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Abstract. This paper introduces an automatic learning method based on genetic 
programming to derive local and multipole expansions required by the Fast 
Multipole Method (FMM). FMM is a well-known approximation method  
widely used in the field of computational physics, which was first developed to 
approximately evaluate the product of particular N × N dense matrices with a 
vector in O(N log N) operations. Later, it was applied successfully in many   
scientific fields such as simulation of physical systems, Computer Graphics and 
Molecular dynamics. However, FMM relies on the analytical expansions of the 
underlying kernel function defining the interactions between particles, which 
are not always obvious to derive. This is a major factor limiting the application 
of the FMM to many interesting problems. Thus, the proposed method here can 
be regarded as a useful tool helping practitioners to apply FMM to their own 
problems such as agent-based simulation of large complex systems. The       
preliminary results of the implemented system are very promising, and so we 
hope that the proposed method can be applied to other problems in different  
application domains. 

Keywords: Agent-Based Simulation, Complex Systems, Fast Multipole Me-
thod, Genetic Programming. 

1 Introduction 

There are a large number of systems (physical, biological, etc.) that can be studied by 
simulating the interactions between the particles constituting the system. In many 
cases, the simulation of such systems requires evaluating all pairwise interactions 
between particles because each particle influences every other particle. Examples of 
such systems can be found in a wide variety of scientific domains, including: biology, 
physics, chemistry, ecology, economy, etc. The challenge of efficiently carrying out 
the related calculations is generally known as the N-body problem. 

Since it is impossible to solve the equations of motion for a large ensemble of   
particles in closed form, N-body problems are solved using iterative methods. In an 
iterative method, the force on each particle is computed at each cycle, and this      
information is then used to update the state (i.e., the position and velocity) of each 
particle. Assuming N particles, a direct computation of the forces requires O(N2) work 
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per iteration. This complexity makes large-scale simulations extremely expensive in 
some cases, and prohibitive in many other cases. 

Several techniques have been proposed that may be used to reduce the complexity 
per iteration. Among these techniques, one can refer to the Fast Multipole Method 
(FMM) as one of the most successful ones. The FMM is an approximation algorithm 
originally proposed by Rokhlin as a fast scheme to accelerate the numerical solution 
of the Laplace equation in two dimensions [1]. It was further improved by Greengard 
and Rokhlin when applied to particle simulations [2, 3], and has since been identified 
as one of the ten most important algorithmic contributions in the 20th century [4]. 
FMM can reduce the complexity of evaluating all pairwise interactions in large    
ensembles of N particles to O(NlogN).  

Since its inception, FMM has been applied successfully to a wide variety of    
problems arising in diverse areas such as astrophysics, plasma physics, molecular 
dynamics, fluid dynamics, acoustics, electromagnetic, scattered data interpolation, 
and many more. Furthermore, It has found some applications in domains as seemingly 
unrelated as light scattering and radiosity calculations in computer graphics and vision 
[5, 6]. Recently, in [7, 8], the authors have introduced the potential use of the FMM in 
agent-based simulation of large complex systems, when there are millions of        
interacting agents with complex interaction rules based on physics.   

However, the main problem with FMM is that its implementation relies on         
analytical expansions to approximate the kernel function. That is, such expansions 
need to be carried out differently for different kernels. The kernel function is a     
function which defines the interaction laws between particles in the problem at hand. 
Even though many such approximations, often involving Legendre polynomials, 
Spherical Harmonics and Bessel functions, have been derived for many applications, 
many users find it very difficult or cumbersome to derive new expansions for new 
kernels, assuming such expansions can be found analytically. 

So far, a few methods have been developed to deal with the above problem [9-11]. 
These methods are generally known as kernel-independent fast multipole methods in 
the sense that they don’t rely on any analytic expansions and utilize only kernel   
evaluations. Unfortunately, these methods have not received enough attention, despite 
their scientific and technological contributions. Based on our previous experiences, 
we believe that the most important reason could be related to the fact that these  me-
thods are less accurate compared to the FMM, and at the same time they are computa-
tionally more expensive. Additionally, these methods usually make some limiting 
assumptions about the kernel which are invalid for many kinds of kernels.  

