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Abstract – In multi-agent negotiation the difficulty of the problem 
depends on how many issues are under negotiation and how 
complex agents’ utility functions are. In this paper we propose a 
framework for evaluating different techniques for solving 
negotiation problems and used it to show how hard a negotiation 
problem can become. We used mediated single text negotiation 
protocol with genetic algorithms mediator and hill climber 
agents. Negotiations were conducted over deals with binary issues 
presented as binary strings. Utility functions with binary and 
higher levels of dependency between issues were used. Our 
results show that size of problem does not affect performance, 
until higher levels of dependency between issues are presented in 
utility functions. Genetic algorithm method was able to solve the 
problem with relatively good performance in all levels of 
dependency that we tested. 

Negotiation; multi-agent systems; binary issues; multi level 
dependency 

I.  INTRODUCTION 
Negotiation is an important technique in multi-agent 

systems. This technique can be used for different types of 
problems, yet two of them are well studied: resource allocation 
and task assignment [1]. In this technique a group of agents 
negotiate over a set of issues until they come to an agreement. 
Each issue has at least one attribute for which an agreeable 
value should be found. A deal is an assignment of values to all 
issues’ attributes. Agents try to find best values for these 
attribute considering their own utility (competition) and 
possibly community’s overall utility (coordination). If no such 
deal is found, a predefined one will be applied. In this research 
we focus on coordination which is often used as a distributed 
problem solving (DPS) technique. In such negotiations, agents 
fully trust each other since they are all part of the same 
solution. 

Negotiations usually include a protocol as their definition. 
A protocol specifies topology for communications, transmitted 
information and some rules to make sure that negotiation is 
going as planned (strategy). One of the earliest protocols for 

negotiation is Rubinstein’s alternating offers model [2] which 
supports only two agents and is not suitable for our purpose. In 
this work we used mediated single text negotiation protocol 
[3]. This protocol supports arbitrary number of agents and can 
work with different types of strategies. Mediator in this 
protocol plays a unique role; it has responsibility of proposing 
new deals to agents and gathering their opinions about them. 
Then it should try to find better deals to propose according to 
previous responses. In original version of this protocol, agents 
would only respond with yes or no to deals. But in [4] it has 
been shown that having agents respond with richer information 
can improve performance of this protocol. This expansion 
requires a trust between agents which is not a problem in our 
case since we based our research on DPS. 

Rest of this paper is organized as following: section two 
covers preliminary concepts. In section three we describe the 
problem structure. Section four presents our framework and 
section five the evaluation method. In section six and seven 
results and conclusion are presented. 

II. PRELIMINARY CONCEPTS 
A deal is a set of issues. Once a deal is accepted by all the 

agents in negotiation, we call it an agreement. A deal is defined 
in two spaces: issue space and utility space. A deal in issue 
space is a vector of issues’ attributes. Since each agent assigns 
a utility to each deal, we can also show a deal by a vector of 
agents’ utilities. We show a deal in issue space with x  and 
with z  in utility space. ix  and iz  indicates ith issue and ith 

agent’s utility respectively. x  will be the number of issues in 

the deals while z  is the number of agents in negotiation. 

Considering two deals in utility space, 1z  and 2z , in a 
negotiation, they can have four relations in respect to each 
other. 
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• 1z  and 2z  are equal (but not necessarily identical) if: 
21: iii zz =∀ . (they are identical if they are the same in 

issue space; 21: iii xx =∀ ) 

• 1z  dominates 2z if: 2121 :,: jjjiii zzzz >∃≥∀  

•  2z  dominates 1z  which is opposite of previous relation. 

• 1z  and 2z  are non-dominant to each other, which is the 
case when none of the above situations applies. 

If Z is a set of all possible deals, those deals that are not 
dominated by any other deal in Z are called nondominant or 
Pareto optimal. And the set of all Pareto optimal deals in Z is 
known as Pareto frontier of Z. Finding Pareto frontier of a set 
is the purpose of multi-objective optimization (MOO) 
algorithms. In this paper, we want to compare results of our 
own framework with results of a bunch of MOO algorithms 
from MOMHLib++ library [5]. To choose from Pareto optimal 
deals we should introduce other criteria. We will use Nash 
Bargaining Solution and Utilitarian Deal as evaluation criteria. 
In Nash Bargaining Solution, we are looking for a deal which 
maximizes product of agents’ utilities while in Utilitarian Deal 
we want to maximize sum of agents’ utilities. Such criteria are 
defined not on the Pareto frontier but on the complete set of Z, 
and it has been proven that deals which satisfy any of these two 
criteria belong to Pareto frontier [6]. 

