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Abstract: An accurate image registration is a fundamental stage in many image processing

problems. In this paper, a new and fast registration approach based on scale invariant feature

transform (SIFT) key-points, under Euclidean transformation model, is proposed. The core idea

of the proposed method is estimation of rotation angle and vertical and horizontal shifts using

averaging of differences of SIFT key-point pairs locations. The method is simple but requires

some tuning modules for accurate estimation. Orientation modification and compensation and

shift compensation are some of the proposed modules. The proposed method is fast, about ive

times faster than RANSAC method for model parameters estimation. The accuracy of the

proposed method is compared with some popular registration methods. Various comparisons

have been done with LIVE database images with known motion vectors. The experimental

results over two real video sequences show the high performance of the proposed algorithm in a

super-resolution application.

Keywords: image registration, super-resolution, SIFT key-points

1 INTRODUCTION

One of the most critical aspects of many applications in

image processing and computer vision, including super-

resolution, is the image registration problem. Image regis-

tration is the process of overlaying two or more images of

the same scene taken at different times, from different

viewpoints, and/or by different sensors. It geometrically

aligns two images, the reference and sensed images.1

In image processing literatures, a variety of registra-

tion categories has been used. Regarding the transforma-

tion model among the images (such as translation, affine

or projective), the registration method may be diffe-

rent. However, they can be categorised into two main

approaches: area-based methods and feature-based

methods. While the former uses the information from

all pixels, the latter requires only a sparse set of feature

correspondences to fit the motion model.2

The Lucas–Kanade registration algorithm,3 is a

famous area-based method, which is the basis of many

other methods.4,5 Their approach is based on a Taylor

series approximation of the images. The motion

parameters are the unknowns in the approximation,

and they can be computed from the set of equations

that can be derived from this approximation. As

Taylor series only give a good approximation for

small offsets, these registration methods are gene-

rally applied iteratively using a Gaussian pyramid.

Vandewalle et al.6 used a frequency-based registration

method, where at first, the rotation parameters are

estimated from a radial projection of the absolute

values of the Fourier transform image. A simple one-

dimensional correlation can be performed to compute

the rotation angle from the projections for two images.

Then, shifts are estimated from the linear phase

difference between the rotation corrected images.

The MS was accepted for publication on 4 April 2011.
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This method performs well if the images have some

directionality.6 Another fast image registration which

is used in image stabilisation context is Gray-coded bit

plane matching (GC-BPM).7 This method is very

computationally efficient since it uses binary boolean

operations, but its performance is lower than popular

methods such as Keren et al..4

In many image processing applications, such as

some remote sensing and super-resolution problems,8

a global translational motion model is assumed, in

which the low resolution input images have small

rotation and translation differences with respect to

each other. In this paper, a registration method based

on the mentioned motion model, using scale invariant

feature transform (SIFT) key-points, is proposed.

Among the various features used in feature-based

image registration methods, SIFT key-points of Lowe9

has gained a great attention in recent years. SIFT key-

points are identified as the local maxima or minima

of the difference-of-Gaussian filters across scales. To

determine a key-point’s orientation, a gradient orienta-

tion histogram is computed in the neighbourhood of the

key-point. Peaks in the histogram correspond to the

dominant orientations. Each key-point is denoted by a

128-element vector, named SIFT key-point descriptor.

The location of each key-point in the image is specified

by four floating point numbers giving subpixel row and

column location, scale and orientation.

Following introducing SIFT by Lowe,9,10 various

applications of it, including matching and registra-

tion, were reported by some researchers. Mikolajczyk

and Schmid11 compared the performance of some

descriptors computed for local interest regions and

their results showed that the SIFT-based descriptors

have the highest performance. Yi et al.12 used SIFT

key-points for multi-spectral remote images. They

proposed a matching method and called it SR-SIFT

algorithm (SIFT matching with scale restriction) to

reduce the incorrect matches. The famous RANSAC

(RANdom SAmple Consensus) algorithm13 has been

used many times for removing outliers (incorrect

matches) from SIFT key-points pairs and estimating

a homography matrix between two images.14–17

The original matching method proposed and imple-

mented by Lowe10 (the implementation is available

online at: http://www.cs.ubc.ca/_lowe/keypoints/) con-

sists of a nearest neighbour search and a heuristic

criteria suggested by him, which is the ratio of closest

to the second closest neighbour (named ‘distance

ratio’). The method is very powerful in finding correct

matches among putative key-points. Figure 1 shows

two versions of an instance image from LIVE dataset

(as shown in Fig. 2) and some of their SIFT key-points

matches with the Low’s program. The rotation angle

of the second image with respect to the first one was 8u.
The key-points’ orientations differ from w, the image

rotation angle with respect to the reference image.

