tree structures are one of the most popular methods for representing 
candidate solutions because of their flexibility to represent computer programs, mathematical 
equations, logical formulas and many others.  



 

Figure 6 An individual representing the factorization in  (7) 

The first step in designing a GP system is to decide about two important sets used to construct 
the tree structures: Terminal set (T) and Function set (F). For example, the set of operators F can 
contain the basic arithmetic operations (+, -, ×, /) as well as other mathematical functions, 
Boolean operators (and, or, not, etc.), conditional operators or any user-defined operators. The 
set of terminals T provides the required arguments for the functions in F. A typical example for 
the terminal set is 𝑇 = {𝑥,𝑦,ℝ} with x and y being two independent variables, and ℝ represent 
the set of real numbers. Therefore, a candidate solution (program) may be depicted as a rooted, 
labeled tree using functions (internal nodes of the tree) from the function set F and arguments 
(leaf nodes of the tree) from the terminal set T. 

   In this work, we wish to find a factorization of a given kernel 𝐾(𝑥,𝑦) representing multipole 
expansion or local expansion for that kernel (see Section  2.1). Therefore, in our GP system, each 
individual consists of at least two tree structures, one representing 𝑎𝑚(𝑥, 𝑥∗) and the other one 
representing 𝑓𝑚(𝑦, 𝑥∗). The number of trees in each individual may be more than two depending 
on the given kernel function. That is, in the factorization of a given kernel, the first term in the p-
term expansion may differ from the other terms. For more detail on this, please see Section  4.1. 
In our implementation, both types of individuals are allowed to exist in the same population. 
Figure 6 shows an example individual including two trees representing the factorization given in 
(7).  

 
1

𝑦 − 𝑥
= � −

1
(𝑥 − 𝑥∗)𝑚+1 ∙ (𝑦 − 𝑥∗)𝑚

∞

𝑚=0

 (7)  

3.2 INITIALIZATION 

The initial step in GP is the creation of an initial population. Generally, at this step, a              
pre-specified number of individuals are randomly created in order to achieve a high degree of 
diversity. In GP, there are two common methods to create the initial population: grow and full. In 
the grow method, different branches in a tree can have different lengths, while in the full method 
all branches should have the same length (i.e., all leaf nodes should be at the same depth). In 



order to achieve a better diversity, Koza suggests a third method called ramped half-and-half 
[15]. In this method, half of the population is created using the grow method, and the other half 
is created using the full method. The trees are constructed using different heights ranging from 
zero to the maximum initial height specified by the designer. This is the method of choice in 
many applications because of its ability to create a very diverse population. For the same reason, 
this method has been used in our implementation.  

3.3 FITNESS FUNCTION AND SELECTION 

After the creation of initial population, each individual in the population should be evaluated to 
prepare the population for the selection phase. Individuals are evaluated using a function which 
is called fitness function. This function assigns a real number to each individual indicating its 
quality or goodness in solving the problem at hand. Selection is then performed based on the 
individuals’ fitness so that a better individual is more likely to be selected. This follows the 
“survival of the fittest” principle which occurs in the nature. 

   In a symbolic regression problem, the fitness function is usually based on the square error 
between the estimated and desired output. In this work, the same approach is used to evaluate 
potential solutions in the GP system. The first step in evaluating a given kernel is to create some 
number of fitness cases, let’s say n. This number is an input parameter of the GP system and is 
determined by the designer. In this particular example, each fitness case is an ordered pair in the 
form of �(𝑥𝑖,𝑦𝑖),𝐾(𝑥𝑖,𝑦𝑖)� with xi and yi being two randomly selected points in the complex 
plane satisfying the conditions defined in Section  2.1, and 𝐾(𝑥𝑖,𝑦𝑖) is the value of the kernel 
function at (𝑥𝑖 ,𝑦𝑖). To evaluate the fitness of an individual, it is applied to every fitness case like 
(𝑥𝑖,𝑦𝑖) and its value 𝐾�(𝑥𝑖,𝑦𝑖) is recorded. Then, the error related to the ith fitness case can be 
computed as following: 

 𝑒𝑟𝑟𝑜𝑟𝑖 = 𝐾(𝑥𝑖 ,𝑦𝑖) − 𝐾�(𝑥𝑖,𝑦𝑖) (8)  

   Finally, the total error for an individual is computed by summing the square errors over all of 
fitness cases as defined in the following equation 

 𝑡𝑜𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 = �𝑒𝑟𝑟𝑜𝑟𝑖2
𝑛

𝑖=1

 (9)  

which obviously should be minimized. 

