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Abstract— Particle Swarm Optimization (PSO), a new 
promising evolutionary optimization technique, has a wide range 
of application in optimization problems including training of 
artificial neural networks. In this paper, an attempt is made to 
completely train a RBF neural network architecture including 
the centers, optimum spreads, and the number of hidden units. 
The proposed method has been evaluated on some benchmark 
problems: Iris, Wine, Glass, New-thyroid and its accuracy was 
compared with other algorithms. The results show its strong 
generalization ability. 
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I.  INTRODUCTION 

Radial basis function (RBF) networks were introduced into 
neural network by Broomhead and Lowe [2]. Being universal 
function approximators, these networks are asymptotically 
Bayes-optimal classifiers [7], and in addition, are considered to 
be an improved alternative of the classical multilayer neural 
networks in generalization ability, computational efficiency 
and biological plausibility. 

The construction of a radial basis function (RBF) network, 
in its most basic form, involves three layers with entirely 
different roles [5]: the input layer which is made up of source 
nodes, the second and the only hidden layer which applies a 
nonlinear transformation from the input space to the hidden 
space, mostly of high dimensionality, by means of radial 
functions, and finally an output layer which performs a linear 
transformation (Fig.1). 

This kind of network, in comparison with the other 
nonparametric classifiers, has many tunable parameters: 

• The type of radial function to be used in the hidden 
units. 

• The distance type. 

• The center of the radial functions (location of the 
hidden units). 

• The spread or radius of the radial functions.  

 

Figure 1.    Architecture of an RBF network 

As for the hidden units, Gaussian function is often used as 
the radial function and Euclidean distance as the distance type. 
In this case, the output of the i-th hidden unit with center 

iμ and spread iσ  is given as follows: 
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Training an RBF network consists of finding the values for 
these parameters, such that the overall approximation or 
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classification error is reduced. The values chosen for the 
centers and the spread of the radial functions have a great effect 
on the generalization abilities of the network. Many algorithms 
have been proposed for finding the centers of an RBF network 
in literature such as: random subset selection, various 
clustering algorithms such as K-means [3] and vector 
quantization [4], sequential growing, and most recently a 
training algorithm in which the locations and the number of 
hidden units are tried to be optimized using particle swarms 
[6]. In all of these works the spread of the radial functions of 
the hidden units are set either to a fixed value or a value 
obtained using heuristic methods.  

In this work an attempt is made to optimize the centers and 
corresponding spreads of the hidden units using particle swarm 
optimization. The experimental results on some benchmark 
problems show its strong generalization ability. 

II. PARTICLE SWARM OPTIMIZATION 

Particle swarm optimization (PSO), introduced by Kennedy 
[1], mimics the behavior of a swarm of insects or a school of 
fish. If one of the particles discovers a good path to food the 
rest of the swarm will be able to follow instantly even if they 
are far away in the swarm. Swarm behavior is modeled by 
particles in multidimensional space that have two 
characteristics: a position and a velocity. These particles 
wander around the hyperspace and remember the best position 
that they have discovered. They communicate good positions 
to each other and adjust their own position and velocity based 
on these good positions. If we would like to describe the 
process used in this algorithm more technically we would 
follow these steps: the swarm of particles at first is initialized 
with a population of random candidate solutions. They move 
iteratively through the d-dimension problem space to search the 
new solutions, where the fitness, f, can be calculated as the 
certain qualities measure. Each particle has a position 
represented by a position-vector xi (i is the index of the 
particle), and a velocity represented by a velocity-vector vi. 
Each particle remembers its own best position so far in a vector 
Pi =(pi1, pi2, …, pid), and its j-th dimensional value is pij . The 
best position-vector among the swarm so far (global best) is 
then stored in a vector Pg, and its j-th dimensional value is pgj. 
During the iteration time t, the update of the velocity from the 
previous velocity to the new velocity is determined by Eq. (2). 
The new position is then determined by the sum of the previous 
position and the new velocity by Eq. (3). 
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where w(t) is called as the inertia factor, r1 and r2 are the 
random numbers, which are used to maintain the diversity of 
the population, and are uniformly distributed in the interval 
[0,1] for the j-th dimension of the i-th particle. c1 is a positive 
constant, called as coefficient of the self-recognition 
component, c2 is a positive constant, called as coefficient of the 

social component. The following pseudo-code illustrates the 
algorithm. 