Our goal is to estimate registration parameters

(tx,ty,w) between two images, directly from SIFT key-

points’ locations (x,y,h). The angle resulting from

difference of corresponding key-points’ orientations is

considered as an estimation of w. The proper estimation

of the rotation angle with this method has some

limitations which is discussed in the next section. After

rotation estimation, the key-points’ rows and columns

of the second image are rotated in a proper manner.

Computing the registration parameters has been carried

out by averaging after an outlier reduction stage.

The experimental results showed that the proposed

method is about five times faster than RANSAC for

1 Some of SIFT key-points of an image and its transformed version (of size 2526316): (a) 50

selected key-points from total 894 key-points; (b) 50 selected key-points from total 921 key-

points. Key-points are displayed as vectors indicating scale, orientation and location. The

signal-to-noise ratio (SNR)570 dB and distance ratio50.1 in the Lowe’s algorithm. The trans-

formation parameters of the right-side image are: tx59, ty51 and w58u
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obtaining registration parameters, while its estima-

tion accuracy is competitive with RANSAC method.

Also its precision is compared with some famous

registration method like Keren et al.’s method.4 The

performance of the proposed method is compared

with some other methods in a super-resolution

application, while a high-resolution (HR) image is

achieved from the motion-compensated low-resolu-

tion (LR) images with a super-resolution reconstruc-

tion method. Our implementation results show the

high performance of the proposed method on read

data as well as on synthesised data.

The rest of the paper organised as follows. Section

2 explains the proposed method. Section 3 provides

the experimental results and Section 4 is dedicated to

the concluding remarks.

2 THE PROPOSED METHOD

Assume we have a continuous two-dimensional

reference signal f0(X) and its shifted and rotated

version f1(X)5f0[R(XzDX)], when

X~
x

y

� �
, DX~

tx

ty

� �
, R~

cos w { sin w

sin w sin w

� �
(1)

As mentioned in the previous section, each SIFT key

point has a descriptor and a location vector. The

descriptor is a vector of 128 values and location vector

has four values for the key-point locations (row,

column, scale and orientation). Key-points from a new

image can be matched to those from previous images

by simply looking for the descriptor vector with the

closest Euclidean distance among all vectors from

previous images (Section 7.1 in Ref. 10). Applying this

method to two images such as those shown in Fig. 1,

yields many correct matches between two images and

possibly a few mismatches. In the following sections,

how to deal with these mismatches is explained.

If (xi,yi), si and hi denote location, scale and

orientation for ith key-point, respectively, the goal

here is to estimate (tx,ty,w) between a pair of

LR images, directly from these SIFT key-points’

locations.

Suppose that x1
i ,y1

i ,h1
i

� �
and x2

i ,y2
i ,h2

i

� �
are the

locations and orientations of ith key-point in image 1

(as the reference frame) and another image 2 (from

total N matches found by Lowe’s matching method).

Let Dxi~x1
i {x2

i , Dyi~y1
i {y2

i and Dhi~h1
i {h2

i ; the

following notations for Dx, Dy and Dh is used in the

following subsections for explaining the proposed

method

Dx~ Dx1, . . . , DxNf g

Dy~ Dy1, . . . , DyNf g (2)

Dh~ Dh1, . . . , DhNf g

Our approach for estimating tx, ty and w from Dx, Dy

and Dh is simple. It is based on two assumptions: the

normality of displacements and the separability of

the shift and rotation estimations. At first, based on

the normality of displacements, the incorrect

matches, which may degrade the accuracy of estima-

tion, are reduced by removing those data points

which are far from the mean. Then based on the

second assumption [the separability of the shift and

rotation estimations was shown by Vandewalle19

(Chapter 3)], w, Dx and Dy are estimated. The

rotation angle w is approximated by averaging of

Dh, in which some modifications are needed for

accurate estimation. Then the key-points’ locations of

the second image are compensated according to the

estimated rotation angle w. Finally, tx and ty are

approximated by averaging Dx and Dy. A normality

test has been done for checking that the averaging

and mismatch reduction method is meaningful. The

details are discussed in the following sections.