   An alternative to the well-known sum of squares function is to use the number of hits as a 
measure of fitness. To use this measure, first we establish the required precision for hitting 
𝐾(𝑥𝑖,𝑦𝑖) by 𝐾(𝑥𝑖,𝑦𝑖), say 𝜖. In other words, a hit occurs whenever |𝐾(𝑥𝑖 ,𝑦𝑖) − 𝐾(𝑥𝑖,𝑦𝑖)| is less 
than or equal to 𝜖, in which 𝜖 is a very small positive pre-specified by the designer. Then, we can 
measure the fitness of each individual by simply counting the number of hits. Later in Section  4, 
we will use both of these measures to evaluate the quality of the solutions found by GP.   



   After evaluating a population, in the selection step, the algorithm selects the parents of the next 
generation and determines surviving individuals from the current generation. Tournament 
selection is the most widely used selection strategy in GP, and we have used this strategy in our 
implementation. In tournament selection, to select a parent from the current population, k 
individuals are selected at random from the population, and the fittest one (winner) is selected to 
be a parent. The parameter k is called tournament size and should be specified by the designer of 
the GP system. Several reasons are reported in the literatures for the popularity of tournament 
selection. One reason is its simplicity. Another important reason is that tournament selection 
does not rely on the knowledge of the entire population. This becomes more significant when, 
for example, the population size is amazingly large, or the population is distributed in some way 
(perhaps on a parallel system) [16].  

3.4 GENETIC OPERATORS 

After selecting parents from the current population, the algorithm generates new candidate 
solutions by applying genetic operators on the parents. The most widely used genetic operators 
in GP are crossover, mutation and direct reproduction. Crossover is a binary operator which 
takes as input two individuals and produces two offsprings by exchanging random parts of the 
two parents. In GP, a frequently used crossover is the subtree crossover which exchanges two 
randomly selected subtrees in the parents to produce two new individuals (see Figure 7). As 
individuals in our GP system may consist of several trees, it is worth mentioning that in our 
implementation, each tree in a given individual is recombined with its corresponding tree in the 
other individual. In mutation, a small random change is performed on the parent to produce one 
new individual. There are several mutations specially designed for the tree structures in GP such 
as point mutation, subtree mutation (see Figure 8), shrink mutation and hoist mutation. These 
mutations are examples of fair-size mutation, as they try to avoid producing very big offsprings 
during mutation. The reason for the existence of these operators is to control a common 
undesired phenomenon called bloat. This phenomenon along various methods to control it is 
discussed in more detail in Section  3.6. For a good introduction on this subject, the reader may 
refer to [17]. Based on the suggestions provided in [18], a combination of these mutations is used 
in our implementation. In fact, whenever a mutation is needed to be performed, one of the above 
mutation operators is selected at random and then applied to the selected parent. Finally, the 
reproduction operator simply puts the selected parent directly into the new population without 
any change.  

   Unlike GA in which the crossover and mutation are performed sequentially, in GP only one of 
these operators is selected at random and performed on each parent to generate new individuals. 
The probability of performing crossover on a selected individual is pc, the probability of 
mutation is pm and the probability of direct reproduction is 1 – pc – pm.  

 



 

Figure 7 An example for subtree crossover with crossover points highlighted. The top part of the figure shows two 
parents and their randomly selected subtrees. The two trees in the bottom part are the resulting offsprings produced 
by exchanging subtrees in their parents. 

 

Figure 8 An example for subtree mutation with mutation point highlighted. The left part shows a parent and a 
randomly selected node of it. The right part shows the new offspring along with the new subtree which is located in 
the place of removed subtree in the parent.  

