
Y. Tan, Y. Shi, and Z. Ji (Eds.): ICSI 2012, Part II, LNCS 7332, pp. 1–10, 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Automatic Learning System to Derive Multipole
and Local Expansions for the Fast Multipole Method

Seyed Naser Razavi1, Nicolas Gaud2, Abderrafiâa Koukam2, and Naser Mozayani1

1 Iran University of Science and Technology
2 UTBM

{razavi,mozayani}@iust.ac.ir,
{nicolas.gaud,abder.koukam}@utbm.fr

Abstract. This paper introduces an automatic learning method based on genetic
programming to derive local and multipole expansions required by the Fast
Multipole Method (FMM). FMM is a well-known approximation method
widely used in the field of computational physics, which was first developed to
approximately evaluate the product of particular N × N dense matrices with a
vector in O(N log N) operations. Later, it was applied successfully in many
scientific fields such as simulation of physical systems, Computer Graphics and
Molecular dynamics. However, FMM relies on the analytical expansions of the
underlying kernel function defining the interactions between particles, which
are not always obvious to derive. This is a major factor limiting the application
of the FMM to many interesting problems. Thus, the proposed method here can
be regarded as a useful tool helping practitioners to apply FMM to their own
problems such as agent-based simulation of large complex systems. The
preliminary results of the implemented system are very promising, and so we
hope that the proposed method can be applied to other problems in different
application domains.

Keywords: Agent-Based Simulation, Complex Systems, Fast Multipole Me-
thod, Genetic Programming.

1 Introduction

There are a large number of systems (physical, biological, etc.) that can be studied by
simulating the interactions between the particles constituting the system. In many
cases, the simulation of such systems requires evaluating all pairwise interactions
between particles because each particle influences every other particle. Examples of
such systems can be found in a wide variety of scientific domains, including: biology,
physics, chemistry, ecology, economy, etc. The challenge of efficiently carrying out
the related calculations is generally known as the N-body problem.

Since it is impossible to solve the equations of motion for a large ensemble of
particles in closed form, N-body problems are solved using iterative methods. In an
iterative method, the force on each particle is computed at each cycle, and this
information is then used to update the state (i.e., the position and velocity) of each
particle. Assuming N particles, a direct computation of the forces requires O(N2) work

2 S.N. Razavi et al.

per iteration. This complexity makes large-scale simulations extremely expensive in
some cases, and prohibitive in many other cases.

Several techniques have been proposed that may be used to reduce the complexity
per iteration. Among these techniques, one can refer to the Fast Multipole Method
(FMM) as one of the most successful ones. The FMM is an approximation algorithm
originally proposed by Rokhlin as a fast scheme to accelerate the numerical solution
of the Laplace equation in two dimensions [1]. It was further improved by Greengard
and Rokhlin when applied to particle simulations [2, 3], and has since been identified
as one of the ten most important algorithmic contributions in the 20th century [4].
FMM can reduce the complexity of evaluating all pairwise interactions in large
ensembles of N particles to O(NlogN).

Since its inception, FMM has been applied successfully to a wide variety of
problems arising in diverse areas such as astrophysics, plasma physics, molecular
dynamics, fluid dynamics, acoustics, electromagnetic, scattered data interpolation,
and many more. Furthermore, It has found some applications in domains as seemingly
unrelated as light scattering and radiosity calculations in computer graphics and vision
[5, 6]. Recently, in [7, 8], the authors have introduced the potential use of the FMM in
agent-based simulation of large complex systems, when there are millions of
interacting agents with complex interaction rules based on physics.

However, the main problem with FMM is that its implementation relies on
analytical expansions to approximate the kernel function. That is, such expansions
need to be carried out differently for different kernels. The kernel function is a
function which defines the interaction laws between particles in the problem at hand.
Even though many such approximations, often involving Legendre polynomials,
Spherical Harmonics and Bessel functions, have been derived for many applications,
many users find it very difficult or cumbersome to derive new expansions for new
kernels, assuming such expansions can be found analytically.

