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Abstract - In this paper we propose a new chaotic noise 
injection strategy into the Hopfield network which belongs to 
a general class of chaotic neural networks called "non-
autonomous network". The objective of this method is to inject 
noise into the neurons based on the history of dynamics of 
their neighbor neurons. The measure of adjacency which is a 
criterion for definition of neighborhood, is based on the co-
existing of neurons in a same cluster and those clusters are 
indicated by an ISODATA algorithm. Experimental results 
show efficiency of the proposed algorithm, especially in maps 
with separated clusters. 
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1 Introduction 
  Recently many researchers have focused on chaotic 
neural network for minimum searching and consequently the 
traveling salesman problem (TSP) has been aimed to be 
solved by this class of neural networks. Initially, the Hopfield 
neural network [1][2] was found to be useful to solve TSPs, 
however, due to the large number of local minima in the 
energy function of TSP, it often trapped into of them. 
Consequently many methods have been proposed to 
overcome this problem and as a result chaotic neural 
networks which were proved to have the ability to escape 
local minima have been aimed. There are varieties of models 
of chaotic neural which have been used for solving 
optimization problems. 

In [3] Aihara et al, has introduced a chaotic neural network 
which exhibits chaotic behavior using a negative self-
coupling and gradually removing it. The model is based on 
the chaotic behavior of some biological neurons and has been 
successfully applied to several optimization problems e.g. 
TSP [4] and their method outperformed the Hopfield neural 
network in both the efficiency and solution quality and 
comparing to other neural networks, their approach 
significantly increased the probability of finding near-optimal 
solutions. Afterward Nozawa [5], introduced a new CNN by 
applying the Euler discretization in order to simulate 
continues and their results from the TSP method proofed the 

efficiency of their algorithm. Moreover, Chen and Aihara [6], 
introduced a chaotic simulated annealing approach which was 
firstly, based on a transiently chaotic phase and second, a 
convergence phase which tended to find the global 
minimums. Their method has been successfully applied to the 
TSP and machine maintenance problem [7]. Chen and Aihara 
also showed the existence of strange attractors and network 
stability conditions [8] suggested the dynamical phenomenon 
of crisis-induced intermittency to be the underlying 
mechanism for the chaotic switching among the minima. 

The above methods belong to the "autonomous methods" in 
which the network searches for the global minimum by 
modifying the characteristic of dynamics of each neuron. 
However, there is another category of networks called "non-
autonomous methods" in which the network avoids the local 
minima by adding noise to each neuron. Recently, this kind of 
networks is paid more attention and Hayakawa et al. [9] 
pointed out the intermittency chaos near the periodic-3 
window of the logistic map gains the best performance for 
TSP. Ueta et al. [10], showed that effective intermittency 
chaotic noise also exists for period 5 and period 7. 

Zhou et al. [11] added a chaotic noise using a chaotic time 
series generated by the Henon map, to the network as an 
external approach, in contrast to the internal approaches 
described previously in which the chaotic behavior is 
generated internally. They applied their method to the 100-
city TSP problem and the obtained results showed superior 
optimization ability compared to the Boltzmann machine. 

In this paper we introduce a new class of non-autonomous 
chaotic networks where the chaotic noise injection is based 
on the behavior of neighbor neurons. This method is 
especially useful for a class of optimization problems in 
which state changing of neurons affects neuron with limited 
logical distances e.g. broadcasting problem, TSP and etc. the 
outline of this paper is as follows: in next section we 
introduce the noise injection strategies for TSP and then the 
algorithm is introduced. In section 3 we have presented the 
experimental results which are based on different types of 
maps and finally section 4 presents the conclusion remarks.  
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2 Using noise in HNN for solving TSP 

2.1 Chaotic noise with HNN 

 To overcome the shortcomings of classic Hopfield 
neural networks, chaotic dynamics has been applied to HNN 
networks by many authors. In order to fire (i,j) neuron the 
energy function is defined as follow: 
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In which ijklw   is the coefficient between neurons (i,j) and 

(k,l),  ijθ  is the threshold value and the weight coefficients 

are defined as follow : 
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Where A, B>0  are arbitrary coefficients. Considering the 
above equation the dynamics of single neuron can be defined 
as follow: 
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Where ε , is the additional noise and f is a sigmoid function 
defined as follows: 
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Here µ  is a variable parameter of SA noise. To indicate 

which neuron is to be fired, the state of neuron ( )ikx t  at time 

t is described as follows: 
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Here ˆ ( )ikx t  is new state of ( )ikx t , where ( )ikx t  is the (i,j)th 

neuron's average value of output from t τ−  to t. 

Furthermore,  ( )x t  is N-th value in the ( )ijx t  of N N×  

neurons and Nτ = . 

In order to insert a chaotic noise, a time series is generated by 
a logistic map: 

( 1) ( )(1 ( ))ik ik ikz t az t z t+ = −                                     (6) 

Here a, is a bifurcation parameter of the logistic map and 
dynamic of HNN with chaotic noise is given as: 
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Where,  β  is amplitude of noise. 

