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Abstract— In many urban areas where traffic congestion does
not have the peak pattern, conventional traffic signal timing
methods does not result in an efficient control. One alternative
is to let traffic signal controllers learn how to adjust the lights
based on the traffic situation. However this creates a classical
non-stationary environment since each controller is adapting to
the changes caused by other controllers. In multi-agent learning
this is likely to be inefficient and computationally challenging,
i.e., the efficiency decreases with the increase in the number of
agents (controllers). In this paper, we model a relatively large
traffic network as a multi-agent system and use techniques from
multi-agent reinforcement learning. In particular, Q-learning
is employed, where the average queue length in approaching
links is used to estimate states. A parametric representation of
the action space has made the method extendable to different
types of intersection. The simulation results demonstrate that
the proposed Q-learning outperformed the fixed time method
under different traffic demands.

I. INTRODUCTION

Traffic control is a challenging issue when it comes to

application of computational techniques in the real world.

The development of efficient mechanisms for traffic light

control is necessary, as the number of vehicles in urban

network increases rapidly. The objective of the signal control

is to increase intersection capacity, to decrease delays, and

at the same time, to guarantee the safety of traffic actors.

Moreover, it can reduce fuel usage and reduce emissions.

Signal control is one of the areas involved in the overall

effort known as intelligent transportation systems (ITS). ITS

can be implemented by some techniques. In the present paper

we use multi-agent systems and machine learning to develop

a traffic light control mechanism.

For transportation systems, concepts of intelligent agents

may be used in different parts of the system such as traffic

lights [1], vehicles [2], and pedestrians [3], as well as to

model the behavior of traffic system to describe the norm

violation and critical situation detection [4].

In order to manage the increasing volume of traffic, traffic

lights control by artificial intelligence (AI) techniques are

becoming more and more important. Some methods handle

control of traffic signals by predefined rule-based system [5],

fuzzy rules [6], and centralized techniques [7].

Multi-agent Systems is a subfield of AI that aims to

provide principles for construction of complex systems in-

volving multiple agents. Multi-agent systems have gained

significant importance because of their ability to model and

solve complex real-world problems.

Multi-agent systems provide mechanisms for communi-

cation, cooperation, and coordination of the agents. In [8]

the individual traffic control is modeled by coordinated

intelligent agents. The agents coordinate among themselves

based on the information received from each other to control

the network. Synchronization of traffic signals has also been

studied as coordinated agents in [9]. Cooperative multi-agent

system has been proposed to control the signals according to

the prediction of traffic volume in neighboring intersections

[10].

Regarding use of machine learning methods, in [11]

collaborative reinforcement learning has been presented to

provide an adaptive traffic control based on traffic pattern

observed from vehicle location data. For an overview on

applications and challenges regarding multi-agent learning

in traffic signal control, the reader is refered to [12].

Traditional reinforcement learning research assumes that

the environment is stationary and its dynamics are always

fixed. This is not the case regarding a real traffic network as

a stationary environment since traffic flow patterns change

dynamically over the time.

In the present paper, we use a reinforcement learning

approach which is model-free, namely Q-learning (more on

this in Section II). Contrary to other works that use this

method, here Q-learning is used to control the traffic lights in

a large and non-regular (i.e. non grid) network. In summary,

a network with 50 junctions arranged in a non grid network

is considered.

As it will be seen in the next section, Q-learning does not

require a pre-specified model of the environment. Hence, it

can be used in dynamic and non-stationary environment. Of

course, in this case the mathematical guarantees of conver-

gence no longer hold. However, because the environment is

non-stationary, this is not even desirable as one wants the

method to re-adapt to the environment when this changes.

Here, each agent is responsible to control the traffic

lights in one junction using local information only. Another

important characteristic of the present work is that it handles

a large state and action space, especially because contrarily

to other works we do not make simplifications (e.g. only

considering two phases). Here a 4-phase signal timing is

considered for each intersection.