2 Some of LIVE database images18 which are used in the experiments of this paper
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2.1 Rotation estimation

The rotation angle w may be approximated by

averaging Dh, i.e. w~Dh. Because this method is

based on hs, the rotation angles of SIFT key-points,

in the following, we name this rotation angle

estimation method as T-SIFT. However, as we will

see later, this method does not operate well for

negative rotation angles. There are some questions,

related to averaging Dh:

N Whether each delta follows a known distribution,

like Normal distribution?

N If yes is the average of samples, has meaningful

difference from the true value of parameters?

In the following, at first, the normality of the

distribution of Dh will be discussed. As we will see,

Dh, based on T-SIFT, does not follow the normal

distribution, when the rotation angle is negative,

unless some modifications are applied.

2.1.1 On the normality of Dh

Suppose that we have M images that should be

aligned with respect to a reference image in which

their rotation angle are equal w and their horizontal

and vertical shifts are unknown. Let wm be the

estimated rotation angle of mth image with respect to

the reference image; W5{w1, …, wM} which is

considered as a random variable. Here we discuss

whether we can consider the average value of W, W, as

an estimation of rotation angle between two images

(w) or not.

A Z-test is any statistical test for which the

distribution of the test statistic under the null

hypothesis can be approximated by a normal

distribution. According to the central limit theorem,

W is approximately normally distributed for large

samples, so the next step is to determine whether the

expected value w under the null hypothesis, has

meaningful difference from its true value or not.

The experimental results over LIVE dataset,18

verified that the estimated w has not meaningful

difference from true w with the T-SIFT method when

0(w,180, with 95% confidence; but it does not hold

when w,0. Table 4 shows the results of Z-test for

some methods which will be explained in more

details later. The reason for these disappointing

result is calculating of dot product for computing

angle in Lowe’s matching procedure, which is used in

T-SIFT.

In the following, we first describe our solution for

dealing with this problem and then explain our

method for removing outliers, which leads to a better

estimation of registration parameters.

2.1.2 The orientation modification

We used the implementation of SIFT key-points

extraction and matching by Lowe10 which computes

dot products between unit vectors (v1~ sin h1
i , cos h1

i )

3 Scatter plots for b in equation (3) over Dh between two instance images with rotation angle

equal 179u: (a) b values demonstrate two clusters, near to 2180u and 180u; (b) resolving the

problem by the proposed method in Section 2.1.3

Table 1 An example demonstrating a problem encountered in large angles

Key-point pair h1
i h2

i a5Dhi b(a)

1 179 2 177 177
2 178 23 181 2179
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and (v2~ sin h2
i , cos h2

i ) rather than Euclidean dis-

tances. It is computationally efficient, but would not

specify whether v1 is ahead or behind v2. In most

math libraries, a cos(.) will usually return a value

between 0u and 180u. We used the following method

for indicating whether v1 is ahead or behind v2.

The orientation of each key-point is in the range of

[2180u, 180u]; hence, the difference between angles of

two vectors will be in the range of [2360u, 360u].
Suppose that a5Dhi is the angle between ith key-

points pair, b(a), the modified orientation of a, is

defined as follows

b(a)~

a a [ ½{180o, 180o�
a{360 a [ (180o, 360o�
az360 a [ ½{360o, {180o)

8><
>: (3)

Note that the modification is applied on the

differences of SIFT key-points’ orientations and

the resulting angle may be positive or negative. The

investigation of equation (3) is left to the reader. The

advantage of this modification is that the difference

angle between two key-points, indicates the direction

of rotation angle.