3.5 REPLACEMENT STRATEGY 

As the population size is fixed, not all the new individuals and the old ones can survive. 
Therefore, before inserting new individuals into the population, a mechanism is needed to 
remove some of the old individuals to make room for the newcomers. This mechanism is called 
replacement strategy, and it is performed at the end of each evolution cycle. We have used elitist 
replacement strategy in order to keep the best individuals of the old population with a 
generational gap parameter Pgap. For example, a value of 0.9 for this parameter means that 90% 
of the old population is killed and only the best 10% will survive. A very low value for this 
parameter increases the risk of premature convergence (getting stuck in a local optimum at the 
early stages of the GP run).  



3.6 BLOAT 

Bloat can be defined as uncontrolled growth of GP individuals without any remarkable increase 
in their fitness [17]. It has several significant practical effects: large individuals are 
computationally expensive to evolve and use, it is not easy to interpret them and furthermore, 
they may exhibit poor generalization.  For these reasons, any GP system needs some mechanisms 
to keep away from it. Bloat has been a subject of intense study since the early years of GP 
inception and still it is an ongoing research area. Because of its practical effects on a GP system, 
a variety of effective techniques have been proposed to control bloat [19, 20]. This section 
describes the technique used in our proposed system to control bloat. 

   A simple yet effective way to control bloat is using genetic operators which directly or 
indirectly have anti-bloat effect. For example, one can refer to size-fair crossover and size-fair 
mutation among the most recent methods [21, 22]. In size-fair crossover, the first subtree in the 
first parent is selected randomly and its size is computed. The size of this subtree is then used to 
constrain the choice of the second subtree in the second parent to ensure that the second subtree 
will not be “unfairly” big. For mutation, several methods have been proposed to counteract bloat. 
For example, in hoist mutation, the new subtree is selected from the subtree being removed from 
the parent to guarantee that the new offspring will be smaller than its parent [23]. Shrink 
mutation is a special case of subtree mutation where the randomly chosen subtree is replaced by 
a randomly chosen terminal [24]. For a good introduction to the mutation operators, the reader 
may refer to [17]. In [18], the authors argue that combinations of subtree crossover and subtree 
mutation operators can control bloat in linear GP systems. 

   In addition to anti-bloat genetic operators discussed above, there are some anti-bloat selections 
strategies that may be used to control bloat in GP systems [15, 25-28]. In this work we have 
followed the approach proposed in [27]. In this method, known as parsimony pressure, the 
fitness function is defined to be f(i) – c × l(i), where f(i) is the raw fitness of individual i defined 
by (8) and (9), l(i) is its size, and c is a constant known as parsimony coefficient. In our 
implementation, this coefficient is adaptively adjusted at each generation using the following 
formula: 

 𝑐 =
𝐶𝑜𝑣(𝑓, 𝑙)
𝑉𝑎𝑟(𝑙)

  

   In this formula, Cov(f, l) and Var(l) represent covariance and variance respectively. However, 
most implementations actually keep the parsimony coefficient constant.  

3.7 DESIGN SUMMARY 

Table 1 summarizes the designing parameters of the GP system used to derive multipole and 
local expansions for various kernels. Also, the values for the most important parameters are 
presented in Table 2, which are obtained mainly by try and error. The reason is that the optimal 



values for these parameters depend too much on the details of the particular problem at hand, and 
hence it is impossible to make general recommendations for setting optimal values. However, the 
good news is that GP is very robust in practice, meaning that it is likely that many different 
parameter settings will work. There are several suggestions and rules, which may be useful in 
some situations, but the best values for these parameters are often determined by trial and error. 
However, as a consequence of GP robustness, one need not typically spend a long time tuning 
GP for it to work adequately. 

