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Abstract—Multi-objective optimization algorithms are designed 
to find Pareto frontier set. This set plays a major role in multi-
agent systems’ negotiations. Different applications might be 
interested in different parts of Pareto frontier. In this paper we 
present a framework to show how a multi-objective optimization 
algorithm is evaluated against others. We used eleven algorithms 
implemented in MOMHLib++ library to test our framework on a 
two agent negotiation of binary issues and binary dependency. 
But our framework is easily expandable to higher number of 
objectives and all types of negotiations. Our analysis shows that a 
single scalarization value of Pareto frontier is not enough to 
compare multi-objective optimization algorithms, as it is done in 
most cases. 

Multi-objective optimization; Pareto frontier; multi-agent 
systems; negotiation 

I.  INTRODUCTION 
Negotiation techniques are used in multi-agent systems for 

different tasks.  In general, negotiation includes two or more 
agents which interact over a number of issues to come to an 
agreement, we call a deal. The goal of each agent is to 
maximize its own utility which is defined as a function of 
debatable issues. Deals must be mutually acceptable between 
agents. Upper bound of deals in utility space is Pareto frontier 
explained in detail later. 

In this paper we have applied eleven different algorithms of 
multi-objective optimization to find Pareto frontier of problems 
with two agents and 100 binary issues. The algorithms are 
chosen from MOMHLib++ [1]. Each algorithm was allowed to 
run within a fixed amount of time. The constant execution time 
together with the fact that all the algorithms share most of their 
code, allow an accurate comparison of performances. The 
purpose of this paper is to show how to evaluate such 
algorithms. Selected algorithms are: MOGLS, PSA, PMA, 
IMMOGLS, SMOSA, MOSA, NSGA, NSGAII and NSGAIIC, 
SPEA and a simple multiple-objective multiple start local 
search, MOMSLS. For more information about each algorithm, 
and their references please refer to [1]. 

The rest of paper is organized as follow. First we present 
some preliminary concepts in section two. Then, in section 
three, we will define the problem. Evaluation framework and 
related topics are detailed in section four. Finally, results and 
conclusion will be presented in section five and six. 

II. PRELIMINARY CONCEPTS 
Woolridge defines negotiation as a technique for agents to 

reach agreements on matters of mutual interest [3]. Each 
‘matter’ is called an issue and a set of issues is called a deal. 
There are two kinds of deals, acceptable and unsatisfactory. A 
deal is acceptable if all the agents in negotiation accept it. We 
define xK  a vector of issues to show a deal in issue space and 
zK  a vector of utilities to show a deal in utility space, while 

ixK and izK  indicates ith issue and ith agent’s utility respectively. 
Comparison of deals is done in utility space with the concept of 
dominance. A deal 1zK , dominates 2zK , 1zK ≻ 2zK , if ∀i: 

1
izK ≥

2
izK  

and ∃j: 
1
izK > 2

izK . A deal that is not dominated by any other deal 
is called nondominand or Pareto optimal. The set of all Pareto 
optimal deals for a problem is called Pareto frontier. Finding 
Pareto frontier is the aim of multi-objective optimization 
algorithms. There is no preference over the set of Pareto 
frontier members and all Pareto optimal deals are of the same 
value to us unless some extra criteria are introduced. One of the 
most important criteria in this field is Nash Bargaining 
Solution. Nash Bargaining Solutions are those deals that 
maximize the product of agents’ utilities. To indicate the 
hardness of such problems, special cases of negotiation can be 
reduced to the set covering problem which is of NP-complete 
complexity [4]. 