The rest of this paper is organized as follows. Reinforce-

ment learning and in particular Q-learning is discussed in

Section II. Section III presents some related works that have

used reinforcement learning to control traffic lights. The

proposed Q-learning method and the network configuration

are presented in Section IV. Network configuration and

experimental results are respectively given in Section V and

VI. Finally the paper is concluded in Section VII.
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II. REINFORCEMENT LEARNING AND Q-LEARNING

Unlike supervised and unsupervised learning, reinforce-

ment learning learns an optimal policy by perceiving states

of the environment and receiving information from the

environment. Reinforcement learning algorithms optimize

environmental feedback by mapping percepts to actions.

These are best suited for domains in which an agent has

limited or no previous knowledge. The Q-Learning is one

particular reinforcement learning algorithm that is model-

free. Put simply, this means that an agent has no previous

model of how states and actions are related to rewards. The

Q-Learning algorithm was proposed by Watkins [13]. As

mentioned, it is essentially independent of existing domain

knowledge. This property of Q-Learning makes it a favorable

choice for unexplored environments.

Classically, Q-Learning is modeled by using a Markov

decision process formalism. This means that the agent is

in a state s, performs an action a, from which it gets a

scalar reward r from the environment. The environment then

changes to state s′ according to a given probability transition

matrix T . The goal of the agent is to choose actions maxi-

mizing discounted cumulative rewards over time. Discounted

means that short term rewards are weighted more heavily

than distant future rewards. The discount factor, γ = [0..1],
awards greater weight to future reinforcements if set closer to

1. In Q-learning, Q(s,a) is a state-action value representing

the expected total discounted return resulting from taking

action a in state s and continuing with the optimal policy

thereafter.

Q(s,a)←− β (r+ γV (s′))Q(s,a) (1)

V (s′)←−max
a

Q(s′,a) (2)

In Equation 1, β is the learning rate parameter and V (s′)
is given by Equation 2. The discount factor determines the

importance of future rewards. Q(s,a) measures the quality

value of the state-action pair and V (s′) gives the best Q value

for the actions in next state, s′. Q-learning helps to decide

upon the next action based on the expected reward of the

action taken for a particular state. Successive Q values are

built increasing the confidence of the agent as more rewards

are acquired for an action. As an agent explores the state

space, its estimate of Q improves gradually and Watkins and

Dayan have shown that the Q-Learning algorithm converges

to an optimal decision policy for a finite Markov decision

process [14].

III. REINFORCEMENT LEARNING FOR TRAFFIC LIGHT

CONTROL

Reinforcement learning offers some potentially significant

advantages and has become a good solution to control

single junction as well as network of traffic signals, in non-

stationary and dynamic environments.

Some researchers have tried to use a model-based rein-

forcement learning method for traffic light control. In [15],

transition model has been proposed that estimates waiting

times of cars in different states. In [16] Silva et al have

presented a reinforcement learning with context detection

that creates a partial model of the environment on demand.

Later, the partial models are improved or new ones are con-

structed. Adaptive reinforcement learning has been presented

to control a model free traffic environment in [17], [18].

Adaptive control of traffic light has also been studied in [19],

which uses a function approximation method as a mapping

between the states and signal timing.

Some researchers have introduced a reinforcement learn-

ing method based on communication between the agents. A

collaborative reinforcement learning introduced in [11] has

tried to exploit local knowledge of neighboring agents in

order to learn signal timings.

In [20] an interaction model based on game theory has

been studied. They defined two types of agents for traffic

signal control, intersection agents and management agents,

and constructed models of two agents. Q-learning was used

to build the payoff values in the interaction model. In the

interaction model, the renewed Q-values in the distributed

reinforcement Q-learning was used to build the payoff values.

Therefore, interaction has taken on from the action selection

between two agents.

Balaji et al have presented a method in which agents

try to compute a new phase length based on both local

and communicated information [21]. Q values were shared

between agents to improve the local observations and create

a global view.