2.2 conditional chaotic noise 

 One important drawback of these methods is their blind 
noise operations. Here the chaotic or stochastic noises are 
injected into the network regardless of neuron's previous 
behavior. In the proposed method, and in order to rationalize 
the process of noise injection, we first introduce a matrix of 
adjacency as follows: 

11 1

1

N

N NN

a a

A

a a

� �
� �

= � �
� �
� �

�
� � �
�

                                                (8) 

Where, 
1,  if the i-th and j-th cities are adjacent

0 , else                                                 ija
� 	

= 
 �
� 


 

The meaning of adjacency is not restricted to the physical 
distance of objects. This criterion can be redefined based on 
the scope of the optimization problem. For instance in an N-
queen problem, since changing position of one queen may 
influence any other queen on the board, all entries of the 
matrix should be one in order to take effect by each other. 
The adjacency matrix has been used to evaluate the chances 
of a neuron to receive chaotic noise. When a sufficient 
number of neighbors –which are indicated by the adjacency 
matrix - change their state and afterward a chaotic noise is 
injected to the current neuron to escape local minima. This is 
due to the fact that changing a route in a group of local cities 
may not need to change a global modification of all routs. In 
TSP, we have defined neighbors based on the ISODATA 
algorithm. All cities that are in the same cluster are neighbors 
and in the adjacency matrix will receive the value of "one". 
To detect state changing of other neurons, we also define 
another matrix, C, which holds the state information of last 
timestamp. 
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When 11 1c = , indicates that neuron 11c  in timestamp 1τ −  

has changed its state. Now we redefine Eq.8 as follows: 
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Where P(t) is responsible to inject the proportionate chaotic 
noise. In order to generate the chaotic noise with respect to 
the adjacent neurons we define it as follows: 
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z(t) is the self-feedback connection weight,  1β  is damping 

factor for neural self-coupling and 0I  is a positive parameter. 

We have assumed the following values for these parameters:  

1 0
0.015, 0.001, 0.004, 0.65Iα β ε= = = =  to achieve the 

best results. k(t), is the damping factor which is responsible to 
control the dynamic behavior of injected noise: 
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λ , is the maximum number of "ones" in rows of Matrix A. in 
this problem g(.), has been tuned to output a value of 0.6 for 

an input value which is greater than 1 λ . By other means, if 

only one of neighbors change its state, then the state of 
current neuron will be injected by chaotic noise. Indeed, 
behavior of this function may vary according to the scope of 
the problem. γ , which is the decaying parameter of g(.), has 

been chosen to be 0.001 and finally v(t), checks the function 
for previous chaotic history and if the neuron already receives 
the chaotic noise, it cancels reinitiating the parameters. 
As it has been shown in Figure 1, by varying the parameter k, 
and for values greater than 4.3 we achieve the chaotic noise. 

 

(a) 

 
(b) 

Figure 1: Chaotic and period doubling behaviors of Eq. for 
(a): k=4.3 and (b): k=4 

 

3 Experimental results 
 First, all values neurons have been initiated at random. 
In order to evaluate performance of the proposed algorithm, 
two sets of TSPs have been experimented. The first set which 
we call it "normal distribution of cities" consists of maps with 
nearly equivalent distances. In this set of maps, the 
ISODATA algorithm usually fails to cluster cities in different 
clusters. The adjacency matrices of these maps are similar to 
the matrices of N-Queen Problem and hence changing state of 
an individual neuron affects state of most of other neurons. 
However there is another set of maps in which cities are 
distributed in separate clusters. This kind of distribution 
usually occurs in vast areas where the ecological situation 
varies significantly from part to part of the map. Figure 2 
illustrates samples of these two kinds of maps. The first three 
maps of this figure are samples of normally distributed cities 
while the forth one is an example of cities with separate 
clusters. 

Although the of the proposed algorithm slightly outperforms 
the TCNN and NCNN models in the maps with normally 
distributed cities, however, the efficiency of the new 
algorithm is more obvious in the second kind of maps, 
separated clusters, where the rate of success for our algorithm 
is significantly better than TCNN and NCNN. Table 1 
summarizes the experimental results for these three kinds of 
chaotic networks.  The success rate is slightly better for 
samples from 19, 40 cities, whereas the NCNN algorithm is 
best of all for the 30-cities map. For the second kind of maps, 
the proposed algorithm is significantly better in all 
experiments. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2: Maps with normally distributed cities (a,b and c) 
and map of cities with separated clusters(d). 

Table 1: Rate of success for different models in normally 
distributed cities map 

Number 
of cities 

 Rate of success (%) 

  TCNN NCNN Adjacency-based 
chaos injection 

19  83 86 90 

25  60 71 68 

30  22 28 28 

40  6 6 8 

 

Table 2: Rate of success for different models in separated 
clusters map 

Number 
of cities 

 Rate of success (%) 

  TCNN NCNN Adjacency-based 
chaos injection 

20  74 72 84 

30  29 32 43 

45  4 4 11 
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4 Conclusions 
 In this paper we proposed a new chaotic noise injection 
strategy for TSP problem based on an adjacency matrix. The 
new noise injection strategy caused a better performance in 
most of maps used for experiment; however, the performance 
of the algorithm is more obvious for maps with separated 
clusters. This was due to the fact that instead of a blind noise 
injection strategy, neurons receive chaotic noise based on 
their neighbor's state and this is an advantage over all recently 
chaotic based driven networks for solving optimization 
problems. For future we plan to extend our work to a greater 
class of optimization problems called 0-1 optimization. From 
the nature of the algorithm it can be deduced that this kind of 
noise injection strategy can be applied to a wide class of 
optimization problems. 
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