2.1.3 The problem of rotation angles near 180u

It should be mentioned that with the above orienta-

tion modification, we have some problems for

estimating of rotation angles, when it is close to

180u or 2180u. Two key-point pairs shown in Table 1

are considered.

For both of these key-point pairs, the rotation

angle (a) is close to 180u, but b is 177 and 2179u. In

this situation, some parts of the correspondences

show positive angle (close to 180u) and some of them

show negative angle (near 2180u), which is not a

suitable case for our algorithm that is based on

averaging. Figure 3a shows this case for two images

with the rotation angle of 179u. As can be seen, many

of the angles of the corresponding key-points’ pairs

have been clustered in two groups: one close to 180u
and the other close to 2180u. For solving this

problem, it is sufficient to replace each b(a) with its

corresponding a for angles close to 180u or 2180u, if

the maximum of PDF of b is close enough to 180u or

2180u. In this paper, 20u has been chosen as a closing

threshold. The resulting scatter plot after this process

has been shown in Fig. 3b.

Even after the above procedure, some outliers may

exist. So those points which are far from the mean value

more than 2.5sw are removed as outliers, where

sw5std(Dh). The new mean value of Dh is our estimation

of w. The experimental results verified that the estimated

rotation angle w has not meaningful difference with true

w with 95% confidence (see Section 3, Table 4); hence,

the estimated rotation angle is reliable.

2.2 Shift estimation

The overall method for estimating tx and ty is based

on averaging of Dx and Dy, but there is some notes

which is discussed in the following section.

2.2.1 Orientation compensation

It is obvious that using the average of Dx and Dy, the

horizontal and vertical shifts have not been approxi-

mated correctly, unless the second image rotated

based on w and then tx and ty are estimated. If the

image rotated by w degree, we have to re-find the

SIFT key-points and rerun the matching procedure.

Instead of this time-consuming method, we just

rotate the locations of key-points, which were found

formerly, based on the estimated w. The new Dx

and Dy based on the rotated key-points of the second

4 The fitting model for Dx over rotation angle w

(2p(w(p)

Table 2 Estimated parameters of fitted function of f(w)5asin (w2b)zc for horizontal shift estimation

tx a b c

2 21.42 0.78 1
4 21.42 0.78 3
6 21.42 0.78 5
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image are computed. The tx and ty are approximated

by averaging of Dx and Dy after an outlier removal

based on sx and sy from Dx, Dy.

2.2.2 Shift compensation

Our experimental results with fixed known tx and

variable ty over various values of w (22p,w(2p),

show that the estimated tx has a sinus shape function.

It is the reason why the estimated value is not

accurate as enough. The following sinusoidal func-

tion is fitted on the estimated Dx over w

Dx(w)&f (w)~a sin (w{b)zc (4)

The result of an experience with tx54 over 3480

images is shown in Fig. 4, The dashdot line in Fig. 4

is the estimated horizontal shift (Dx). For each of 29

LIVE database images, 120 random image with

tx54 pixel, random vertical shifts and 120 rotation

angles (2178u : 3 : 180u) were generated. Hence, each

point in the Fig. 4 demonstrates the average of Dx

over 29 images with an specified rotation angle. This

process is repeated for tx52 and 6; the parameters of

the fitted functions for tx52, 4 and 6 are shown in

Table 2.

As can be seen in Table 2, a and b are fixed over

various tx and c5tx21, regardless of tx. Substituting

c5tx21 in equation (4) yields

Dx(w)~a sin (w{b)ztx{1

[

tx~Dx(w){a sin (w{b)z1 (5)

The dashed line in Fig. 4 is the fitting function,

f(w)521.42sin (w20.78)z3, and the solid line is tx,

compensated based on equation (5). We performed a

Z-test of the null hypothesis that the estimated txs are

a random sample from a normal distribution with

mean 4, against the alternative that the mean is not 4.

The result indicated a failure to reject the null

hypothesis at the 5% significance level.