III. PROBLEM DEFINITION 
Definition of a negotiation problem includes the number of 

participating agents, the number and type of the issues and a 
utility function for each agent. In this work we will conduct our 
negotiations between two agents. Deals will be binary strings 
of 30 to 100 bits (to compare their hardness), presenting each 
bit as an issue. Such a deal structure creates up to a state space 
of 2100 (more than 1030 deals), which is too huge to be searched 
exhaustively. Agents’ utility functions have a crucial part in a 
problem’s difficulty. In simplest case, the contribution of each 
issue in a deal to agent’s utility is independent of other issues. 
That is, when the issue is present (its bit is 1) some predefined, 
fixed value is added to the agent’s utility. Such utility functions 
are called linear which result in relatively easy negotiation 
problems [4]. More complex problems arise when using 
nonlinear utility functions. In these functions, in addition to 
independent impact of issues, combinations of issues also 
affect agent’s utility. It means that presence of two or more 
specific issues can have more value to utility of an agent than 
the addition of their values. Solving such problems is much 
harder since they have so many local optimums which make it 
hard to find the global ones [7]. In Fig. 1 examples of such 
utility functions are plotted. 

Finding global optimums in negotiation problems with 
nonlinear utility functions is near impossible when state space 
is relatively large. Because to make sure a deal is globally 
optimal one should review the whole space. In this case, the 
best thing to do is to estimate global optimums (using different 
search algorithms). 

Figure 1. Examples of different utility function. 
Left: Linear function. Right: Nonlinear function 

In this paper we have used nonlinear utility function with 
second level and third level of dependencies. To implement 
such functions we used hyper matrices known as influence 
matrices. To implement such matrices we designed a special 
indexing into a linear array as you can see in (1): 

 [ ][ ][ ][ ]

ID

kjiI
kjiH

≤

.....1..1..1..1
... . (1) 

In (1) H is the influence matrix with D dimensions 
(dependency of level D) and the range of each dimension is 
bounded by the index of previous dimension. The first 
dimension, like the number of dimensions, is bounded by 
number of issues (I). Having H as an influence matrix of an 
agent and x  as a deal in issue space, Fig. 2 shows the pseudo 
code to calculate agent’s utility. 

IV. SOLUTION 
Our solution is a combination of mediated single text 

negotiation, hill climber agents and a genetic algorithm 
mediator. Our mediator gathers true utility values of agents to 
search for the best possible deal which is only applicable when 
there is enough trust between agents. In our framework, the 
mediator generates a deal by GA and proposes it to agents. 
Agents will respond by their true utility values and whether 
they accept the deal or not. True utility values are used as 
fitness for GA. We start by describing agent design. 

Latest agreement which is initialized by a predefined deal is 
used by agents to decide on new deals. An agent accepts a deal 
only when its utility is higher than some predefined threshold 
and the previous agreement. This is called hill climber agent 
design. Last part of our framework is mediator’s deign which is 
implemented by a simple genetic algorithm. Since the deal is a 
binary string, we used the deal itself as the chromosome. A 
uniform crossover is used with equal parent selection 
probability (50-50). As for the mutation a simple bit flipping is 
applied over all issues with small probability of 0.001. 

 
Figure 2. Pseudo code to calcualte agents’ utilities. 

H: influence matrix, I: number of issues, Deal: proposed deal, Utility: utility 

Utility = 0
for  i1=0  to  I 
    for  i2=0  to  i1 
        ... 
            for  iD=0  to  iD-1 
                if  x [i0] = 1  and  ...  and  x [iD] = 1  then 
                    Utility  +=  H[i1][i2]...[iD] 

1
st A

gent U
tility Acceptable threshold 

Deal’s State Space Deal’s State Space 

2
nd A

gent U
tility Acceptable threshold 
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Fitness function definition is relative to the evaluation 
criteria, Nash or Utilitarian. For Nash, fitness is the product of 
agents’ utility values and for Utilitarian it is sum of the values. 
The rest of design decisions for GA are the same as in simple 
genetic algorithms (SGA) [8]. 

V. EVALUATION METHOD 
To evaluate an agreement we need to find its distance to the 

best known deal. Different distance concepts should be defined 
for different criteria. We define an error term for a deal as the 
maximum distance of that deal in utility space to the locus of 
all deals with best global utility. Fig. 3 shows how to 
measuring a deal’s error. 

In Fig. 3-(a) circle mark presents a deal with best global 
utility according to Nash criteria while cross mark is a sample 
deal. The y=a/x curves indicates locus of deals with the same 
Nash value. Error of deals are measured on the y=x line 
because it is the largest distance between two curves. The same 
goes for Fig. 3-(b) showing locus curves for Utilitarian criteria 
which are y=a - x lines. 

To convert the error into percentage, we based the origin as 
the default deal where no agent gains anything and divided the 
error value by the distance of best global utility’s locus on the 
line of y=x to origin. One hundred minus the error percentage 
gives us the performance percent of each deal. 