Algorithm.1. Particle Swarm Optimization Algorithm 

 
01.   Initialize the size of the particle swarm n, and other parameters. 
02.   Initialize the positions and the velocities for all the particles randomly. 
03.   While (the end criterion is not met) do 
04.       t = t + 1; 
05.       Calculate the fitness value of each particle; 
06.      Pg = argmin ni=1  (f(Pg(t − 1)), f(x1(t)), f(x2(t)), · · · , f(xi(t)), · · · , f(xn(t))); 
07.       For i= 1 to n 
08.     Pi (t) = argmin ni=1(f(Pi (t − 1)), f(xi(t)); 
09.      For j = 1 to Dimension 
10.           Update the j-th dimension value of xi and vi 
10.               according to Eqs.(2), (3); 
12.      Next j 
13.       Next i 
14. End   

 

III. CONFIGURATION OF THE PSO TRAINING ALGORITHM 

As stated before, the purpose of training in an RBF network 
is to determine the centers, numbers, and spread of the hidden 
units and the weights of connections from hidden units to the 
output layer. We would like to determine proper values for 
these training parameters by means of PSO. But encoding all of 
these parameters into a particle makes the length of the particle 
too long and hence the searching space becomes too large. 
Therefore we try to encode the centers and the spreads of the 
hidden units in a particle (Fig. 2), and compute the weights of 
the output connections by analytic methods. If the maximum 
number of the hidden units is given by hmax  , the proposed 
encoding of the network architecture into a particle is as 
follows: 

 

 

where Centeri contains the center of the radial function used in 
i-th hidden unit and its dimension equals the dimension of 
input space. Spreadi contains the width used in i-th hidden unit 
and is a real number. If Spreadi < 0, then the i-th hidden unit 
will not be considered in the architecture of the network. By 
this representation we can tune three training parameters using 
PSO with a reasonable particle length. Once these values are 
determined through a stochastic search, the weights of the 
connections from hidden units to the output layer can be easily 
determined using SVD analytic method. 

PSO like other evolutionary algorithms needs a fitness 
function to be guided to a desired point. For this proposed 
method the fitness function will be designed considering the 
network accuracy and complexity. For the accuracy the RBF 
network in this article the mean squared network (MSE) is 
used. For this purpose the network with the architecture 
obtained from the particles in the swarm and the weights 

Center1 Spread1 Center2 Spread2 ... Centerhmax Spreadhmax 

Figure 2.    Network encoding in a particle 
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computed analytically is fed with the training dataset, the 
corresponding outputs are collected and compared with the 
desired outputs. The complexity of the network can be tracked 
by considering the number of the hidden units. The lower the 
number of hidden units is, the more desirable the fitness will 
be. Therefore the fitness function would be as follows: 
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where N is the number of training patterns, k is a balancing 
factor, ti, oi are the desired output and actual network output 
respectively. 

IV. EXPERIMENTS 

The proposed method has been tested on four datasets: Iris, 
Glass, Wine, and New-thyroid, all from the UCI repository of 
machine learning [6].The characteristic of these datasets has 
been brought in table 1. The results obtained are compared 
with two other methods, the newrb training method 
implemented in Matlab neural network toolbox as an standard 
RBF training algorithm and the simple-PSO [6]. The 
parameters of the PSO algorithm in the proposed method have 
been chosen as follows: learning rates, c1 and c2, were both set 
to 2, the inertia weigh, w(t), was set to vary linearly from 0.9 to 
0.3 during the run of algorithm, Vmax was set to 5, the 
maximum number of hidden units was set to 20, and maximum 
number of iterations was set to 5000. 

TABLE 1.    CHARACHTERISTICS OF THE DATASETS 

Dataset Number of 
instances 

Number of 
features Number of classes 

Iris 150 4 3 
Wine 178 13 3 
Glass 214 9 7 
New-

thyroid 215 5 3 

 
All of the training algorithms mentioned above were conducted 
20 runs. In each run the data set was randomly partitioned into 
two parts: training set and test set. The accuracy of the 
algorithms has been measured on both of these parts and the 
average accuracy during different runs is listed as in table 2 
(CmPSO refers to the proposed method in this paper). 

According to table 2, the proposed RBF training algorithm 
in this paper, gives more accurate results than those of Simple-
PSO and newrb algorithms both on training and test sets. 

TABLE 2.   COMPARISON OF EXPERIMENTAL RESULTS OF THE TRAINING 
ALGORITHMS 

Datasets CmPSO Simple-PSO newrb 
Train Test Train Test Train Test 

Iris 0.9932 0.9821 0.99 0.98 0.9850 0.9560 
Wine 0.9992 0.9774 1 0.9631 0.9375 0.6554 
Glass 0.8301 0.7748 0.8042 0.6620 0.9850 0.6174 
New-thyroid 0.9721 0.9560 0.9650 0.9444 0.9240 0.6204 

V. CONCLUSION 

This paper proposed a new PSO-based RBF network 
training algorithm, in which the spreads of the radial functions 
in the hidden units also were taken into consideration. For this 
purpose only the centers and the widths were encoded into the 
particles in order to be optimized using PSO and the weights of 
the connections from hidden units to the output layer were 
computed analytically using SVD. The experimental results on 
different benchmark classification problems from UCI 
repository revealed the effectiveness and efficiency of the 
proposed method. It seems that the results can be further 
optimized using other optimization techniques like simulated 
annealing or chaos search in collaboration with the proposed 
algorithm. 
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