This article introduces a new GP-based automatic learning technique, which can be 
used to derive different expansions required in the FMM. The FMM itself can be used 
in the simulation of large complex systems consisting of a large number of agents 
interacting via local rules based on physics such as flocking systems and crowd    
simulation. Contrary to the kernel independent methods, this approach does not have 
any negative impact on the efficiency and accuracy of the FMM. Several experiments 
performed on different kernels confirm that the GP system can be used to evolve  
exact analytic expansions of the kernel which can be served to construct an accurate 
and efficient implementation of the FMM algorithm. Moreover, the GP system can be  
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used as a “black box” method which is applicable to arbitrary kernels. Therefore, 
applying the method should then simply be a matter of installing a library and provid-
ing a user-defined routine to evaluate the kernel at a given point. 

The rest of this paper is organized as following: Section  2 defines the problem of 
finding analytical expansions for a given kernel in more detail. Section  3 describes the 
GP system which is used to solve our target problem in this article. Some              
experimental results are discussed in Section  4. Finally, a summary of this work along 
with some future research guidelines is provided in Section  5. 

2 FMM and Kernel Expansions 

Let us assume that there are N source densities  located at  1  in a        
d-dimensional space (d = 2 or 3). All we need is to compute the potential  at M 
target points  1  induced by a kernel K using the following summation: 

 , , 1, … ,  (1) 

Clearly, a direct implementation of the above summation requires O(MN) operations. 
For M = N, this complexity is quadratic, which is obviously prohibitive for large N. 
The FMM algorithm can reduce the complexity of the above computations to O  , which is a significant reduction, specially for a very large N (N ≥ 106). 

FMM achieves its performance by introducing a hierarchical partitioning of a 
bounding square D, enclosing all particles, and two series expansions for each box at 
each level of the hierarchy. More precisely, the root of the tree is associated with the 
square D and referred to as level 0. The boxes (squares) at the level l + 1 are obtained 
recursively, subdividing each box at level l into four squares, referred to as its      
children. The tree is constructed so that the leaves contain no more than a certain 
fixed number of particles, say s. For non-uniform distributions, this leads to a       
potentially unbalanced tree, as shown in Figure 1 (which assumes s = 1). This tree is 
the main data structure used by the FMM.   

 

Fig. 1. A 2D particle distribution (left) and its corresponding quadtree (right) 
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The idea behind the space partitioning is to group source points into clusters (boxes 
in 2D space and cubes in 3D space) and consider the whole cluster as one point which 
approximates the influence of the source points to well-separated targets. The above 
idea in FMM is implemented using expansion operations. In fact, two types of      
expansions are used in the FMM: the multipole and the local expansion. The multi-
pole expansion for a box B encodes the contribution of B due to the source densities 
inside it to the far-field (non-adjacent boxes). Inversely, the local expansion for B 
encodes the contribution from the far-field to the target points inside B. For a box B, 
the multipole expansion depends only on the source points inside it, and hence it can 
be computed only once and then can be reused for any target box in the far-field. Si-
milarly, the local expansion for box B depends only on the targets inside it, and again, 
it can be computed only once and reused for any source box in the far-field. This way, 
FMM can save a large amount of computations. 

2.1 Multipole and Local Expansions 

The implementation of the FMM relies on the analytic expansions of the kernel   
function. That is, if the kernel ,  is separable, then it can be factorized as 

 , , , ,  
(2)  

where  is any point other than  in the plane and represents the center of expan-
sion.  Now,  as defined in (1), can be evaluated in O(pN + pM) instead of O(MN). 
For a more detailed description of the FMM algorithm, please refer to [12]. Next sec-
tion describes a GP system that can be used to automatically derive the two functions ,  and ,  for both factorizations (multipole and local) of any arbitrary 
kernel, assuming that such expansions exists.  

3 Genetic Programming 

Genetic Programming (GP), first introduced by Koza [13], uses tree structures to 
represent solutions to a given problem. So GP can be viewed as a good candidate 
whenever candidate solutions to a problem can be naturally represented by trees. This 
representation is extremely flexible, since trees can represent computer programs, 
mathematical equations or complete models of process systems. In this application, 
our goal is to find formulas which best approximate multipole or local expansions in 
the FMM method and so it seems rational to use GP for this application. Another 
advantage of using GP is that the results of GP are directly interpretable for humans in 
contrast to other learning methods such as artificial neural networks. 
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Fig. 2. An individual representing the factorization in (3) 

3.1 Model Representation in GP 

The first step in designing a GP system is to decide about two important sets used to 
construct the tree structures: Terminal set (T) and Function set (F). For example, the 
set of operators F can contain the basic arithmetic operations as well as Boolean   
operators, conditional operators or any user-defined operators. The set of terminals T 
provides the required arguments for the functions in F. A typical example for the 
terminal set is , ,  with x and y being two independent variables, and  
represent the set of real numbers. Therefore, a candidate solution (program) may be 
depicted as a rooted, labeled tree using functions (internal nodes of the tree) from the 
function set F and arguments (leaf nodes of the tree) from the terminal set T. 