VI. RESULTS 
We have tested our framework in two phases. First we 

applied it on a small group of problems to see its effectiveness 
on binary dependency. Then, in phase two, a complete set of 
problems with different dependencies and different number of 
issues were considered. In both phases we used 10 algorithms 
implemented in MOMHLib++ library to find the Pareto 
frontier which is an estimation of true answer. We ran each of 
the algorithms 10 times and gathered the results into one set. 
Then best deals of Nash and Utilitarian criteria were found by 
an exhaustive search in the resulting set. Problems in our 
experiment are generated as discussed in section three. 
Influence matrices of our agents are filled with random real 
numbers between -1 and 1. 

In first phase, we instantiated 10 randomly generated 
problems with 100 binary issues and binary dependencies. 
GA’s population size was set to 500 and number of generations 
to 1000. To minimize the effect of finding results by chance, 
we solved each problem ten times and calculated an average 
and a standard deviation instead. Fig. 4 and Fig. 5 show the 
progress of GA in solving problems as achieved performance 
percentage over the number of fitness evaluations. There is 
5000 fitness evaluation between each two following columns. 

As for the second phase we considered a larger and more 
diverse set of problems. We tested problems of three 
dependency levels: linear (D=1), binary dependency (D=2) and 
third level of dependency (D=3). In each level, number of 
issues was changed from 30 to 100 with intervals of 10. This 
time, 40 randomly generated problems were used for each 
configuration to reduce the effect of randomness. 

 
Figure 3. Error measure of deals in (a) Nash and (b) Utilitarian 

This time we set the population size to 1000 since we 
wanted to maintain the diversity of GA’s population and we 
observed from the first phase’s results that long before 
generation 1000 GA’s work is done, so the number of 
generations was set to 500 in second phase. 

Fig. 6 shows results of second phase’s averages and Fig. 7 
is its standard deviation for Nash criteria. These values are 
plotted over the number of issues under negotiation. As you 
can see in these figures, the impact of dependency level to 
performance is much higher than number of issues.  In Dep. 1 
(linear utility function), as the number of issues increases, it 
seems the problems become easier for GA to solve. This 
behavior can be explained regarding the diversity of GA 
population. As the number of issues go up; while the number of 
optimums remains the same, cardinality of state space increase 
and lets the GA to keep its diversity and as the result, the 
problem is solved easier. But number of issues plays its part as 
the level of dependency increases. The unpredictable growth of 
curve in third level shows that the difficulty of problems is 
more related to dependency level (and hence complexity if 
utility functions) than the number of issues. The average and 
standard deviation of problems with 80 issues of Dep. 3 show 
that there could be problem in this configuration harder than a 
problem with 90 issues of the same dependency. This means 
since parameters of problems are set randomly, evaluating 
some solution’s performance requires a rich set of problems 
before one can claim how good his/her solution performs.  

 
Figure 4. GA’s progress over the number of evaluations for Utilitarian criteria 
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Figure 5. GA’s progress over the number of evaluations for Nash criteria 

The hardness of problems in second or third level increases 
with the number of issues. This means that if we define a ratio 
as the number of local optimums per state space cardinality, 
this ratio gets higher by the growth of issue number. This ratio 
has a direct relation to the hardness of problem because as the 
ratio goes up, there are fewer individuals to play the role of the 
global optimum’s neighbors. And this makes problems harder 
for GA to solve since it’s harder for GA to maintain its 
population’s diversity. Such analysis can be proven once some 
diversity maintenance is applied to GA which is beyond this 
paper. As we monitored our GA’s generations, population’s 
individuals lose their diversity so soon and most of the job is 
done by mutation after a while because crossover cannot create 
unseen individuals anymore. 

VII. CONCLUSION 
In this paper we performed a set of tests to see if a simple 

genetic algorithm is suitable to search over the deals in a multi-
agent negotiation to find the Nash Bargaining Solution and 
Utilitarian Deal. Results showed that for linear utility functions 
and binary dependency utility functions the framework works 
well enough, but as the level of dependency goes to three it 
becomes much harder to solve problems. SGA seems to lose 
population diversity and tend to trap in local optimums easily.  
Sophisticated diversity control techniques could help SGA to 
keep its efficiency even for higher dependency levels which we 
leave for future work. It is also a good practice to test other 
search methods like cellular automata or ant colony 
optimization. To take the research to another step, we 
recommend using real valued issues. This kind of negotiations 
is much harder to solve and requires other techniques like 
CMA-ES [9]. 

 
Figure 6. Average of performance against number of issues for different levels 

of dependency 

 
Figure 7. Standard deviation of performance against number of issues for 

different levels of dependency 
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