III. PROBLEM STRUCTURE 
The definition of a negotiation problem includes: the 

number of agents, a structure for the deal and utility functions 
for each agent. In this paper we have tested a two-agent 
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problem with 100 binary issues. A deal in this problem is 
presented by a bit string with 100 bits. Nonlinear utility 
functions are used which include binary dependencies between 
issues. By dependency between issues we mean co-occurrence 
of them can convey extra meaning and affect utility of an 
agent. A problem with no dependency between issues is 
considered linear and is relatively easy to solve [5]. In our 
paper issues have a utility of their own and an additional 
contribution when happen with other issues. Such problems 
consist of a lot of local optimums [2]. To implement a utility 
function with binary dependencies, we used an influence 
matrix with elements of random values between -1 and +1. 
Each element in such a matrix shows the influence of enabling 
two bits of a deal simultaneously. For example, element in 
location (i, j) of matrix is the utility of issue i and issue j when 
both enabled. Values on main diagonal of the matrix indicate 
the influence of issues individually. Obviously, such a matrix is 
symmetric and only half of it completely presents the utility 
function. Thus, having a deal xK  as a vertical vector, and 
influence matrix H, one can compute the agent’s utility by (1). 

 Hxxu T  . )( KK×= . (1) 

Considering a deal with 100 issues, it constructs a problem 
with input space of 2100 cardinality. Such huge spaces cannot be 
searched exhaustively; search algorithms are of absolute need 
to find the optimums. In this paper we use random instances of 
this problem to evaluate selected algorithms. As mentioned 
before, there is usually more than one optimum for such 
problems and one can never be sure that have found them all. 
There is even no way to be sure that the optimums found, truly 
belong to Pareto frontier. This property makes it difficult to 
evaluate quality of best solutions found by each algorithm. 
Thus, the only possible evaluation approach is inevitably based 
on comparison between algorithms. 

IV. EVALUATION FRAMEWORK 
An accurate assessment of search results requires a concrete 

ground truth which is not available for our problem. As 
discussed in previous section, only comparison based 
evaluations are possible for this kind of problems. We have 
used three criteria to compare algorithms’ results: average 
distance of deals to a reference point in utility space, 
distribution of found deals in utility space, and the total number 
of nondominant deals found by each algorithm.  

A deal can be plotted as a point in utility space by mapping 
each agent’s utilities to a coordinate axis. In order to compare 
two deals in a negotiation, a common way is to calculate a 
scalar value for each of them and compare them as their 
representers [1]. To do so, we need a reference point which in 
this problem we can assume origin as the reference point 
without losing generality. Deals are scalarized using (2). 

 
ψ
ψ∑ ∈Λ

Λ
=

K
KK

K z
zScalarize

 . 
)( . (2) 

Where Λ
K

 is a weight (scalarize) vector from Ψ , the 
collection of all possible assignments of weights to agent’s 
utilities. And zK is the deal to be scalarized. Ψ is defined as (3). 
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In (3), k is the sampling parameter. Increasing k, results in 
more accurate scalarization. In our experiment k was set to 100. 
We tend to consider the higher scalarized values as indications 
of better result sets. So now we can represent each deal with a 
scalarized value and easily compare these values. But a 
problem arises if we simply compare scalarized values. In Fig. 
1 assume dot points are results obtained by algorithm A and 
cross points by the algorithm B, while all of the points belong 
to Pareto frontier. Since average magnitude of dot points are 
higher than cross points, if we calculate a scalarized value for 
both of them, algorithm A will show better performance. To 
resolve this problem we divided the utility space into nine 
sectors, each containing 10°of polar coordinate system as 
shown in Fig. 1. We would then compare the results of 
different algorithms only if they belong to the same sector. To 
be able to aggregate results of different problems with each 
other, we have normalized the scalarized deals of found results 
by all the algorithms for each sector separately. This way 
normalized scalarized deals above the zero are the results better 
than average and those below zero are worse than average. 
Equation (4) is normalization formula. 

 
km,

km,mk,j,i,
mk,j,i,

)Avg-(S_deal
NS_deal

STDEV
= . (4) 

In (4) S_deali,j,k,m is the scalarized result of ith run of jth 
algorithm to solve the mth problem that is placed in the kth 
sector and NS_deali,j,k,m is its normalized value. Avgm,k presents 
the average of all results found by all the algorithms through all 
the runs for kth problem in sector mth and STDEVm,k is its 
standard deviation. 

 
Figure 1. Problem of scalarizing Pareto frontier into one value and its solution. 
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As for the second criteria, distribution of results over clock 
is used as another indication of algorithm performance. So we 
also count the number of deals in each sector to form a 
distribution per angle. The total number of deals found by 
algorithms is also used for evaluation. This is important 
because two mutually nondominant deals are not comparable in 
general. Therefore, the total number of such deals found by an 
algorithm could be a good indication of its efficiency for some 
applications. 