Similar experiments was done for fixed ty. Hence, the

following functions are used for shifts compensation

tx~Dx(w){ax sin (w{bx)z1,

ax~{1:42, bx~0:78
(6)

ty~Dy(w){ay sin (w{by)z1,

ay~1:42, by~{0:78
(7)

2.3 The overall algorithm

The repetitive patterns in the images produce some

mismatches in the matching stage of Lowe’s algo-

rithm. Here, those points which are far from the

mean more than 2.5s are removed as outliers. The

overall framework based on the previous stages and

outlier removal is shown in Algorithm 1. The

experimental results showed better performance

when w was re-estimated after computing shift

parameters. Hence, in Algorithm 1, we have a for

loop.

We named our proposed method OXYT-SIFT,

where each letter is described in Table 3. Based on

Table 3, other variations of the proposed method can

be named easily, for example, OT-SIFT stands for

the proposed method, where we have only orientation

modification and rotation estimation based on Dh,

without shift estimation.

Table 3 Describing the letters in OXYT-SIFT, the name of the proposed method

Letter Explanation

O Stands for orientation modification described in Section 2.1.2
X Stands for shift estimation along X axis (Section 2.2)
Y Stands for shift estimation along Y axis (Section 2.2)
T Stands for estimation of rotation angles based on h, without any modifications

Algorithm 1 Registration based on SIFT key-points’ locations
Input: The pair of images: Image1 and Image2
Output: Registration parameters (tx,ty,w).
1: Extract SIFT key-points
2: Find correspondence pairs of key-points, based on Lowe’s
suggestion
3: Compute the difference of key-point pairs locations: Dh, Dx and
Dy according to equation (2)
4: Estimate rotation angle w based on averaging of Dh using the
method described in Section 2.1
5: for i51 to 2 do
6: Estimate horizontal and vertical shifts, tx and ty from Dx and Dy

using the method described in Section 2.2.1
7: Remove outliers from Dh and re-estimate w
8: end for

9: Compute w~Dh, compute tx and ty according to

equations (6) and (7)
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In the next section, we will see the experimental

results of the proposed method in image registration

and an application to super-resolution.

3 EXPERIMENTAL RESULTS

Our experiments has been done over LIVE dataset

images18 in which some of them were shown in Fig. 2.

We mentioned in Section 2.1 that the estimated w has

not meaningful difference from true w with the pro-

posed method in Section 2.1.1 with 95% confidence.

For each image of LIVE dataset, 120 image were

generated with random tx,ty (P[210, 10]) and over

various w [2180u, 180u]. Table 4 shows the result of

Matlab Z-test function for Dh with the mentioned T-

SIFT method and its modified version based on

orientation modification, named as OT-SIFT described

in Section 2.1. As can be seen, the null hypothesis about

normal distribution of Dh can not rejected with T-SIFT

method only for w.0, but the null hypothesis cannot

rejected for all values of rotation angle by OT-SIFT

method.

Also the effect of noise for normality of Dh has

been tested here. Table 5 shows the result of Z-test

over various SNRs with fixed value of w5245u. The

SNR of 100 dB means without noise. These experi-

ments ensures that the estimated rotation angle with

the proposed method does not have significance

difference from its true value.

3.1 Run times

Table 6 shows the average run times of different

methods for estimation of registration parameters

over 3480 images. The proposed OXYT-SIFT

Table 5 Z-test over various SNRs for w5245u

SNR520 dB SNR545 dB SNR570 dB SNR5100 dB

Image T-SIFT OT-SIFT T-SIFT OT-SIFT T-SIFT OT-SIFT T-SIFT OT-SIFT

Bikes 1 0 1 0 1 0 1 0
Building2 1 0 1 0 1 0 1 0
Buildings 1 0 1 0 1 0 1 0
Caps 1 0 1 0 1 0 1 0
Carnivaldolls 1 0 1 0 1 0 1 0
Cemetry 1 0 1 0 1 0 1 0
Churchandcapitol 1 0 1 0 1 0 1 0
Coinsinfountain 1 0 1 0 1 0 1 0
Dancers 1 0 1 0 1 0 1 0
Flowersonih35 1 0 1 0 1 0 1 0
House 1 0 1 0 1 0 1 0
Lighthouse 1 0 1 0 1 0 1 0
Lighthouse2 1 0 1 0 1 0 1 0
Manfishing 1 0 1 0 1 0 1 0
Monarch 1 0 1 0 1 0 1 0
Ocean 1 0 1 0 1 0 1 0
Paintedhouse 1 0 1 0 1 0 1 0
Parrots 1 0 1 0 1 0 1 0
Plane 1 0 1 0 1 0 1 0
Rapids 1 0 1 0 1 0 1 0
Sailing1 1 0 1 0 1 0 1 0
Sailing2 1 0 1 0 1 0 1 0
Sailing3 1 0 1 0 1 0 1 0
Sailing4 1 0 1 0 1 0 1 0
Statue 1 0 1 0 1 0 1 0
Stream 1 0 1 0 1 0 1 0
Studentsculpture 1 0 1 0 1 0 1 0
Woman 1 0 1 0 1 0 1 0
Womanhat 1 0 1 0 1 0 1 0

