
Adjusting the Parameters of Radial Basis Function
Networks Using Particle Swarm Optimization

A. Esmaeili

School of Computer Engineering

Iran University of Science and Technology

Tehran, Iran

esmaeili@comp.iust.ac.ir

N. Mozayani

School of Computer Engineering

Iran University of Science and Technology

Tehran, Iran

mozayani@iust.ac.ir

Abstract— Particle Swarm Optimization (PSO), a new
promising evolutionary optimization technique, has a wide range
of application in optimization problems including training of
artificial neural networks. In this paper, an attempt is made to
completely train a RBF neural network architecture including
the centers, optimum spreads, and the number of hidden units.
The proposed method has been evaluated on some benchmark
problems: Iris, Wine, Glass, New-thyroid and its accuracy was
compared with other algorithms. The results show its strong
generalization ability.

Keywords- RBF Networks; PSO; Neural Networks; Neural
Networks Training

I. INTRODUCTION

Radial basis function (RBF) networks were introduced into
neural network by Broomhead and Lowe [2]. Being universal
function approximators, these networks are asymptotically
Bayes-optimal classifiers [7], and in addition, are considered to
be an improved alternative of the classical multilayer neural
networks in generalization ability, computational efficiency
and biological plausibility.

The construction of a radial basis function (RBF) network,
in its most basic form, involves three layers with entirely
different roles [5]: the input layer which is made up of source
nodes, the second and the only hidden layer which applies a
nonlinear transformation from the input space to the hidden
space, mostly of high dimensionality, by means of radial
functions, and finally an output layer which performs a linear
transformation (Fig.1).

This kind of network, in comparison with the other
nonparametric classifiers, has many tunable parameters:

• The type of radial function to be used in the hidden
units.

• The distance type.

• The center of the radial functions (location of the
hidden units).

• The spread or radius of the radial functions.

Figure 1. Architecture of an RBF network

As for the hidden units, Gaussian function is often used as
the radial function and Euclidean distance as the distance type.
In this case, the output of the i-th hidden unit with center

iμ and spread iσ is given as follows:

() ie i

i

iii ∀=−=

−
−

,;x)x(
)

2

x
(2

2

σ
μ

σμφφ (1)

Training an RBF network consists of finding the values for
these parameters, such that the overall approximation or

CIMSA 2009 - International Conference on Computational Intelligence for Measurement Systems and Applications
Hong Kong, China
May 11-13, 2009

978-1-4244-3820-4/09/$25.00 ©2009 IEEE 179

classification error is reduced. The values chosen for the
centers and the spread of the radial functions have a great effect
on the generalization abilities of the network. Many algorithms
have been proposed for finding the centers of an RBF network
in literature such as: random subset selection, various
clustering algorithms such as K-means [3] and vector
quantization [4], sequential growing, and most recently a
training algorithm in which the locations and the number of
hidden units are tried to be optimized using particle swarms
[6]. In all of these works the spread of the radial functions of
the hidden units are set either to a fixed value or a value
obtained using heuristic methods.

In this work an attempt is made to optimize the centers and
corresponding spreads of the hidden units using particle swarm
optimization. The experimental results on some benchmark
problems show its strong generalization ability.

II. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO), introduced by Kennedy
[1], mimics the behavior of a swarm of insects or a school of
fish. If one of the particles discovers a good path to food the
rest of the swarm will be able to follow instantly even if they
are far away in the swarm. Swarm behavior is modeled by
particles in multidimensional space that have two
characteristics: a position and a velocity. These particles
wander around the hyperspace and remember the best position
that they have discovered. They communicate good positions
to each other and adjust their own position and velocity based
on these good positions. If we would like to describe the
process used in this algorithm more technically we would
follow these steps: the swarm of particles at first is initialized
with a population of random candidate solutions. They move
iteratively through the d-dimension problem space to search the
new solutions, where the fitness, f, can be calculated as the
certain qualities measure. Each particle has a position
represented by a position-vector xi (i is the index of the
particle), and a velocity represented by a velocity-vector vi.
Each particle remembers its own best position so far in a vector
Pi =(pi1, pi2, …, pid), and its j-th dimensional value is pij . The
best position-vector among the swarm so far (global best) is
then stored in a vector Pg, and its j-th dimensional value is pgj.
During the iteration time t, the update of the velocity from the
previous velocity to the new velocity is determined by Eq. (2).
The new position is then determined by the sum of the previous
position and the new velocity by Eq. (3).

