
On the Hardness of Negotiations
in Multi-Agent Systems

Mehran Ziadloo
Computer Engineering Dep.

Iran University of Science and Technology
Tehran, Iran

mehran@method.ir

Siamak Sobhany Ghamsary
Method Ltd.
Tehran, Iran

siamak@method.ir

Nasser Mozayani
Computer Engineering Dep.

Iran University of Science and Technology
Tehran, Iran

mozayani@iust.ac.ir

Abstract – In multi-agent negotiation the difficulty of the problem
depends on how many issues are under negotiation and how
complex agents’ utility functions are. In this paper we propose a
framework for evaluating different techniques for solving
negotiation problems and used it to show how hard a negotiation
problem can become. We used mediated single text negotiation
protocol with genetic algorithms mediator and hill climber
agents. Negotiations were conducted over deals with binary issues
presented as binary strings. Utility functions with binary and
higher levels of dependency between issues were used. Our
results show that size of problem does not affect performance,
until higher levels of dependency between issues are presented in
utility functions. Genetic algorithm method was able to solve the
problem with relatively good performance in all levels of
dependency that we tested.

Negotiation; multi-agent systems; binary issues; multi level
dependency

I. INTRODUCTION
Negotiation is an important technique in multi-agent

systems. This technique can be used for different types of
problems, yet two of them are well studied: resource allocation
and task assignment [1]. In this technique a group of agents
negotiate over a set of issues until they come to an agreement.
Each issue has at least one attribute for which an agreeable
value should be found. A deal is an assignment of values to all
issues’ attributes. Agents try to find best values for these
attribute considering their own utility (competition) and
possibly community’s overall utility (coordination). If no such
deal is found, a predefined one will be applied. In this research
we focus on coordination which is often used as a distributed
problem solving (DPS) technique. In such negotiations, agents
fully trust each other since they are all part of the same
solution.

Negotiations usually include a protocol as their definition.
A protocol specifies topology for communications, transmitted
information and some rules to make sure that negotiation is
going as planned (strategy). One of the earliest protocols for

negotiation is Rubinstein’s alternating offers model [2] which
supports only two agents and is not suitable for our purpose. In
this work we used mediated single text negotiation protocol
[3]. This protocol supports arbitrary number of agents and can
work with different types of strategies. Mediator in this
protocol plays a unique role; it has responsibility of proposing
new deals to agents and gathering their opinions about them.
Then it should try to find better deals to propose according to
previous responses. In original version of this protocol, agents
would only respond with yes or no to deals. But in [4] it has
been shown that having agents respond with richer information
can improve performance of this protocol. This expansion
requires a trust between agents which is not a problem in our
case since we based our research on DPS.

Rest of this paper is organized as following: section two
covers preliminary concepts. In section three we describe the
problem structure. Section four presents our framework and
section five the evaluation method. In section six and seven
results and conclusion are presented.

II. PRELIMINARY CONCEPTS
A deal is a set of issues. Once a deal is accepted by all the

agents in negotiation, we call it an agreement. A deal is defined
in two spaces: issue space and utility space. A deal in issue
space is a vector of issues’ attributes. Since each agent assigns
a utility to each deal, we can also show a deal by a vector of
agents’ utilities. We show a deal in issue space with x and
with z in utility space. ix and iz indicates ith issue and ith

agent’s utility respectively. x will be the number of issues in

the deals while z is the number of agents in negotiation.

Considering two deals in utility space, 1z and 2z , in a
negotiation, they can have four relations in respect to each
other.

CIMSA 2009 - International Conference on Computational Intelligence for Measurement Systems and Applications
Hong Kong, China
May 11-13, 2009

978-1-4244-3820-4/09/$25.00 ©2009 IEEE 208

• 1z and 2z are equal (but not necessarily identical) if:
21: iii zz =∀ . (they are identical if they are the same in

issue space; 21: iii xx =∀)

• 1z dominates 2z if: 2121 :,: jjjiii zzzz >∃≥∀

• 2z dominates 1z which is opposite of previous relation.

• 1z and 2z are non-dominant to each other, which is the
case when none of the above situations applies.

If Z is a set of all possible deals, those deals that are not
dominated by any other deal in Z are called nondominant or
Pareto optimal. And the set of all Pareto optimal deals in Z is
known as Pareto frontier of Z. Finding Pareto frontier of a set
is the purpose of multi-objective optimization (MOO)
algorithms. In this paper, we want to compare results of our
own framework with results of a bunch of MOO algorithms
from MOMHLib++ library [5]. To choose from Pareto optimal
deals we should introduce other criteria. We will use Nash
Bargaining Solution and Utilitarian Deal as evaluation criteria.
In Nash Bargaining Solution, we are looking for a deal which
maximizes product of agents’ utilities while in Utilitarian Deal
we want to maximize sum of agents’ utilities. Such criteria are
defined not on the Pareto frontier but on the complete set of Z,
and it has been proven that deals which satisfy any of these two
criteria belong to Pareto frontier [6].