Table 6 Average run times over 3480 images for estimating of motion parameters

Method T-SIFT OXYT-SIFT RANSAC

Time (ms) 2.81 3.50 16.78
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method is about five times faster than RANSAC in

average. For each of 29 LIVE images, 120 random

images with known motion vectors was created. Their

SIFT key-points were extracted and saved before

computing running times.

The initial SIFT matching time which is common

in the methods is discarded. The mean run time

for RANSAC was 16.78 ms, against to 3.5 ms for

OXYT-SIFT, i.e. the OXYT-SIFT is faster than

RANSAC about five times.

Distance ratio for matching SIFT key-points was

set to 0.8, and distance threshold for deciding outliers

in RANSAC homography was set to 0.01.

3.2 Registration comparison

In addition to RANSAC, we applied three registra-

tion methods: frequency method,6 GC-BPM7 and

Keren et al.,4 for comparing the proposed registra-

tion approaches.

For every image in LIVE dataset, four distorted

image was generated by resizing each image by a

factor of 0.5, then the image was shifted by known

values among the X and/or Y axis (in the range of

[210, 10] pixels), and rotated by a specified angle (in

the range of [210u, 10u]). Noise is added to the image,

so that the SNR of the produced image was 70 dB

and JPEG compression were the last steps. It should

be mentioned that the motion parameters for the first

distorted image were set to zero as it is a reference

frame. The images were generated in a manner to be

used in registration comparison and in a super-

resolution application.

Because of the image size restriction in GC-BPM

method, six images of dataset were dropped and the

comparisons were done on remaining 23 images.

Since for each reference image we had three distorted

images, the total number of tested images is 69.

Table 7 shows the estimated parameters (tx,ty,w) for

23 of 69 distorted images, along with their ground

truth values, with various methods (instead of GC-

BPM for table size limitation).

For better comparison, in Fig. 5, the mean square

error (MSE) between motion parameters estimated

by all mentioned registration methods for all 69

images is demonstrated. The average value of each

method is demonstrated beside its legend. As can be

seen, the proposed method produced better results

against the others in average.

Since three registration parameters have different

units, the following error measure is a better criterion

than the errors in parameters. For each estimated

model, the MSE is computed over 30 random points

in the image coordinate frame of the distance between

their current and correct transformed locations.

Figure 6 shows comparison of values of the MSE

5 Values of mean square error between estimated registration parameters and their ground truth

values, over 69 distorted images
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between the estimated locations and true locations by

mentioned registration methods. As can be seen, the

proposed method after RANSAC method produced

better results against the others in average.

3.3 Dealing with large angles

In the above experiments, the range of rotation

angles was [210u, 10u], but the proposed method can

6 Values of mean square error between estimated registration pixel location error and their grand

truth values, over 69 distorted images

7 Registration pixel location error for ‘Bulidings’ image of size 3846256 over various values of

rotation angles
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be used to a wider range ([2180u, 180u]). Figure 7

shows the result of running the mentioned methods

on an image rotated by various angles in the range of

[0u, 180u]. According to the aforementioned criterion,

the MSE between the estimated locations and true

locations of 30 pixels is chosen for comparison.

As can be seen, the proposed method produced the

best result in average. Its performance does not

decrease with increasing rotation angle, in contrast to

those of the other methods. The first three registra-

tion methods in Fig. 7 are not suitable for estimation

of large rotation angles. The performance of

RANSAC method decreases when w increases.