Table 1 basic components of our GP system 

Objective Finding the multipole (or local) expansion for a given kernel function 
Terminals for 𝑎𝑚(𝑥, 𝑥∗) Complex variables 𝑥, 𝑥∗; integer variable 𝑚; and random constants chosen 

from [-5, 5] 
Terminals for 𝑓𝑚(𝑦, 𝑥∗) Complex variables 𝑦, 𝑥∗; integer variable 𝑚; and random constants chosen 

from [-5, 5] 
Function set +, -, ×, /, exp, pow, log, factorial; operating on complex numbers as well as 

real numbers 
Fitness function Sum of the squared errors over 100 fitness cases as defined in (9) 
Selection Tournament selection with tournament size 50   
Initialization Ramped half-and-half (depth 0 to 4) 
Crossover Size-fair crossover 
Mutation A combination of size-fair mutations including: point mutation, shrink 

mutation and hoist mutation 
Parameters See Table 2 
Termination Finding a solution with a total error less than 10-5 or reaching to the maximum 

number of generations 
Bloat Anti-bloat selection and anti-bloat genetic operators 

Table 2 Parameters of the GP system and their values 

Parameter notation value 
Population size μ 500, 1000, 2000, 5000 
Tournament size k 0.05 × 𝜇 
Number of fitness cases n 100 
Crossover rate pc 0.90 
Mutation rate pm 0.01 
Generational gap Pgap 0.90 
Maximum initial depth idmax 4 
Maximum depth  dmax 10 
Maximum number of generations gmax 50 
Maximum size of trees smax 200 

 
4 Experimental results 

This section presents the results of the experiments which are performed to show the practical 
effectiveness of the proposed GP system. All the results reported in this section are obtained by 
averaging over 20 runs. Also, All experiments were conducted on a desktop computer configured 



with one 2.5GHz Quad-Core Intel Pentium processors and 4GB RAM running a Windows 7 
Professional x32 Edition. Our application was developed in Java and the Java VM used to 
execute the tests was configured with 1GB memory. 

   Table 3 and Table 4 introduce three different kernels which are used in the experiments. We 
have used these kernels because they are frequently used in the literature and also their 
expansions are known. This will enable us to compare the results of the GP system to the known 
solutions. For each kernel, the corresponding factorization for multipole expansion and local 
expansion is also provided for comparison reasons. Table 5 presents sample solutions found by 
GP system related to the multipole expansions of the given kernels. By simplifying these 
solutions using simple mathematical operations, it is easy to verify that the given solutions in 
Table 5 are exactly equal to their corresponding multipole expansion given in Table 3. However, 
one does not necessarily need the simplified versions of the solutions obtained by GP to be able 
to evaluate them. Like other machine learning tasks, the process can be done automatically by 
applying the solutions to some test sets and to see how well a particular solution can generalize 
for new data. Here, as the solutions found by the GP system are exactly equal to the optimal 
ones, we have disregarded the testing phase for this particular case. 

Table 3 Three different kernels used in the experiments and their multipole expansions 

Kernel 𝐾(𝑥,𝑦) 𝑎𝑚(𝑥, 𝑥∗) 𝑓𝑚(𝑦,𝑦∗) 

I 
1
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 (𝑥 − 𝑥∗)𝑚 

1
(𝑦 − 𝑥∗)𝑚+1 
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Table 4 different kernels used in the experiments and their local expansions 

Kernel 𝐾(𝑥,𝑦) 𝑎𝑚(𝑥, 𝑥∗) 𝑓𝑚(𝑦,𝑦∗) 

I 
1

𝑦 − 𝑥
 

−1
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Table 5 Sample solutions found by GP system for each kernel (multipole expansions) 

Kernel I am(x, x*) = POW (SUB (x, x*), MUL(DIV (1.0, 1.0), m))    = (𝑥 − 𝑥∗)𝑚 
 
fm(y, x*) = DIV (POW (SUB (y, x*), DIV (m, -1.0)), (SUB (y, x*))    = 1 (𝑦 − 𝑥∗)𝑚+1⁄  
 

Kernel II a0(x, x*) = 1.0 
am(x, x*) = DIV (DIV (POW (SUB (x, x*), m), POW (ADD (0.0, POW (m, 0.0)), LOG (POW 
(1.0, DIV (m, LOG (LOG (m))))))), m) 
 
f0(y, x*) = MUL (LOG (SUB (y, x*)), POW (m, SUB (2.0, 2.0))) 
fm(y, x*) = DIV (DIV (POW (1.0, m), POW (SUB (y, x*), m)), DIV(m, m)) 
 