So far, a few methods have been developed to deal with the above problem [9-11].
These methods are generally known as kernel-independent fast multipole methods in
the sense that they don’t rely on any analytic expansions and utilize only kernel
evaluations. Unfortunately, these methods have not received enough attention, despite
their scientific and technological contributions. Based on our previous experiences,
we believe that the most important reason could be related to the fact that these me-
thods are less accurate compared to the FMM, and at the same time they are computa-
tionally more expensive. Additionally, these methods usually make some limiting
assumptions about the kernel which are invalid for many kinds of kernels.

This article introduces a new GP-based automatic learning technique, which can be
used to derive different expansions required in the FMM. The FMM itself can be used
in the simulation of large complex systems consisting of a large number of agents
interacting via local rules based on physics such as flocking systems and crowd
simulation. Contrary to the kernel independent methods, this approach does not have
any negative impact on the efficiency and accuracy of the FMM. Several experiments
performed on different kernels confirm that the GP system can be used to evolve
exact analytic expansions of the kernel which can be served to construct an accurate
and efficient implementation of the FMM algorithm. Moreover, the GP system can be

 An Automatic Learning System to Derive Multipole and Local Expansions 3

used as a “black box” method which is applicable to arbitrary kernels. Therefore,
applying the method should then simply be a matter of installing a library and provid-
ing a user-defined routine to evaluate the kernel at a given point.

The rest of this paper is organized as following: Section 2 defines the problem of
finding analytical expansions for a given kernel in more detail. Section 3 describes the
GP system which is used to solve our target problem in this article. Some
experimental results are discussed in Section 4. Finally, a summary of this work along
with some future research guidelines is provided in Section 5.

2 FMM and Kernel Expansions

Let us assume that there are N source densities ݑ௜ located at ݔ௜ ሼ1 ൑ ݅ ൑ ܰሽ in a
d-dimensional space (d = 2 or 3). All we need is to compute the potential ݒ௝ at M
target points ݕ௝ ሼ1 ൏ ݆ ൑ :ሽ induced by a kernel K using the following summationܯ

௝ݒ ൌ ෍ ,௜ݔ൫ܭ ௜ேݑ௝൯ݕ
௜ୀଵ ൌ ෍ ௜ேݑ௜௝ܭ

௜ୀଵ , ݆ ൌ 1, … , (1) ܯ

Clearly, a direct implementation of the above summation requires O(MN) operations.
For M = N, this complexity is quadratic, which is obviously prohibitive for large N.
The FMM algorithm can reduce the complexity of the above computations to Oሺ݈ܰ݃݋ ܰሻ, which is a significant reduction, specially for a very large N (N ≥ 106).

FMM achieves its performance by introducing a hierarchical partitioning of a
bounding square D, enclosing all particles, and two series expansions for each box at
each level of the hierarchy. More precisely, the root of the tree is associated with the
square D and referred to as level 0. The boxes (squares) at the level l + 1 are obtained
recursively, subdividing each box at level l into four squares, referred to as its
children. The tree is constructed so that the leaves contain no more than a certain
fixed number of particles, say s. For non-uniform distributions, this leads to a
potentially unbalanced tree, as shown in Figure 1 (which assumes s = 1). This tree is
the main data structure used by the FMM.

Fig. 1. A 2D particle distribution (left) and its corresponding quadtree (right)

4 S.N. Razavi et al.

The idea behind the space partitioning is to group source points into clusters (boxes
in 2D space and cubes in 3D space) and consider the whole cluster as one point which
approximates the influence of the source points to well-separated targets. The above
idea in FMM is implemented using expansion operations. In fact, two types of
expansions are used in the FMM: the multipole and the local expansion. The multi-
pole expansion for a box B encodes the contribution of B due to the source densities
inside it to the far-field (non-adjacent boxes). Inversely, the local expansion for B
encodes the contribution from the far-field to the target points inside B. For a box B,
the multipole expansion depends only on the source points inside it, and hence it can
be computed only once and then can be reused for any target box in the far-field. Si-
milarly, the local expansion for box B depends only on the targets inside it, and again,
it can be computed only once and reused for any source box in the far-field. This way,
FMM can save a large amount of computations.