III. PROBLEM DEFINITION
Definition of a negotiation problem includes the number of

participating agents, the number and type of the issues and a
utility function for each agent. In this work we will conduct our
negotiations between two agents. Deals will be binary strings
of 30 to 100 bits (to compare their hardness), presenting each
bit as an issue. Such a deal structure creates up to a state space
of 2100 (more than 1030 deals), which is too huge to be searched
exhaustively. Agents’ utility functions have a crucial part in a
problem’s difficulty. In simplest case, the contribution of each
issue in a deal to agent’s utility is independent of other issues.
That is, when the issue is present (its bit is 1) some predefined,
fixed value is added to the agent’s utility. Such utility functions
are called linear which result in relatively easy negotiation
problems [4]. More complex problems arise when using
nonlinear utility functions. In these functions, in addition to
independent impact of issues, combinations of issues also
affect agent’s utility. It means that presence of two or more
specific issues can have more value to utility of an agent than
the addition of their values. Solving such problems is much
harder since they have so many local optimums which make it
hard to find the global ones [7]. In Fig. 1 examples of such
utility functions are plotted.

Finding global optimums in negotiation problems with
nonlinear utility functions is near impossible when state space
is relatively large. Because to make sure a deal is globally
optimal one should review the whole space. In this case, the
best thing to do is to estimate global optimums (using different
search algorithms).

Figure 1. Examples of different utility function.
Left: Linear function. Right: Nonlinear function

In this paper we have used nonlinear utility function with
second level and third level of dependencies. To implement
such functions we used hyper matrices known as influence
matrices. To implement such matrices we designed a special
indexing into a linear array as you can see in (1):

 [][][][]

ID

kjiI
kjiH

≤

.....1..1..1..1
... . (1)

In (1) H is the influence matrix with D dimensions
(dependency of level D) and the range of each dimension is
bounded by the index of previous dimension. The first
dimension, like the number of dimensions, is bounded by
number of issues (I). Having H as an influence matrix of an
agent and x as a deal in issue space, Fig. 2 shows the pseudo
code to calculate agent’s utility.

IV. SOLUTION
Our solution is a combination of mediated single text

negotiation, hill climber agents and a genetic algorithm
mediator. Our mediator gathers true utility values of agents to
search for the best possible deal which is only applicable when
there is enough trust between agents. In our framework, the
mediator generates a deal by GA and proposes it to agents.
Agents will respond by their true utility values and whether
they accept the deal or not. True utility values are used as
fitness for GA. We start by describing agent design.

Latest agreement which is initialized by a predefined deal is
used by agents to decide on new deals. An agent accepts a deal
only when its utility is higher than some predefined threshold
and the previous agreement. This is called hill climber agent
design. Last part of our framework is mediator’s deign which is
implemented by a simple genetic algorithm. Since the deal is a
binary string, we used the deal itself as the chromosome. A
uniform crossover is used with equal parent selection
probability (50-50). As for the mutation a simple bit flipping is
applied over all issues with small probability of 0.001.

Figure 2. Pseudo code to calcualte agents’ utilities.

H: influence matrix, I: number of issues, Deal: proposed deal, Utility: utility

Utility = 0
for i1=0 to I
 for i2=0 to i1
 ...
 for iD=0 to iD-1
 if x [i0] = 1 and ... and x [iD] = 1 then
 Utility += H[i1][i2]...[iD]

1
st A

gent U
tility Acceptable threshold

Deal’s State Space Deal’s State Space

2
nd A

gent U
tility Acceptable threshold

209

Fitness function definition is relative to the evaluation
criteria, Nash or Utilitarian. For Nash, fitness is the product of
agents’ utility values and for Utilitarian it is sum of the values.
The rest of design decisions for GA are the same as in simple
genetic algorithms (SGA) [8].

V. EVALUATION METHOD
To evaluate an agreement we need to find its distance to the

best known deal. Different distance concepts should be defined
for different criteria. We define an error term for a deal as the
maximum distance of that deal in utility space to the locus of
all deals with best global utility. Fig. 3 shows how to
measuring a deal’s error.

In Fig. 3-(a) circle mark presents a deal with best global
utility according to Nash criteria while cross mark is a sample
deal. The y=a/x curves indicates locus of deals with the same
Nash value. Error of deals are measured on the y=x line
because it is the largest distance between two curves. The same
goes for Fig. 3-(b) showing locus curves for Utilitarian criteria
which are y=a - x lines.

To convert the error into percentage, we based the origin as
the default deal where no agent gains anything and divided the
error value by the distance of best global utility’s locus on the
line of y=x to origin. One hundred minus the error percentage
gives us the performance percent of each deal.

VI. RESULTS
We have tested our framework in two phases. First we

applied it on a small group of problems to see its effectiveness
on binary dependency. Then, in phase two, a complete set of
problems with different dependencies and different number of
issues were considered. In both phases we used 10 algorithms
implemented in MOMHLib++ library to find the Pareto
frontier which is an estimation of true answer. We ran each of
the algorithms 10 times and gathered the results into one set.
Then best deals of Nash and Utilitarian criteria were found by
an exhaustive search in the resulting set. Problems in our
experiment are generated as discussed in section three.
Influence matrices of our agents are filled with random real
numbers between -1 and 1.