Kernel III am(x, x*) = MUL (POW (SUB (x, x*), m), MUL (EXP (DIV (POW (SUB (x, x*), 2.0), -1.0)), 
POW (DIV (POW (2.0, m), FACT (m)), DIV (POW (SUB (x, x*), LOG (1.0)), 2.0)))) 
 
fm(y, x*) = DIV MUL(MUL (POW (DIV (POW (SUB (3.0, 1.0), m), MUL (FACT (m), 1.0)), 
DIV (1.0, 2.0)), EXP (NEG (POW (SUB (y, x*), ADD (1.0, 1.0))))), POW (SUB (y, x*), DIV 
(m, POW (m, 0.0)))) 

4.1 ACCURACY OF THE GP SYSTEM 

The success rates of the GP system to derive multipole expansions and local expansions for the 
three different kernels are shown in Figure 9 and Figure 10. The success rate measure is usually 
defined as the percentage of GP runs terminated with a solution of required quality [16]. But, 
because in our case the correct solutions for the kernel functions are known (the correct solutions 
are given in Table 3 and Table 4), here the term "a solution of required quality" refers to the 
exact solution or the optimal solution. Therefore, the following definition can be used to evaluate 
the accuracy of the GP system presented in this work: 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 =
#𝑜𝑓 𝑟𝑢𝑛𝑠 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝒐𝒑𝒕𝒊𝒎𝒂𝒍 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠
 

   For example, a success rate equal to 0.9 implies that GP can find the exact solution for the 
given kernel in a single run with a probability of 0.9. All values reported in this section are 
obtained by running GP a number of times (20 runs) and computing the percentage of the total 
runs that the GP system has found the optimal solution for each given kernel. Figure 9 and 
Figure 10 show the results of this experiment.  

 



 

Figure 9 The success rate of GP system in finding multipole expansions for various population sizes (the maximum 
number of generations is fixed to 50)  

 

Figure 10 The success rate of GP system in finding local expansions for various population sizes (the maximum 
number of generations is fixed to 50) 

Table 6 Average and standard deviations of the best solutions found by GP in 20 individual runs 

 μ = 500  μ = 1000  μ = 2000  μ = 5000 
 MBF σ  MBF σ  MBF σ  MBF σ 
Kernel 1 51.43 18.59  73.75 18.19  83.55 14.44  91.65 10.42 
Kernel II 17.3 10.68  39.85 19.40  63.78 24.32  72.95 19.57 
Kernel III 30.45 21.83  64.83 19.95  73.61 20.93  83.35 14.52 

From these figures, it can be seen that finding the analytical expansion for kernel II is much more 
difficult compared to the other two kernels. This is because the individual corresponding to the 
solution of this kernel is composed of four tree components as shown in Figure 14, which makes 
the problem much more complicated in comparison with the other kernels which their 
corresponding individual is composed of only two tree components. In other words, the search 
space for kernel II is considerably larger than the search space for the other two kernels.  Kernels 
with four tree components in their individual form the most complicated problems of this kind. 
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Fortunately, the experiments presented here show that even these types of problems are also 
solvable using the proposed GP system; however, solving them may require more computational 
resources. As the problem of factorizing a given kernel, defined in Section  2.1, is a design-type 
problem (on-off problem) in the sense that it needs to be solved only once and its solution is then 
used many times in consecutive steps of the simulation by FMM, this amount of computational 
resources is completely justifiable. Remembering that once the factorization is obtained, FMM 
reduces the computational complexity of the problem at hand from O(N2) to O(N log N), which 
is a very significant improvement.    

   Although using success rate to show the accuracy of a GP system can be useful in some cases, 
but in many other cases using only this measure is not very informative. Therefore, to gain a 
better understanding, the mean best fitness (MBF) and standard deviation are also reported in 
Table 6 for each kernel and for various sizes of population (500, 1000, 2000, 5000). Also the 
corresponding histograms for the three kernel functions are given in Figure 11, Figure 12 and 
Figure 13. In this experiment, we have used the percentage of hits as the fitness measure to be 
able to compare the results for the three different kernels. The percentage of hits can be defined 
as the percentage of training data for which the error of the evolved solution is less than a pre-
specified amount, say 0.001. For example, it can be seen from Figure 11 that for a population 
size of 2000, five percent of solutions found by GP system have a hit number between 40 and 60, 
thirty five percent have a hit number between 60 and 80, and the remaining sixty percent have a 
hit number greater than 80.    