2.1 Multipole and Local Expansions

The implementation of the FMM relies on the analytic expansions of the kernel
function. That is, if the kernel ܭ൫ݔ௜, ௝൯ is separable, then it can be factorized asݕ

,௜ݔ൫ܭ ௝൯ݕ ൌ ෍ ܽ௠ሺݔ௜, ሻכݔ ௠݂൫ݕ௝כݔ൯ஶ
௠ୀ଴ ؆ ෍ ܽ௠ሺݔ௜, ሻכݔ ௠݂൫ݕ௝, ൯௣ିଵכݔ

௠ୀ଴
(2)

where כݔ is any point other than ݔ௜ in the plane and represents the center of expan-
sion. Now, ݒ௝ as defined in (1), can be evaluated in O(pN + pM) instead of O(MN).
For a more detailed description of the FMM algorithm, please refer to [12]. Next sec-
tion describes a GP system that can be used to automatically derive the two functions ܽ௠ሺݔ, ,ݕሻ and ௠݂ሺכݔ ሻ for both factorizations (multipole and local) of any arbitraryכݔ
kernel, assuming that such expansions exists.

3 Genetic Programming

Genetic Programming (GP), first introduced by Koza [13], uses tree structures to
represent solutions to a given problem. So GP can be viewed as a good candidate
whenever candidate solutions to a problem can be naturally represented by trees. This
representation is extremely flexible, since trees can represent computer programs,
mathematical equations or complete models of process systems. In this application,
our goal is to find formulas which best approximate multipole or local expansions in
the FMM method and so it seems rational to use GP for this application. Another
advantage of using GP is that the results of GP are directly interpretable for humans in
contrast to other learning methods such as artificial neural networks.

 An Automatic Learning System to Derive Multipole and Local Expansions 5

Fig. 2. An individual representing the factorization in (3)

3.1 Model Representation in GP

The first step in designing a GP system is to decide about two important sets used to
construct the tree structures: Terminal set (T) and Function set (F). For example, the
set of operators F can contain the basic arithmetic operations as well as Boolean
operators, conditional operators or any user-defined operators. The set of terminals T
provides the required arguments for the functions in F. A typical example for the
terminal set is ܶ ൌ ሼݔ, ,ݕ Թሽ with x and y being two independent variables, and Թ
represent the set of real numbers. Therefore, a candidate solution (program) may be
depicted as a rooted, labeled tree using functions (internal nodes of the tree) from the
function set F and arguments (leaf nodes of the tree) from the terminal set T.

In this work, we wish to find a factorization of a given kernel ܭሺݔ, ሻ representingݕ
multipole expansion or local expansion for that kernel (see section 2.1). Therefore, in
our GP system, each individual consists of at least two tree structures, one for ܽ௠ሺݔ, ,ݕሻ and the other one for ௠݂ሺכݔ ሻ. The number of trees in each individualכݔ
may be more than two depending on the given kernel function. That is, in the factori-
zation of a given kernel, the first term in the p-term expansion may differ from the
other terms. Figure 2 shows an example individual including two trees representing
the factorization given in (3).

ݕ1 െ ݔ ൌ ෍ െ 1ሺݔ െ ሻ௠ାଵכݔ · ሺݕ െ ሻ௠ஶכݔ
௠ୀ଴ (3)

3.2 Fitness Function and Selection

In a symbolic regression problem, the fitness function is usually based on the square
error between the estimated and desired output. In this work, the same approach is
used to evaluate potential solutions in the GP system. The first step in evaluating a
given kernel is to create some number of fitness cases, let’s say n. In this particular
example, each fitness case is an ordered triple in the form of ሺݔ௜, ,௜ݕ ,௜ݔሺܭ ௜ሻሻ with xiݕ
and yi being two randomly selected points in the complex plane which are far enough
from each other, and ܭሺݔ௜, ௜ሻ is the value of the kernel function. To evaluate theݕ