In [22], two types of agents have been used to control a

five intersection network. Four intersections connected to a

central intersection were labeled as outbound intersections.

Two types of agents, a central agent and an outbound agent,

were employed. An outbound agent that follows the longest

queue collaborates with a central agent by providing relative

traffic flow values as a local traffic statistic. The relative

traffic flow is defined as the total delay of vehicles in a lane

divided by the average delay at all lanes in the intersection.

The central agent learns a value function driven by its

local and neighbors traffic conditions. It incorporates relative

traffic flow of its neighbors as a part of its decision-making

process.

Some other methods have been using communicated infor-

mation in state and reward estimation [23], [24], optimization

through cooperation based on information fusion technology

in a multi-level hierarchical structure [25].

Several researches have tried to realize distributed control

that learn optimal signal control over a group of signal

by a hierarchical multi-agent system. In [26] a two level

hierarchical multi-agent system has been proposed. Local

traffic agents are concerned with the optimal performance of

their assigned intersection. A second layer has been added as

a coordinator that supervises the local agents. Bazzan et al
[27] have presented a hierarchical reinforcement learning for

networks. A number of groups of three traffic light agents

each is first composed. These groups are coordinated by a

supervisor agents that recommend a joint action.
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TABLE I

EXAMPLE OF STATE SPACE

State number Link order State number Link order
State 1 l1 ≥ l2 ≥ l3 ≥ l4 State 13 l2 ≥ l3 ≥ l1 ≥ l4
State 2 l1 ≥ l2 ≥ l4 ≥ l3 State 14 l2 ≥ l4 ≥ l1 ≥ l3
State 3 l1 ≥ l3 ≥ l2 ≥ l4 State 15 l3 ≥ l2 ≥ l1 ≥ l4
State 4 l1 ≥ l4 ≥ l2 ≥ l3 State 16 l4 ≥ l2 ≥ l1 ≥ l3
State 5 l1 ≥ l3 ≥ l4 ≥ l2 State 17 l3 ≥ l4 ≥ l1 ≥ l2
State 6 l1 ≥ l4 ≥ l3 ≥ l2 State 18 l4 ≥ l3 ≥ l1 ≥ l2
State 7 l2 ≥ l1 ≥ l3 ≥ l4 State 19 l2 ≥ l3 ≥ l4 ≥ l1
State 8 l2 ≥ l1 ≥ l4 ≥ l3 State 20 l2 ≥ l4 ≥ l3 ≥ l1
State 9 l3 ≥ l1 ≥ l2 ≥ l4 State 21 l3 ≥ l2 ≥ l4 ≥ l1

State 10 l4 ≥ l1 ≥ l2 ≥ l3 State 22 l4 ≥ l2 ≥ l3 ≥ l1
State 11 l3 ≥ l1 ≥ l4 ≥ l2 State 23 l3 ≥ l4 ≥ l2 ≥ l1
State 12 l4 ≥ l1 ≥ l3 ≥ l2 State 24 l4 ≥ l3 ≥ l2 ≥ l1

It is not common to find a reinforcement learning based

method that uses a large network for simulation without any

simplification. Most of the works mentioned here have used

a grid based network with a small number of states and

actions. As mentioned, in the present paper, a Q-learning

based method is used, which considers not only a large

number of states and actions, but also a non-grid based, non-

regular network.

IV. PROPOSED METHOD

In the Q-learning based method used here, the traffic

network is considered as a system composed of intelligent

agents, where each controls an intersection.

As state estimation, agents use the average queue length

in approaching links in a fixed cycle. They then select an

action and receive a reward. The state space is discretized

by ranking the approaches according to the statistic gathered

in the last cycle.

The number of states is equal to the number of permutation

of the approaches, i.e., k! for an agent with k approaching

links. To see why this is is so, consider the following

example. There are 24 states for each junction, since each

agent has four approaching links. The state space can be

seen in Table I. If li represents the ith approaching link for

an intersection, l1 ≥ l2 ≥ l4 ≥ l3 shows a state in which the

queue length of approaching link l1 is the longest and l3 is

the shortest. If two approaching links have the same queue

length, then they are ranked according to their order in the

signal plan.