   These histograms clearly reveal that beside the complexity of the problem, the low success 
rates for kernel II are partially related to the definition of success rate which is used here. In 
practice, as the optimal solution to a given problem is unknown, it is very common to use 
satisfactory solutions instead of optimal solutions in computing the success rate of a GP system. 
That way, the success rate of the GP system will be better for all kernels depending on the 
required quality of the solution. Also, it is also possible to obtain better success rates by letting 
GP to run for more generations. Again we are faced to a common dilemma which arises in 
almost any optimization problem: the trade-off between accuracy and time complexity. That is, 
spending more time will result in solution with better qualities. Here, we have chosen to run GP 
system for a maximum number of 50 generations because we think that it is enough for the 
purpose of this paper.     

   It is worth noting that the GP system presented here can evolve local expansion as well 
multipole expansion for any given kernel without any change in the system. The only change 
which is required to switch from multipole expansion to local expansion or vice versa is to 
replace the fitness cases so that they satisfy the conditions defined in Section  2.1.1 and  2.1.2.  

 



 

Figure 11 Quality of solutions (in terms of percentage of hits) found by GP system for kernel I.  

 

Figure 12 Quality of solutions (in terms of percentage of hits) found by GP system for kernel II. 

 

Figure 13 Quality of solutions (in terms of percentage of hits) found by GP system for kernel III. 
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Figure 14 An individual composed of four tree components representing the expansion for log(𝑦 − 𝑥) 

4.2 EFFICIENCY OF THE GP SYSTEM 

Here, to have a feeling about the GP system efficiency, we have used the average number of 
evaluations to a solution (AES) measure. It is computed using the following equation: 

 𝐴𝐸𝑆 = 𝐴𝐺𝑁 × 𝜇 × 𝑛  

where AGN is the average number of generations required to find a solution, 𝜇 is the population 
size and 𝑛 is the number of fitness cases which are used in the training phase of GP system . The 
results along the execution times (in terms of second) are presented in Table 7. Again, the results 
confirm the fact that finding a factorization for kernel II is more complicated compared to the 
two other kernels. Considering kernel II, it can be seen that the system is about three times faster 
in finding a solution for kernel I and nearly two times faster for kernel III.  

Table 7 Average number of fitness evaluations and average execution times required to find a solution 

Kernel 
AES  Execution Time (Secs) 

Multipole expansion Local expansion Multipole expansion Local expansion 
Kernel I 13 × 106  9 × 106 471.23 391.78 
Kernel II 41 × 106 37 × 106 1379.11 1197.57 
Kernel III 19 × 106 19 × 106 756.93 812.37 

Also, it may be helpful to compare these results against the performance of a pure random 
search. Such a comparison can be helpful in two ways: it may give us a feeling about the 
difficulty and the complexity of the problem we are trying to solve, and at the same time it can 
provide us a measure to understand to which extent the proposed system improves the results. To 
be able to compare the efficiency of random search strategy with GP system, we have given the 
same amount of time (in terms of number of fitness evaluations required by GP to find an 
optimal solution) to the random search and then we have recorded the quality of the solutions it 
has found. The above experiment is repeated for 20 times and the results are reported in Table 8. 
The values reported in this table represent the number of hits of the best solution found by a Pure 
Random Search (PRS) in each individual run. Again, a hit occurs whenever the value of the error 
function defined in (8) is less than 0.001 for a training data. From the table it can be seen that a 



pure random search can learn in average 22% of the training data provided in the training set, 
while with the same amount of time GP can learn all training data correctly.  In this experiment, 
we have used kernel I, which is the simplest one, to show the inefficiency of a pure random 
search for this problem and also to show the advantage of using GP.   