6 S.N. Razavi et al.

fitness of an individual, it is applied to every fitness case like ሺݔ௜, ,௜ݔ෡ሺܭ ௜ሻ and its valueݕ ௜ሻ is recorded. Then, the error related to the ith fitness case is computed asݕ
following:

௜ݎ݋ݎݎ݁ ൌ ,௜ݔሺܭ ௜ሻݕ െ ,௜ݔ෡ሺܭ ௜ሻݕ

The total error for an individual is computed by summing the square errors over all of
fitness cases as defined in the following equation:

݈ܽݐ݋ݐ ݎ݋ݎݎ݁ ൌ ෍ ௜ଶ௡ݎ݋ݎݎ݁
௜ୀଵ (4)

After evaluating a population, in the selection step, the algorithm selects the parents
of the next generation and determines surviving individuals from the current
generation. Tournament selection is the most widely used selection strategy in GP,
and we have used this strategy in our implementation. In tournament selection, to
select one parent from the current population, k (tournament size) individuals are
selected at random from the population, and the winner is selected to be a parent.

3.3 Genetic Operators

After selecting parents from the current population, the algorithm generates new
candidate solutions by applying genetic operators on the parents. The most widely
used genetic operators in GP are crossover, mutation and direct reproduction.
Crossover is a binary operator which takes as input two individuals and produces two
offsprings by exchanging random parts of the two parents. As individuals in our GP
system may consist of several trees, each tree in a given individual is recombined with
its corresponding tree in the other individual.

In mutation, a small random change is performed on the parent to produce one new
individual. There are several mutations specially designed for the tree structures in GP
such as point mutation, subtree mutation, shrink mutation and hoist mutation. These
mutations are examples of fair-size mutation, as they try to avoid producing very big
offsprings during mutation [14]. Based on the suggestions provided in [15], a
combination of these mutations is used in our implementation.

Table 1 summarizes the designing parameters of the GP system. Also, the values
for the most important parameters are presented in Table 2, which are obtained
mainly by try and error. The reason is that the optimal values for these parameters
depend too much on the details of the particular problem at hand, and hence it is
almost impossible to make general recommendations for setting optimal values.
However, GP is very robust in practice, meaning that it is likely that many different
parameter settings will work. There are several suggestions and rules, which may be
useful in some situations, but the best values for these parameters are often
determined by trial and error.

 An Automatic Learning System to Derive Multipole and Local Expansions 7

Table 1. Basic components of the GP system

Objective Finding the expansions for a given kernel function
Terminal Set Complex variables ݔ, y, כݔ; integer variable ݉; and ran-

dom constants chosen from [-5, 5]
Function Set +, -, ൈ, /, exp, pow, log, factorial
Fitness Sum of the squared errors over 100 fitness cases
Selection Tournament selection with tournament size 50
Initialization Ramped half-and-half (depth 0 to 4)
Crossover Size-fair crossover
Mutation A combination of size-fair mutations
Parameters See Table 2
Termination Finding a solution with a total error less than 10-5
Bloat Anti-bloat selection and anti-bloat genetic operators

Table 2. Parameters of the GP system and their values

Parameter notation value
Population size μ 1000, 5000, 10000
Tournament size k 50
Crossover rate pc 0.90
Mutation rate pm 0.01
Generational gap Pgap 0.90
Maximum depth dmax 10
Maximum # of generations gmax 50

4 Experimental Results

This section presents the results of the experiments which are performed to show the
practical effectiveness of the proposed GP system. All results reported in this section
are obtained by repeating each experiment for 20 times and then averaging the results.
Also, All experiments were conducted on a desktop computer configured with one
2.5GHz Quad-Core Intel Pentium processors and 4GB RAM running a Windows 7
Professional x32 Edition. Table 3 introduces three frequently used kernels along with

Table 3. Three different kernels used in the experiments and their multipole expansions

