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Abstract - In this paper we propose a new gradual noisy 
chaotic neural network (MP-NCNN) to solve the NP-complete 
attributed relational graph matching problem. These graphs 
are very important in pattern matching applications and the 
noisy chaotic behavior of the proposed method which avoids 
getting trapped in local minima, yields in better results and 
hence it is more effective approach in comparison with 
previous methods. The performance of the proposed method 
has been evaluated through several attributed relational 
graphs with different permuted vertices and also with 
different vertex numbers. The obtained results show that the 
proposed method outperforms previous approaches including 
HNN, CNN and TCNN methods. 

Keywords: ARG, chaotic neural networks, Optimization, 
NCNN. 

 

1 Introduction 
  Robustness and flexibility of Attributed graphs (ARGs) 
make them powerful data structures for object representation 
in pattern recognition [1]. These graphs are used in many 
pattern matching applications and by acquiring these models, 
the problem of the problem seeking optimal, partial and 
inexact homomorphism of a model in a scene turns into 
matching ARGs of scene and model. This problem is 
generally referred as the attributed relational graph matching 
problem and it’s proved to be NP-hard which means there is 
no known deterministic algorithm to solve this problem in 
polynomial time. 

Recently many new algorithms have been proposed to solve 
ARGMP and although HNN [2] proved to an effective 
algorithm to solve ARGMPs it usually being trapped by local 
minima. To overcome the shortcomings of classic Hopfield 
neural networks, chaotic dynamics has been applied to HNN 
networks by many authors. 

In [3] Aihara et al, has introduced a chaotic neural network 
which exhibits chaotic behavior using a negative self-
coupling and gradually removing it. The model is based on 
the chaotic behavior of some biological neurons and has been 
successfully applied to several optimization problems e.g. 

TSP [4][5] and their method outperformed the Hopfield 
neural network in both the efficiency and solution quality and 
comparing to other neural networks , their approach 
significantly increased the probability of finding near-optimal 
solutions. Afterward Nozawa [6], introduced a new CNN by 
applying the Euler discretization in order to simulate 
continues and their results from the TSP method proofed the 
efficiency of their algorithm. Moreover, Chen and Aihara [7], 
introduced a chaotic simulated annealing approach which was 
firstly, based on a transiently chaotic phase and second, a 
convergence phase which tended to find the global 
minimums. Their method has been successfully applied to the 
TSP and machine maintenance problem [7]. Chen and Aihara 
also showed the existence of strange attractors and network 
stability conditions [8] suggested the dynamical phenomenon 
of crisis-induced intermittency to be the underlying 
mechanism for the chaotic switching among the minima. 

Wang and smith [9], proposed another discretzed neural 
network Hopfield network, Continues-Time Continues-
Output (CTCO-HNN), and by varying the timestamp which is 
a control parameter to control the network dynamics and it is 
similar to temperature parameter of classic stochastic 
simulated annealing. By gradually decreasing of timestamp, 
the network dynamics changes to a reverse bifurcation 
process which provides a transiently chaotic behavior. The N-
Queen case study in [10] proofs the ability of this method to 
solve optimization problems. 

Zhou et al. [11] added a chaotic noise using a chaotic time 
series generated by the Henon map, to the network as an 
external approach, in contrast to the internal approaches 
described previously in which the chaotic behavior is 
generated internally. They applied their method to the 100-
city TSP problem and the obtained results showed superior 
optimization ability compared to the Boltzmann machine.  

2 Attributed Relational Graphs (ARGs) 

 If we consider ta  as the type and va  as the value, then 

an attribute is an ordered couple of ( , )t va a , and an attribute 

set is a set of all couples which belong to s particular feature 
primitive. In addition a vertex attribute set can be defined as 
set of attributes associated with an ARG and each attribute is 
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a set of , ,{..., ( , )}t x v x
n na a . Moreover an edge also has an 

attribute set associated with it which is called the edge 
attribute set. If we assume V as the vertex attribute set and E 
as the set of edge attribute set, then an ARG of and object can 

be denoted as G={V,E}. Usually { , }s s

s
G V E=  is used to 

denote a scene and { , }m m

m
G V E=  to denote a model. ARG 

matching is to find sV ′  a subset of sV , and mV ′ , a subset of 
mV , such that there is a mapping for every scene vertex in 
sV ′  in the model vertex mV ′ , and whenever a pair  of 

distinct scene and model vertices has the one-to-one mapping, 
the corresponding edges should also be mapped. 

In [12], Suganthan, has proposed an HNN-based algorithm 
for the ARG matching problem but it has been proofed  that 
their HNN-based algorithm will halt when it reaches a local 
optimal result. This method has been defined as follow: 

,
,

( )xi xi

xi
xi yi c xj

y j j i

v g u

du
C A v

dt ≠

=� �
� �
� �

= −� �
� �
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,
, , , , ,

xi yj xi yi c xj xi
x y i j x i j i

E C v v A v v
≠

= − +� �              (2) 

Here cA  is the relative strength of the soft constraint and 

,xi yjC  is the compatibility measure. Vertex xv  in the scene 

and vertex iv  in the model are said to be matched if xiv  is 

larger than the threshold. 

3 ARG matching using NCNN 
 This algorithm is effective in ARG matching but when it 
is trapped in a local optimum, the performance degrades. The 
proof for this issue can be found in [13]. Since this kind of 
network can easily be trapped in local minima, stochastic 
simulated annealing [14] has been combined with the HNN. 