Table 8 of the best solution found by a random search in 20 independent run for kernel I 

Run # Best solution found by PRS  Run # Best solution found by PRS 
1 20  11 16 
2 27  12 28 
3 14  13 23 
4 26  14 9 
5 24  15 35 
6 6  16 17 
7 25  17 16 
8 32  18 29 
9 31  19 21 

10 7  20 28 
    Average: 22 % 

4.3 CONTROLLING BLOAT 

As described in Section  3.6, bloat may have harmful effects on the GP system and thus in any 
implementation, it is necessary to have some mechanisms to counteract it. These effects are more 
important when individuals in the GP system can contain several tree structures to represent 
candidate solutions, like individuals in the proposed GP system in this article. Therefore, it is 
extremely important to have effective methods to control bloat in this application. To figure out 
how much the proposed GP system is successful in the fight against bloat, using various anti-
bloat techniques discussed in Section  3.6, Figure 15 exhibits the average and maximum size of 
individuals in a typical run for kernel II. The results in this figure show that the anti-bloat 
techniques have been successful to control bloat in practice.  

5 Summary 

In this paper we introduced a genetic programming based learning tool that can be utilized 
during the design phase of the fast multipole method. The role of the GP system is to derive the 
multipole and local expansions required in the implementation of the FMM. These analytic 
expansions vary from kernel to kernel and deriving them manually can be somewhat tedious and 
a very time-consuming effort, even if such expansions exist. As there is no general technique that 
can be served to factorize arbitrary kernels, at least at the time of writing this article, hence the 
GP system proposed here can be regarded as the first automated tool for this purpose. The 
practical importance of such tool is that it can extend the application domains of the FMM 
methods to new scientific and engineering domains.  

 



 

Figure 15 The average and maximum size of individuals in a typical run 

   One such application would be, for example, the interesting domain of agent based 
simulations, particularly when there are a very large number of interacting agents to be 
simulated, with complex interaction rules and patterns. Some examples of such systems can be 
found in the area of flock simulation, crowd simulation, pedestrian simulation, traffic simulation, 
and many others. We have implemented a prototype system in Java and tested it on some widely 
used kernels in the literature. The preliminary results are encouraging and so we hope that the 
proposed system can be applied successfully to other applications. 
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Appendix A 

Table 9 Numerical Results for experiments in Section 4.1 

 Number of Hits 
 μ = 500  μ = 1000  μ = 2000  μ = 5000 
Run I II III  I II III  I II III  I II III 
1 39 30 45  64 23 72  61 100 49  79 62 70 
2 42 6 23  100 54 87  82 17 68  75 36 100 
3 33 10 14  48 22 69  100 87 87  95 98 96 
4 46 25 1  82 42 56  88 77 71  67 68 82 
5 51 25 50  69 19 60  72 48 64  97 57 84 
6 50 15 32  100 69 86  100 42 90  100 71 100 
7 48 20 5  78 56 58  86 96 74  98 92 67 
8 48 22 14  56 52 55  62 70 53  100 82 78 
9 38 8 21  88 15 57  100 67 100  95 57 82 
10 67 13 78  68 68 52  87 95 89  100 96 100 
11 42 2 15  64 8 62  98 60 96  94 69 95 
12 100 14 65  78 42 95  76 34 49  100 47 70 
13 31 15 13  83 34 83  100 81 100  89 100 100 
14 32 21 16  70 29 69  93 97 89  100 76 65 
15 28 5 3  100 42 86  89 68 92  100 100 100 
16 73 34 29  48 45 34  100 46 98  77 56 59 
17 84 13 51  39 56 28  57 45 54  100 81 98 
18 63 25 43  69 48 56  79 47 62  100 97 79 
19 56 2 34  71 11 97  68 37 28  81 52 61 
20 57 41 57  100 83 34  73 57 59  86 62 81 
Mean 51.40 17.3 30.45  73.75 40.9 64.8  83.55 63.55 73.6  91.65 72.95 83.35 
S.D. 18.59 10.68 21.83  18.19 20.66 19.95  14.44 24.09 20.94  10.43 19.57 14.52 
 