Kernel ࡷሺ࢞, ࢟ሻ ࢓ࢇሺ࢞, ሻכ࢞ ,ሺ࢟࢓ࢌ ሻכ࢟

I
ݕ1 െ ݔሺ ݔ െ ሻ௠כݔ

1ሺݕ െ ሻ௠ାଵכݔ

II log ሺݕ െ ሻ ൝ݔ 1, ݉ ൌ 0െ ሺݔ െ ሻ௠݉כݔ , ݉ ൒ 1 ቐlogሺݕ െ ሻכݔ , ݉ ൌ 01ሺݕ െ ሻ௠כݔ , ݉ ൒ 1

III ݁ିሺ௬ି௫ሻమ
 ݁ିሺ௫ି௫כሻమඨ2௠݉! ሺݔ െ !ሻమඨ2௠݉כሻ௠ ݁ିሺ௬ି௫כݔ ሺݕ െ ሻ௠כݔ

8 S.N. Razavi et al.

Table 4. Sample solutions found by GP system for each kernel (multipole expansions)

Kernel I am(x, x*) = POW (SUB (x, x*), MUL(DIV (1.0, 1.0), m))
fm(y, x*) = DIV (POW (SUB (y, x*), DIV (m, -1.0)), (SUB (y, x*))

Kernel II a0(x, x*) = 1.0
am(x, x*) = DIV (DIV (POW (SUB (x, x*), m), POW (ADD (0.0,
POW (m, 0.0)), LOG (POW (1.0, DIV (m, LOG (LOG (m))))))), m)
f0(y, x*) = MUL (LOG (SUB (y, x*)), POW (m, SUB (2.0, 2.0)))
fm(y, x*) = DIV (DIV (POW (1.0, m), POW (SUB (y, x*), m)),
DIV(m, m))

Kernel III am(x, x*) = MUL (POW (SUB (x, x*), m), MUL (EXP (DIV (POW

(SUB (x, x*), 2.0), -1.0)), POW (DIV (POW (2.0, m), FACT (m)),
DIV (POW (SUB (x, x*), LOG (1.0)), 2.0))))
fm(y, x*) = DIV MUL(MUL (POW (DIV (POW (SUB (3.0, 1.0), m),
MUL (FACT (m), 1.0)), DIV (1.0, 2.0)), EXP (NEG (POW (SUB
(y, x*), ADD (1.0, 1.0))))), POW (SUB (y, x*), DIV (m, POW (m,
0.0))))

their multipole expansions which are used in the experiments. Table 4 presents
sample solutions found by GP system related to the multipole expansions of the given
kernels. By simplifying these solutions using simple mathematical operations, it is
easy to verify that the given solutions in Table 4 are exactly equal to their correspond-
ing multipole expansion given in Table 3.

4.1 Accuracy of the GP System

The success rate of the GP system to derive multipole expansions for the three
different kernels is shown in Figure 3. The success rate measure can be defined as the
percentage of GP runs terminated with a solution of required quality [16]. But,
because in our case the optimal solutions for the kernel functions are known (see
Table 3), here the term "a solution of required quality" refers to the exact solution.
Therefore, when it is said that the success rate is equal to 0.9 for kernel I, it means
that the GP system has found the optimal solution for this kernel in 90 runs out of 100
runs. These values are obtained by running GP several times and computing the
percentage of the total runs that the GP system has found the optimal solution.

Figure 3 shows that finding the analytical expansion for kernel II is much more
difficult compared to the other two kernels. This is because the chromosome
corresponding to the solution of this kernel is composed of four tree components as
shown in Table 3, which makes the problem much more complicated in comparison
with the other kernels which their corresponding individual is composed of only two
tree components. Obviously, the results could be improved by increasing the
population size or the maximum number of generations (or both).