In this work, we wish to find a factorization of a given kernel ,  representing 
multipole expansion or local expansion for that kernel (see section  2.1). Therefore, in 
our GP system, each individual consists of at least two tree structures, one for ,  and the other one for , . The number of trees in each individual 
may be more than two depending on the given kernel function. That is, in the factori-
zation of a given kernel, the first term in the p-term expansion may differ from the 
other terms. Figure 2 shows an example individual including two trees representing 
the factorization given in  (3). 

 1 1 ·  (3)  

3.2 Fitness Function and Selection 

In a symbolic regression problem, the fitness function is usually based on the square 
error between the estimated and desired output. In this work, the same approach is 
used to evaluate potential solutions in the GP system. The first step in evaluating a 
given kernel is to create some number of fitness cases, let’s say n. In this particular 
example, each fitness case is an ordered triple in the form of , , ,  with xi 
and yi being two randomly selected points in the complex plane which are far enough 
from each other, and ,  is the value of the kernel function. To evaluate the 
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fitness of an individual, it is applied to every fitness case like ,  and its value ,  is recorded. Then, the error related to the ith fitness case is computed as 
following: 

 , ,   

The total error for an individual is computed by summing the square errors over all of 
fitness cases as defined in the following equation: 

  (4) 

After evaluating a population, in the selection step, the algorithm selects the parents 
of the next generation and determines surviving individuals from the current         
generation. Tournament selection is the most widely used selection strategy in GP, 
and we have used this strategy in our implementation. In tournament selection, to 
select one parent from the current population, k (tournament size) individuals are     
selected at random from the population, and the winner is selected to be a parent.  

3.3 Genetic Operators 

After selecting parents from the current population, the algorithm generates new  
candidate solutions by applying genetic operators on the parents. The most widely 
used genetic operators in GP are crossover, mutation and direct reproduction.    
Crossover is a binary operator which takes as input two individuals and produces two 
offsprings by exchanging random parts of the two parents. As individuals in our GP 
system may consist of several trees, each tree in a given individual is recombined with 
its corresponding tree in the other individual.  

In mutation, a small random change is performed on the parent to produce one new 
individual. There are several mutations specially designed for the tree structures in GP 
such as point mutation, subtree mutation, shrink mutation and hoist mutation. These 
mutations are examples of fair-size mutation, as they try to avoid producing very big 
offsprings during mutation [14]. Based on the suggestions provided in [15], a      
combination of these mutations is used in our implementation.  

Table 1 summarizes the designing parameters of the GP system. Also, the values 
for the most important parameters are presented in Table 2, which are obtained   
mainly by try and error. The reason is that the optimal values for these parameters 
depend too much on the details of the particular problem at hand, and hence it is  
almost impossible to make general recommendations for setting optimal values.  
However, GP is very robust in practice, meaning that it is likely that many different 
parameter settings will work. There are several suggestions and rules, which may be 
useful in some situations, but the best values for these parameters are often           
determined by trial and error.  
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Table 1. Basic components of the GP system 

Objective Finding the expansions for a given kernel function 
Terminal Set  Complex variables , y, ; integer variable ; and ran-

dom constants chosen from [-5, 5] 
Function Set +, -, , /, exp, pow, log, factorial 
Fitness  Sum of the squared errors over 100 fitness cases  
Selection Tournament selection with tournament size 50   
Initialization Ramped half-and-half (depth 0 to 4) 
Crossover Size-fair crossover 
Mutation A combination of size-fair mutations 
Parameters See Table 2 
Termination Finding a solution with a total error less than 10-5  
Bloat Anti-bloat selection and anti-bloat genetic operators 

Table 2. Parameters of the GP system and their values 

Parameter notation value 
Population size μ 1000, 5000, 10000 
Tournament size k 50 
Crossover rate pc 0.90 
Mutation rate pm 0.01 
Generational gap Pgap 0.90 
Maximum depth  dmax 10 
Maximum # of generations gmax 50 

4 Experimental Results 

This section presents the results of the experiments which are performed to show the 
practical effectiveness of the proposed GP system. All results reported in this section 
are obtained by repeating each experiment for 20 times and then averaging the results. 
Also, All experiments were conducted on a desktop computer configured with one 
2.5GHz Quad-Core Intel Pentium processors and 4GB RAM running a Windows 7 
Professional x32 Edition. Table 3 introduces three frequently used kernels along with  

 

Table 3. Three different kernels used in the experiments and their multipole expansions 

Kernel ,  , ,  

I 
1

  
1

 

II log  
1,  0, 1 

log ,      01 , 1 

III  
2 !  