))()((

))()(()()()1(

22

11

txtprc

txtprctvtwtv

ijgj

ijijijij

−

+−+=+
 (2)

)1()()1(++=+ tvtxtx ijijij (3)

where w(t) is called as the inertia factor, r1 and r2 are the
random numbers, which are used to maintain the diversity of
the population, and are uniformly distributed in the interval
[0,1] for the j-th dimension of the i-th particle. c1 is a positive
constant, called as coefficient of the self-recognition
component, c2 is a positive constant, called as coefficient of the

social component. The following pseudo-code illustrates the
algorithm.

Algorithm.1. Particle Swarm Optimization Algorithm

01. Initialize the size of the particle swarm n, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. While (the end criterion is not met) do
04. t = t + 1;
05. Calculate the fitness value of each particle;
06. Pg = argmin ni=1 (f(Pg(t − 1)), f(x1(t)), f(x2(t)), · · · , f(xi(t)), · · · , f(xn(t)));
07. For i= 1 to n
08. Pi (t) = argmin ni=1(f(Pi (t − 1)), f(xi(t));
09. For j = 1 to Dimension
10. Update the j-th dimension value of xi and vi
10. according to Eqs.(2), (3);
12. Next j
13. Next i
14. End

III. CONFIGURATION OF THE PSO TRAINING ALGORITHM

As stated before, the purpose of training in an RBF network
is to determine the centers, numbers, and spread of the hidden
units and the weights of connections from hidden units to the
output layer. We would like to determine proper values for
these training parameters by means of PSO. But encoding all of
these parameters into a particle makes the length of the particle
too long and hence the searching space becomes too large.
Therefore we try to encode the centers and the spreads of the
hidden units in a particle (Fig. 2), and compute the weights of
the output connections by analytic methods. If the maximum
number of the hidden units is given by hmax , the proposed
encoding of the network architecture into a particle is as
follows:

where Centeri contains the center of the radial function used in
i-th hidden unit and its dimension equals the dimension of
input space. Spreadi contains the width used in i-th hidden unit
and is a real number. If Spreadi < 0, then the i-th hidden unit
will not be considered in the architecture of the network. By
this representation we can tune three training parameters using
PSO with a reasonable particle length. Once these values are
determined through a stochastic search, the weights of the
connections from hidden units to the output layer can be easily
determined using SVD analytic method.

PSO like other evolutionary algorithms needs a fitness
function to be guided to a desired point. For this proposed
method the fitness function will be designed considering the
network accuracy and complexity. For the accuracy the RBF
network in this article the mean squared network (MSE) is
used. For this purpose the network with the architecture
obtained from the particles in the swarm and the weights

Center1 Spread1 Center2 Spread2 ... Centerhmax Spreadhmax

Figure 2. Network encoding in a particle

180

computed analytically is fed with the training dataset, the
corresponding outputs are collected and compared with the
desired outputs. The complexity of the network can be tracked
by considering the number of the hidden units. The lower the
number of hidden units is, the more desirable the fitness will
be. Therefore the fitness function would be as follows:

.1

1

2

MaxHidden
SizeHiddenkot

N
fitness

N

i
ii +−= ∑

=

 (4)

where N is the number of training patterns, k is a balancing
factor, ti, oi are the desired output and actual network output
respectively.