The actions relate to split of green time, i.e., the action

space contains different phase splits of the cycle time. Phase

split refers to the division of the cycle time into a sequence

of green signals for each group of approaching links. We

assumed that the cycle time, δ , is fixed and all junctions use

the same value.

It should be noted that for a fixed time controller, all

available phases should at least appear once in a cycle.

Each phase should have a minimum green time so that a

stopped vehicle that receives a green signal has enough time

to cross the intersection. The cycle length is divided to a

fixed minimum green time, and extension time that can be

assigned to different phases.

Fig. 1. Phase split parameters used for action definition

Assume that there is nph phases and minimum green time

assigned for each of them is the same and equal to tmin.

Moreover, there are nex extensions with fixed length of time,

hex. The actions determine the assignment of nex extensions

to different phases.

For example, assuming a cycle length of 50 seconds,

a signal plan containing 3 phases and 10 second as the

minimum green time, 3× 10 seconds is assigned to the

phases and different actions determine the assignment of the

remaining 20 seconds to three phases.

The action space is defined by < nph, tmin,nex,hex >,where:

nph: number of phases tmin: minimum green time for

phases (seconds) nex: number of time extensions hex: length

of each extension (seconds) such that the effective cycle

length δ is given as in Equation 3.

δ = hex×nex +nph× tmin (3)

The possible green time assignment can be formulated as

follows:

nph

∑
i=1

xi = nex, xi ∈ 0,1, ...,α, 1≤ α ≤ nph (4)

The maximum number of extension is controlled by α .

The action space can be reduced by choosing the small value

for α . The solutions determine the portion of the cycle time

that is assigned to each phase by:

di = tmin + xi×hex (5)

In equation 5, di is the green time assigned to phase i.
Figure 1 shows the phase split parameter used for the

definition of the actions. For example, d1, the green time

assigned to the first phase, includes tmin as minimum green

time and a number of extension displayed by x1.

The reward is inversely proportional to the average length

of the queues in the approaching links, normalized to remain

between 0 and 1.

V. NETWORK CONFIGURATION

The traffic network used in the experiments is shown in

Figure 2. It contains 50 junctions and more than 100 links.

A four-way intersection is the most common intersection in

real world, and therefore it has been used in our approach.

The number of lanes is three for all approaches. During

the simulation, new vehicles are generated by uniform dis-

tribution over 30 input sections. Time intervals between two

consecutive vehicle arrivals at input sections are sampled

from a uniform distribution. The network is surrounded by
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Fig. 2. The network used for the simulation

Fig. 3. An example for action corresponds to [x1,x2,x3,x4] = [0,2,1,1].
Two seconds is assigned for all-red interval between two signals

20 centroids. Centroids are points that vehicles enter or exit

the network through them.

In this configuration, the number of phases is four and the

minimum green time for each phase is set to 13 seconds.

Moreover, four 10-second extension intervals are used for

signal timing, i.e. nex = 4 and hex = 10. The effective

cycle time is computed according to Equation 3 with δ =
92seconds.

The purpose of all-red interval is to provide a safe tran-

sition between two conflicting traffic signal phases. Two

seconds is assigned for all-red interval at the end of each

signal phase as it has been shown in Figure 3. Since there are

four phases, 8 seconds are assigned for all-red time interval.

In this case, the total cycle time will be 100seconds for a

complete signal plan.

The parameters used in the Q-learning based method are

shown in Table II. There are 19 possible solutions for

Equation 4 if we assume α = 2. For example, [x1,x2,x3,x4] =
[0,2,1,1] is a solution for Equation 4. The corresponding

action is (13,33,23,23) as shown in Figure 3.