3.4 Experimental results for super-resolution

problems

The super-resolution techniques fuse a sequence of

low-resolution images to produce a higher-resolution

image. The LR images may be noisy, blurred and

have some displacements with each other. The origin

of the classic from of super-resolution comes back to

the work of Tsai and Huang,8 motivated by the need

to improve the resolution of images acquired by the

Landsat 4 satellite. These methods utilise information

from multiple observed images to achieve restoration

at resolutions higher than that of the original data.

The super-resolution restoration methods register the

observed images to a common reference frame in

order to reconstruct the HR image. Since Euclidean

transformation model is a common assumption in

multi-frame super-resolution literatures, here it is

chosen as an application of the proposed method.

In this section, two experiments have been carried

out, the first on the previous synthesised data set and

the other on real data. As we will see, the proposed

approach has a good performance in both cases.

3.4.1 Super-resolution experiment on synthesised data

As mentioned earlier, for each image in the dataset,

four LR images were generated with random motion

vectors. Hence, for each image of LIVE, as a HR

image, we have four LR images, in which the first LR

image is considered as the reference image. The motion

parameters are estimated with various registration

methods to produce a HR image with a magnifying

factor of 2. Among the super-resolution reconstruc-

tion methods, the interpolation approach is used here.

Figure 8 show the MSE between the produced HR

images with each registration method against the real

HR image.

8 MSE between reconstruction HR image with the mentioned registration methods as the first

stage of super-resolution, over four LR images corresponding to each LIVE image
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As can be seen, the proposed method and

RANSAC method produced the better results. Note

that in this experiment, the rotation angles was

belong to [210u, 10u]; based on the results of the

previous section, the better result of the proposed

method in larger rotation angles is expected.

3.4.2 Super-resolution experiment on real data

We compared the proposed registration method with

Keren et al.’s method4and RANSAC methods on two

real videos, in which consequence frames can be

transformed to each other with an Euclidean

transformation. This happens for example because

of hand shaking during video capturing. From each

video, another LR video is created by blurring and

down-sampling by a factor of 2. Table 8 shows the

specifications of these two videos.

Since these are real data, the ground truth registra-

tion parameters is not available; hence, the registration

comparison is not applicable. Instead, a super-resolu-

tion reconstruction method is applied for comparison

proposes. A common video super-resolution method is

9 Cemetry LR images, with the motion parameters (tx,ty,w) of each LR image: (a) reference LR

frame; (b) (0,10,24); (c) (5,29,8); (d) (8,22,1)

Table 8 Description of our test sequences. The differences between HR and LR frames are clear with zooming on the

electronic version of the paper

Sequence name Seq. 1 Seq. 2

First HR frame

Frames 330 69
Resolution 6406480 7206576
Device: Sony HDR-SR12E Panasonic NV-GS75
First LR frame

Resolution 3206240 3606288
A middle LR frame
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using a ‘sliding window’ technique. The window is

moved forward in time to produce successive super-

resolved frames in the output sequence.20 These

window frames are registered related to the the first

frame in the window and a reconstruction method is

applied to the registered frames. Here the window size

10 Close-up views of the original HR image, replication (nearest) resized version of the first LR

image and super-resolution results, when Vandewalle, Keren, RANSAC and the proposed

‘OXYT-SIFT’ methods have been used as registration stage: (a) original HR frame; (b) close-

up of text area of HR frame; (c) resized of the first LR frame (nearest); (d) Vandewalle;

(e) Keren; (f) RANSAC; (g) OXYT-SIFT

Table 9 Values of average MSE between reconstructed HR frames of two videos over various frame intervals and the

ground truth HR frames

MSE Method

Seq. Frame interval Keren et al. OXY-TSIFT RANSAC

1 2 145.40 118.70 118.80
4 186.39 144.78 149.44

10 371.18 225.53 234.63
2 2 298.00 295.74 273.69

4 355.44 305.60 296.37
10 532.82 332.50 332.55
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is set to four frames and the interpolation method is

used for reconstruction stage.

The sliding window is applied to each LR video.