IV. EXPERIMENTS

The proposed method has been tested on four datasets: Iris,
Glass, Wine, and New-thyroid, all from the UCI repository of
machine learning [6].The characteristic of these datasets has
been brought in table 1. The results obtained are compared
with two other methods, the newrb training method
implemented in Matlab neural network toolbox as an standard
RBF training algorithm and the simple-PSO [6]. The
parameters of the PSO algorithm in the proposed method have
been chosen as follows: learning rates, c1 and c2, were both set
to 2, the inertia weigh, w(t), was set to vary linearly from 0.9 to
0.3 during the run of algorithm, Vmax was set to 5, the
maximum number of hidden units was set to 20, and maximum
number of iterations was set to 5000.

TABLE 1. CHARACHTERISTICS OF THE DATASETS

Dataset Number of
instances

Number of
features Number of classes

Iris 150 4 3
Wine 178 13 3
Glass 214 9 7
New-

thyroid 215 5 3

All of the training algorithms mentioned above were conducted
20 runs. In each run the data set was randomly partitioned into
two parts: training set and test set. The accuracy of the
algorithms has been measured on both of these parts and the
average accuracy during different runs is listed as in table 2
(CmPSO refers to the proposed method in this paper).

According to table 2, the proposed RBF training algorithm
in this paper, gives more accurate results than those of Simple-
PSO and newrb algorithms both on training and test sets.

TABLE 2. COMPARISON OF EXPERIMENTAL RESULTS OF THE TRAINING
ALGORITHMS

Datasets CmPSO Simple-PSO newrb
Train Test Train Test Train Test

Iris 0.9932 0.9821 0.99 0.98 0.9850 0.9560
Wine 0.9992 0.9774 1 0.9631 0.9375 0.6554
Glass 0.8301 0.7748 0.8042 0.6620 0.9850 0.6174
New-thyroid 0.9721 0.9560 0.9650 0.9444 0.9240 0.6204

V. CONCLUSION

This paper proposed a new PSO-based RBF network
training algorithm, in which the spreads of the radial functions
in the hidden units also were taken into consideration. For this
purpose only the centers and the widths were encoded into the
particles in order to be optimized using PSO and the weights of
the connections from hidden units to the output layer were
computed analytically using SVD. The experimental results on
different benchmark classification problems from UCI
repository revealed the effectiveness and efficiency of the
proposed method. It seems that the results can be further
optimized using other optimization techniques like simulated
annealing or chaos search in collaboration with the proposed
algorithm.

REFERENCES

[1] Kennedy, J., Eberhart, R.C., “Particle Swarm Optimization,”
Proceedings of IEEE In: International Conference on Neural Networks,
Piscataway, NJ (1995) 1942-1948.

[2] Broomhead, D., Lowe, D., “Multivariable Functional Interpolation and
Adaptive Networks,” Complex Systems 2 (1988) 321-355.

[3] Moody, J., Darken, C., “Fast Learning Networks of Locally-Tuned
Processing Units,” Neural Computation 3 (1991) 579-588.

[4] Vogt, M., “Combination of Radial Basis Function Neural Networks with
Optimized Learning Vector Quantization,” IEEE International
Conference on Neural Networks (1993) 1841-1846.

[5] Simon Haykin, “Neural Networks: a comprehensive foundation,”
Prentice-Hall, Inc., Upper Saddle River, New Jersey (1999).

[6] Liu, Y., Qing, Z., Shi, Z.W., “Training Radial Basis Function Network
with Particle Swarms,” ISNN04, Springer-Verlag Berlin
Heidelberg(2004)317-322.

[7] Krzyzak, T.Linder and G. Lugosi, “Nonparametric classification using
radial basis function nets and empirical risk minimization,” Proc. 12th
Int. Conf. on Pattern recognition, Jerusalem, Israel (1994)72-76.

[8] Blake, C., Keogh, E., Merz, C.J.: UCI Repository of Machine Learning
Databases www.ics.uci.edu/ mlearn/MLRepository.html.

181