The action set is as follows:

TABLE II

THE PARAMETERS USED IN THIS PAPER

Parameter Description Value
δ effective cycle length 92

nph number of phases 4
tmin minimum green time for each phase 13
nex number of extension interval 4
hex length of extended time 10
α maximum number of extension for each phase 2
|S| number of states 24
|A| number of actions 19

TABLE III

NETWORK CONFIGURATION PARAMETERS

Properties Value

number of intersections 50
number of links 224

average length of links 847.44m
number of lanes per links 3

maximum speed 50km/h
number of input/output centroid 20

arrival distribution Uniform
simulation duration 10hour

traffic demand 1 18000 veh/hour
traffic demand 2 27000 veh/hour

A= {a1(33,33,13,13),a2(33,13,23,23), ...,a19(23,23,23,23)}
(6)

Moreover, we use ε-greedy as a mechanism to select an

action in Q-learning with ε fixed at value of 0.9. This means

that the best action is selected for a proportion 1− ε of

the trials, and a random action is selected (with uniform

probability) for a proportion ε .

VI. EXPERIMENTAL RESULTS

The proposed method has been tested on a large network

that contains 50 intersections and 112 two-way links using

the Aimsun traffic simulator 1. The system configuration

parameters are shown in Table III.

We performed some experiments using Aimsun in order

to compare the proposed method with fixed time method

that assigns equal green time to each signal group. The

experiment aimed to determine the simulated average delay

time of the network for different traffic demands. Among

different traffic demands we choose two values as medium

and high traffic congestion (traffic demands 1 and 2 in

Table III).

In these experiments, the average delay time is used for

performance evaluation. The results show that the proposed

approach has reduced the average delay time in comparison

with the fixed time method. Figure 4 shows the result over

a traffic demand with 18000 vehicles per hour (demand 1).

The performance of the methods over a traffic demand

with 27000 vehicles per hour (demand 2) can be seen in

Figure 5. The average value of the delay is shown in Table

IV.

1http://www.aimsun.com
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Fig. 4. Comparison between fixed time method and the proposed Q-learning based approach for traffic demand 1

TABLE IV

AVERAGE DELAY OF THE PROPOSED QL AND FIXED TIME METHOD

Fixed time Proposed QL

Traffic demand 1 47.977 42.362
Traffic demand 2 113.034 63.687

For the fixed timing, performance begins to drop rapidly

when nearly all of the vehicles in some junctions stop. This

happens after six hours after the begin of the simulation, for

traffic demand 2, as seen in Figure 5. At the end of the

simulation, all vehicles stop in the network and there is no

vehicle leaving network. Under these conditions, the average

delay over all simulated time makes no sense. Therefore, the

value reported in Table IV for traffic demand 2 has been

computed over the period of the first 6 hours.

Regarding the proposed method, it is possible to see that

it could manage to efficiently control the traffic lights in the

network under relatively high traffic demand in a better way

than the fixed timing method.

VII. CONCLUSIONS

In this work we have shown that Q-learning is a promising

approach to control traffic light in a non-stationary environ-

ment. A real traffic network is a non-stationary environment

because traffic flow patterns are dynamically changed over

the time. The proposed method is based on local statistical

information gathered in one learning step and tries to learn

the best action in different situations. Average queue length

in approaching links is used as the statistical information.

The proposed method contains a relatively large number of

states and actions that can be used in a large network.

The simulation results demonstrated that the proposed Q-

learning method outperformed the fixed time method under

different traffic demands.

Parametric representation of the action space enables us to

define different situations by means of using different values

of the parameters. Since the action space is defined by a

number of parameters, it can be extended to a larger space

or smaller one by changing the parameters. As a result, it

can be applied in real traffic networks with a non predictable

traffic demand. Moreover, it can be used in different types of

intersections with a different number of approaching links.

Future work includes applying the method to other net-

works, extension of the action space with different parame-

ters to find the proper parameters for a given traffic demand,

and examination of impact of different parameters values on

learning performance.
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