2 !  
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Table 4. Sample solutions found by GP system for each kernel (multipole expansions) 

Kernel I am(x, x*) = POW (SUB (x, x*), MUL(DIV (1.0, 1.0), m)) 
fm(y, x*) = DIV (POW (SUB (y, x*), DIV (m, -1.0)), (SUB (y, x*)) 
 

Kernel II a0(x, x*) = 1.0 
am(x, x*) = DIV (DIV (POW (SUB (x, x*), m), POW (ADD (0.0, 
POW (m, 0.0)), LOG (POW (1.0, DIV (m, LOG (LOG (m))))))), m) 
f0(y, x*) = MUL (LOG (SUB (y, x*)), POW (m, SUB (2.0, 2.0))) 
fm(y, x*) = DIV (DIV (POW (1.0, m), POW (SUB (y, x*), m)), 
DIV(m, m)) 

 
Kernel III am(x, x*) = MUL (POW (SUB (x, x*), m), MUL (EXP (DIV (POW 

(SUB (x, x*), 2.0), -1.0)), POW (DIV (POW (2.0, m), FACT (m)), 
DIV (POW (SUB (x, x*), LOG (1.0)), 2.0)))) 
fm(y, x*) = DIV MUL(MUL (POW (DIV (POW (SUB (3.0, 1.0), m), 
MUL (FACT (m), 1.0)), DIV (1.0, 2.0)), EXP (NEG (POW (SUB 
(y, x*), ADD (1.0, 1.0))))), POW (SUB (y, x*), DIV (m, POW (m, 
0.0)))) 

 
their multipole expansions which are used in the experiments. Table 4 presents    
sample solutions found by GP system related to the multipole expansions of the given 
kernels. By simplifying these solutions using simple mathematical operations, it is 
easy to verify that the given solutions in Table 4 are exactly equal to their correspond-
ing multipole expansion given in Table 3. 

4.1 Accuracy of the GP System 

The success rate of the GP system to derive multipole expansions for the three     
different kernels is shown in Figure 3. The success rate measure can be defined as the 
percentage of GP runs terminated with a solution of required quality [16]. But,     
because in our case the optimal solutions for the kernel functions are known (see  
Table 3), here the term "a solution of required quality" refers to the exact solution. 
Therefore, when it is said that the success rate is equal to 0.9 for kernel I, it means 
that the GP system has found the optimal solution for this kernel in 90 runs out of 100 
runs. These values are obtained by running GP several times and computing the   
percentage of the total runs that the GP system has found the optimal solution.  

Figure 3 shows that finding the analytical expansion for kernel II is much more  
difficult compared to the other two kernels. This is because the chromosome         
corresponding to the solution of this kernel is composed of four tree components as 
shown in Table 3, which makes the problem much more complicated in comparison 
with the other kernels which their corresponding individual is composed of only two 
tree components. Obviously, the results could be improved by increasing the        
population size or the maximum number of generations (or both).  
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Fig. 3. The success rate of GP system in finding multipole expansions 

4.2 Efficiency of the GP System 

In this section, we have used the average number of evaluations required to find a 
solution (AES) to measure GP efficiency. This measure can be computed using the 
following equation: 

   

in which, AGN is the average number of generations required to find a solution. The 
results are presented in Table 5. Again, the results confirm the fact that finding a  
factorization for kernel II is more complicated compared to the two other kernels.  

Table 5. Average number of fitness evaluations required to find a solution 

Kernel 
AES  Execution Time (Secs) 

Multipole Local Multipole Local 
Kernel I 13 × 106  9 × 106 471.23 391.78 
Kernel II 41 × 106 37 × 106 1379.11 1197.57 
Kernel III 19 × 106 19 × 106 756.93 812.37 

5 Summary 

This paper introduces a GP-based tool that can be utilized during the design phase of 
the fast multipole method to derive the multipole and local expansions required in the 
implementation of the FMM. These analytic expansions vary from kernel to kernel 
and deriving them manually can be somewhat tedious and a very time-consuming 
effort, even if such expansions exist. The practical importance of such tool is that it 
can extend the application domains of the FMM methods to new scientific and     
engineering domains, such as agent based simulations (particularly when there are a 
very large number of interacting agents), flock simulation, crowd simulation,        
pedestrian simulation, traffic simulation, and many others.  
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