In first phase, we instantiated 10 randomly generated
problems with 100 binary issues and binary dependencies.
GA’s population size was set to 500 and number of generations
to 1000. To minimize the effect of finding results by chance,
we solved each problem ten times and calculated an average
and a standard deviation instead. Fig. 4 and Fig. 5 show the
progress of GA in solving problems as achieved performance
percentage over the number of fitness evaluations. There is
5000 fitness evaluation between each two following columns.

As for the second phase we considered a larger and more
diverse set of problems. We tested problems of three
dependency levels: linear (D=1), binary dependency (D=2) and
third level of dependency (D=3). In each level, number of
issues was changed from 30 to 100 with intervals of 10. This
time, 40 randomly generated problems were used for each
configuration to reduce the effect of randomness.

Figure 3. Error measure of deals in (a) Nash and (b) Utilitarian

This time we set the population size to 1000 since we
wanted to maintain the diversity of GA’s population and we
observed from the first phase’s results that long before
generation 1000 GA’s work is done, so the number of
generations was set to 500 in second phase.

Fig. 6 shows results of second phase’s averages and Fig. 7
is its standard deviation for Nash criteria. These values are
plotted over the number of issues under negotiation. As you
can see in these figures, the impact of dependency level to
performance is much higher than number of issues. In Dep. 1
(linear utility function), as the number of issues increases, it
seems the problems become easier for GA to solve. This
behavior can be explained regarding the diversity of GA
population. As the number of issues go up; while the number of
optimums remains the same, cardinality of state space increase
and lets the GA to keep its diversity and as the result, the
problem is solved easier. But number of issues plays its part as
the level of dependency increases. The unpredictable growth of
curve in third level shows that the difficulty of problems is
more related to dependency level (and hence complexity if
utility functions) than the number of issues. The average and
standard deviation of problems with 80 issues of Dep. 3 show
that there could be problem in this configuration harder than a
problem with 90 issues of the same dependency. This means
since parameters of problems are set randomly, evaluating
some solution’s performance requires a rich set of problems
before one can claim how good his/her solution performs.

Figure 4. GA’s progress over the number of evaluations for Utilitarian criteria

210

Figure 5. GA’s progress over the number of evaluations for Nash criteria

The hardness of problems in second or third level increases
with the number of issues. This means that if we define a ratio
as the number of local optimums per state space cardinality,
this ratio gets higher by the growth of issue number. This ratio
has a direct relation to the hardness of problem because as the
ratio goes up, there are fewer individuals to play the role of the
global optimum’s neighbors. And this makes problems harder
for GA to solve since it’s harder for GA to maintain its
population’s diversity. Such analysis can be proven once some
diversity maintenance is applied to GA which is beyond this
paper. As we monitored our GA’s generations, population’s
individuals lose their diversity so soon and most of the job is
done by mutation after a while because crossover cannot create
unseen individuals anymore.

VII. CONCLUSION
In this paper we performed a set of tests to see if a simple

genetic algorithm is suitable to search over the deals in a multi-
agent negotiation to find the Nash Bargaining Solution and
Utilitarian Deal. Results showed that for linear utility functions
and binary dependency utility functions the framework works
well enough, but as the level of dependency goes to three it
becomes much harder to solve problems. SGA seems to lose
population diversity and tend to trap in local optimums easily.
Sophisticated diversity control techniques could help SGA to
keep its efficiency even for higher dependency levels which we
leave for future work. It is also a good practice to test other
search methods like cellular automata or ant colony
optimization. To take the research to another step, we
recommend using real valued issues. This kind of negotiations
is much harder to solve and requires other techniques like
CMA-ES [9].

Figure 6. Average of performance against number of issues for different levels

of dependency

Figure 7. Standard deviation of performance against number of issues for

different levels of dependency

REFERENCES
[1] Woolridge, M. and M.J. Wooldridge, Introduction to Multiagent

Systems. 2001: John Wiley & Sons, Inc. New York, NY, USA.
[2] Rosenschein, J.S. and G. Zlotkin, Rules of encounter. 1994: MIT Press

Cambridge, Mass.
[3] Raiffa, H., The Art and Science of Negotiation. 1985: Belknap Press.
[4] Klein, M., et al., “Negotiating Complex Contracts”. Group Decision and

Negotiation, 2003. 12(2): p. 111-125.
[5] Jaszkiewicz, A., “A Comparative Study of Multiple-Objective

Metaheuristics on the Bi-Objective Set Covering Problem and the Pareto
Memetic Algorithm”. Annals of Operations Research, 2004. 131(1): pp.
135-158.

[6] Nash Jr, J.F., “The Bargaining Problem”. Econometrica, 1950. 18(2): p.
155-162.

[7] Bar-Yam, Y., Dynamics of Complex Systems. 2003: Westview Press.
[8] Goldberg, D.E., “Simple genetic algorithms and the minimal, deceptive

problem”. Genetic Algorithms and Simulated Annealing, 1987. 74.
[9] Hansen, N. and A. Ostermeier, “Completely Derandomized Self-

Adaptation in Evolution Strategies”, Evolutionary Computation, 9(2),
pp. 159-195, 2001

211