More accurate registration leads to more similarity of

the reconstructed frame to original ground truth HR

frame. The experiments has been carried out over

various frame intervals (FI) for each video. FI5n

means frame numbers 1, 1zn, 1z2n, … are

considered for experiment. Larger FI leads to larger

displacements between frames.

Table 9 shows values of the average MSE over

various frame intervals for sequences 1 and 2. Each

cell in the table represent the average MSE of all

frames used in the experiment. The bold letters in

each row indicate the lower MSE in that row. As can

be seen, the proposed OXYT-SIFT method and

RANSAC method produced the good results, which

is the same as our experiments on synthesised data.

3.5 Visual comparison

For visual comparison the super-resolution results, when

various methods has been used as registration stage of

interpolation reconstruction method, has been used. The

‘cemetry’ image, which contains a text area, has been

chosen and four LR images were produced from it with

the way explained in Section 3.2. Horizontal and vertical

shifts of the three LR images with respect to the first LR

image were {1,4,21} and {27,25,10} pixels, respec-

tively, and the rotation angles were {25u,1u,2u}. The LR

images are shown in Fig. 9.

For a better visual comparison, a small region,

containing the text, has been enlarged and is shown in

the Fig. 10.

The first LR image is shown in Fig. 10c; note that the

lower text (NO THROUGHFARE PLEASE) is almost

unreadable in the LR image. The result of Vande-

walle method (Fig. 10d) suffers from bad registration.

Although the results of Keren, RANSAC and OXYT-

SIFT seems equal, but referring to Fig. 8, it indicates

that values of the MSE of the two later methods are a bit

smaller than that of the Keren method. This is also

illustrated as absolute error map of the results and the

original HR image in Fig. 11.

4 CONCLUSION

In this paper, a new registration method with the

assumption of normal distribution of displacements

of SIFT key-points’ locations, after some modifica-

tions was proposed. The main idea is averaging of

differences of key-points’ orientations for rotation

estimation. The key-points’ rows and columns of the

second image are rotated based on the estimated

rotation angle, and vertical and horizontal displace-

ments are approximated by averaging of differences

of key-points’ locations. Some modification and

compensation have been carried out for accurate

estimation of registration parameters.

In contrast to Keren et al.,4 registration method,

which is a repetitive method and cannot handle large

rotation angles between images, the proposed

approach is a one-step approach and can handle

large rotation angles. In contrast to the frequency

method of Vandewalle et al.,6 the proposed approach

does not need strong directionality in images. The

11 Error map image between Figs. 10d–g with related HR image (Fig. 10b) (brighter pixel means

higher error): (a) Vandewalle; (b) Keren; (c) RANSAC; (d) OXYT-SIFT
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GC-BPM7 is a fast registration algorithm, but

produced poor results with respect to the proposed

method. Finally, the proposed method is faster than

famous RANSAC algorithm for registration para-

meters estimation. Moreover, the proposed method

has some variations which can be used, when there

are only vertical or horizontal shifts, rotation or

combinations of them.

The main strength of the proposed method is in the

situations where SIFT key-points of the images are

known as a priority, and at the same time, the

registration parameters are requested, for example, in

an object recognition and tracking application based

on SIFT key-points. In this case, the proposed

method is faster than RANSAC about five times

for parameter estimation, while its accuracy is

competitive to RANSAC.

The only limitation of the proposed method is that

it can be used only for Euclidean transformation

model (translationzrotation), although it is a usual

assumption such as many super-resolution applica-

tions. In the future work, we plan to extend the

proposed method for other transformation model

such as similarity model (Euclideanzisotropic scal-

ing) with the aid of Yi et al.12

The various comparisons showed that the pro-

posed registration method outperforms some other

popular methods. The experimental results showed

the high performance of the proposed method in a

super-resolution problem.

In summury, the innovations of this paper are as

follows:

N using SIFT key-points’ orientations directly for a

fast and powerful image registration approach

N using SIFT key-points with this manner for image

registration in the super-resolution context

N justification that the displacements between corre-

sponding SIFT key-points’ locations, under global

translational motion model, are approximately nor-

mally distributed, after some modifications, and under

the null hypothesis, the estimated parameters have not

meaningful difference from their true values.
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