In [14], Wang and Tian, proposed a new simulated annealing 
method by injecting a stochastic noise into the TCNN. They 
showed that their algorithm is more likely to find optimal 
solutions in comparison with CSA. Their method has been 
successfully applied to TSP and channel assignment problem 
and especially in large scale TSPs the NCNN achieved much 
better performance. The NCNN model is introduced as 
follows: 
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1( 1) (1 ) ( )z t z tβ+ = −                                               (5) 

2( 1) (1 ) ( )n t n tβ+ = −                                              (6) 

Where 

jkx  : Output of the single neuron jk, 

jky : Input of neuron jk 

jkilw : Connection weight between neurons jk and il where 

  ,   0jkil iljk ikjkw w w= =  

1, 1,

( )
N M

jkil jk jk
i i j l l k jk

E
w x t I

x= ≠ = ≠

� � ∂
+ = −� �

∂� �
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jkI : Input bias of neuron jk 

k: Damping factor of nerve membrane 0 1k≤ ≤  

α : Positive scaling parameter for inputs 

1β  Damping factor for neural self-coupling 10 1β≤ ≤  

2
β : damping factor for stochastic noise 

2
0 1β≤ ≤  

z(t): Self-feedback connection weight, ( ) 0z t ≥  

0
I : Positive parameter 

ε  Steepness parameter of the output function 

E: Energy function 

n(t): Random noise of neurons, with a uniform distribution 

A[n]: amplitude of noise n 

From the above equations, the TCNN model for a single 
neuron can be obtained as follows: 
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(13) 
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0( 1) ( ) ( )[ ( ) ] ( )iy t ky t I z t x t I n tα+ = + − − +         (9) 

1( 1) (1 ) ( )z t z tβ+ = −                                              (10) 

2[ ( 1)] (1 ) [ ( )]A n t A n tβ+ = −                                 (11) 

By combining (8) and (9) the, equations can be rewritten as: 
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Different values for the constant parameters of this equation 
make different neurodynamics. In order to achieve best 
results we have chosen the following parameters for the 
dynamics of neurons. 

1 0 2
0.015, 0.001, 0.004, 0.65, 0.0001Iα β ε β= = = = =     

Since Performance of ARG-matching is influenced by the 
local optimal results, The MP-NCNN model which has been 
proofed to be more effective in comparison with the classic 
TCNN method. The dynamics of the proposed method for 
ARG-matching is as follows: 
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Different behaviors of Figure 1 shows the dynamics of a 
single neuron for different values of k in which the x axis is 
the time stamp t, and y axis is the output of the neuron x(t). 
As it can be seen in these figures, the larger values of k, 
results in better bifurcations. In our model to achieve a better 
chaotic behavior we have chosen k to be 0.8. 

 

(a) 

 

(b) 

 

(c) 
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Figure 1. Dynamics of a single neuron for different k 

parameters.  0.015,α =  1 0.001,β =  0.004,ε =   

0 0.65,I =  2 0.0001β = . (a) k=0.2, (b) k=0.5 and  (c) 

k=0.8 

4 Results 
 In order to evaluate performance of the proposed 
method we chose to test it over 50-vertex, 100-vertex and 
150-vertex ARGs with different values of connectivity 
ranging from 50% to 100%. In order to obtain isomorphic 
graphs, we chose 100 ARGs with random permuted vertices. 
In this model success was in matching each of each vertex of 
the model and the scene. To compare the results we 
compared the proposed method's results with classic HNN 
and TCNN. The obtained results can be seen in table 1 in 
which the first column is the measure of connectivity for the 
ARGs, the second, third and forth columns are the rate of 
success for HNN, TCNN and NCNN for each number of 
vertices respectively. 

 

Table 1. Experimental results from comparison of the 
proposed method with HNN and TCNN 

Measure of 
connectivity 

No. of 
vertices 

HNN TCNN NCNN 

50-vertex 92.4% 96.7% 97.1% 

100-vertex 90.7% 95.3% 97.0% 1.0 

150-vertex 87.5% 91.1% 93.5% 

50-vertex 91.9% 96.4% 96.0% 

100-vertex 91.0% 94.9% 95.3% 0.9 

150-vertex 89.3% 92.0% 93.9% 

50-vertex 87.9% 95.9% 95.4% 

100-vertex 85.2% 90.5% 93.7% 0.8 

150-vertex 85.1% 89.1% 93.2% 

50-vertex 86.0% 91.1% 92.4% 

100-vertex 85.1% 88.5% 90.9% 0.7 

150-vertex 83.5% 86.4% 88.0% 

50-vertex 81.6% 88.3% 91.4% 

100-vertex 80.3% 88.0% 87.9% 0.6 

150-vertex 78.9% 85.6% 87.4% 

50-vertex 80.4% 87.3% 90.4% 

100-vertex 77.9% 85.0% 88.5% 0.5 

150-vertex 77.3% 84.9% 88.2% 

 

From the results it can be seen that performance of the 
proposed algorithm is considerably better in most cases 
(except 3 of them, 0.9 connectivity and 50 vertices, 0.8 
connectivity and 50 vertices and 0.6 connectivity with 100 
vertices) compared to HNN and TCNN. This is due the 
ability of the proposed method to escape the local minima. 

5 Conclusions 
 In this paper we presented a noisy chaotic neural 
network for solving the ARG mapping problem. We 
evaluated the algorithm through several attributed relational 
graphs with different vertex numbers. We also compared our 
results with HNN and TCNN. Unlike HNN which usually 
becomes trapped in local minima, the algorithm of this paper 
tends to find the global solution in most cases. Compared to 
TCNN it also showed a better performance. The obtained 
results show that in most cases the proposed method finds the 
best solution with minimal energy. The results prove that the 
proposed algorithm is an efficient method for solving 
ARGMP 
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