 An Automatic Learning System to Derive Multipole and Local Expansions 9

Fig. 3. The success rate of GP system in finding multipole expansions

4.2 Efficiency of the GP System

In this section, we have used the average number of evaluations required to find a
solution (AES) to measure GP efficiency. This measure can be computed using the
following equation:

ܵܧܣ ൌ ܰܩܣ ൈ ߤ ൈ ݊

in which, AGN is the average number of generations required to find a solution. The
results are presented in Table 5. Again, the results confirm the fact that finding a
factorization for kernel II is more complicated compared to the two other kernels.

Table 5. Average number of fitness evaluations required to find a solution

Kernel
AES Execution Time (Secs)

Multipole Local Multipole Local
Kernel I 13 × 106 9 × 106 471.23 391.78
Kernel II 41 × 106 37 × 106 1379.11 1197.57
Kernel III 19 × 106 19 × 106 756.93 812.37

5 Summary

This paper introduces a GP-based tool that can be utilized during the design phase of
the fast multipole method to derive the multipole and local expansions required in the
implementation of the FMM. These analytic expansions vary from kernel to kernel
and deriving them manually can be somewhat tedious and a very time-consuming
effort, even if such expansions exist. The practical importance of such tool is that it
can extend the application domains of the FMM methods to new scientific and
engineering domains, such as agent based simulations (particularly when there are a
very large number of interacting agents), flock simulation, crowd simulation,
pedestrian simulation, traffic simulation, and many others.

0

20

40

60

80

100

Kernel I Kernel II Kernel III

Success Rate

µ = 1000

µ = 5000

µ = 10000

10 S.N. Razavi et al.

References

1. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. Journal of
Computational Physics 60(2), 187–207 (1983)

2. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. Journal of Computa-
tional Physics 73(2), 325–348 (1987)

3. Greengard, L., Rokhlin, V.: Rapid evaluation of potential fields in three dimensions. Lec-
ture Notes in Mathematics. Springer, Berlin (1988)

4. Dongarra, J., Sullivan, F.: The top ten algorithms of the century 2(1), 22–23 (2000)
5. Hanrahan, P., Salzman, D., Aupperle, L.: A rapid hierarchical radiosity algorithm. In:

SIGGRAPH (1991)
6. Singh, J.P., et al.: Load balancing and data locality in hierarchical N-body methods. Jour-

nal of Parallel and Distributed Computing (1992)
7. Razavi, S.N., et al.: Multi-agent based simulations using fast multipole method: applica-

tion to large scale simulations of flocking dynamical systems. Artificial Intelligence Re-
view 35(1), 53–72 (2011)

8. Razavi, S.N., et al.: Automatic Dynamics Simplification in Fast Multipole Method: Appli-
cation to Large Flocking Systems. To be Published in the Journal of Supercomputing
(2012)

9. Ying, L.: A kernel independent fast multipole algorithm for radial basis functions. Journal
of Computational Physics 213(2), 451–457 (2006)

10. Martinsson, P.G., Rokhlin, V.: An Accelerated Kernel-Independent Fast Multipole Method
in One Dimension. SIAM Journal on Scientific Computing 29(3), 1160–1178 (2007)

11. Zhang, B., et al.: A Fourier-series-based kernel-independent fast multipole method. Journal
of Computational Physics 230(15), 5807–5821 (2011)

12. Greengard, L.: The Rapid Evaluation of Potential Fields in Particle Systems. ACM Press
(1987)

13. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natu-
ral Selection. MIT Press, Cambridge (1992)

14. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming (2008)
15. McPhee, N.F., Poli, R.: Using schema theory to explore interactions of multiple operators.

In: GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference.
Morgan Kaufmann Publishers, New York (2002)

16. Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing, 1st edn. Natural Compu-
ting Series. Springer (2003)

	An Automatic Learning System to Derive Multipole and Local Expansions for the Fast Multipole Method

	Introduction
	FMM and Kernel Expansions
	Multipole and Local Expansions

	Genetic Programming
	Model Representation in GP
	Fitness Function and Selection
	Genetic Operators

	Experimental Results
	Accuracy of the GP System
	Efficiency of the GP System

	Summary
	References