V. RESULTS 
Before we start with results, it is necessary to specify the 

way we used MOMHLib++ library. MOMHLib++ defines a 
framework for algorithm implementation. Each implementation 
can define its own problem and solution representations 
together with three operations: Recombination, Mutation and 
Local Search. The library constructs solutions and applies 
operations during a unified search process. Algorithms in this 
library could be divided into four classes. To make a balance 
between these four classes, we have limited the execution time 
for each algorithm to 50 seconds so that we can fairly compare 
their performance with each other. The rest of parameters for 
each algorithm are set for best performance, based on 
experience. Here are the four classes: 

Simulated Annealing based (SA): There are three 
algorithms in this class, MOSA, SMOSA and PSA which are 
all different kinds of SA. In the MOMHLib++, these 
algorithms only need the Local Search operation to be 
implemented. We used random bit flips for this operation. That 
is, whenever a local search is needed, one bit of the deal, 
representing an issue, is randomly selected and negated. 

Genetic Algorithm based (GA): Four algorithms; SPEA, 
NSGA, NSGAII and NSGAIIC are members of this class. As 
the name shows, all of the algorithms in this class are 
variations of GA. Therefore mutation and recombination 
operator of MOMHLib++ need to be implemented for them. 
We used the same bit-flip technique explained above as the 
mutation operator and a uniform crossover as the 
recombination operator with a fixed probability of 0.5. 

Hybrid Genetic Algorithms based (HGA):  MOGLS, 
IMMOGLS and PMA are in this class. Again, all of the 
algorithms in this class are GAs but they use a recombination 
operator, combined with a local search. We have implemented 
recombination method with a uniform crossover, just like the 
previous class and local search as SA. 

Random Start Local Search: The last class has only one 
member, MOMSLS. This algorithm initializes a random deal 
and finds its nearest local optimum. We used gray coding to 
define neighborhood between deals. That means two deals are 
neighbor if they differ only by one issue. 

We used 10 randomly generated problems to avoid any 
possible bias induced by selecting a specific problem; each 
problem consists of one influence matrix for each agent filled 
with random numbers between -1 and +1. We ran each 
algorithm 10 times for each problem to avoid randomness 
outcome bias. Each run takes 50 seconds and after this period it 
was forced to exit and give out the results. Fig. 2 shows the 

averages, standard deviations and distributions of results for 
each algorithm per each sector. The analysis of charts in Fig. 4 
could be so extensive and we will present just a small part of it. 
The worst performance belongs to MOMSLS (simplest 
algorithm) which indicates the hardness of problem. The results 
of this algorithm are distributed in sectors almost uniformly, 
which shows that even though a local search is performed after 
the random start, but since there are a lot of local optimum in 
problem, the results are not focused in a sector or two and each 
sector has its own local optimum(s). Three algorithms of 
MOSA, PSA and SPEA have done impressive among the rest. 
These algorithms are all above the average in all of the sectors. 
MOGLS, IMMOGLS, PMA and of course MOMSLS, on the 
other hand, are the worst ones as their results are all below the 
average. The rest of algorithms showed intermediate 
performance, above the average in some sectors and below in 
the rest. All solutions suffer from the size of standard deviation 
of their results. Such large standard deviation is an indication 
of instability. So if you are looking for a confident result, you 
must run each algorithm a number of times before you can trust 
the outcome (or use combination of algorithms together).  

As for the last criteria, TABLE I shows the average number 
of deals each algorithm was able to find per each run. 

VI. CONCLOSION 
In this paper, we evaluated eleven different algorithms for 

the problem of negotiation between two agents and 100 binary 
issues with binary dependency. The algorithms were evaluated 
by applying them to 10 randomly generated problems. 
Nonlinearity nature of problems and huge input space makes 
them so hard that no ground truth can be found. So we 
proposed a framework for comparing different algorithms of 
multi-objective optimization. Our comparison showed that 
three algorithms of MOSA, PSA and SPEA are above the 
average in all sectors of utility space. While NSGA, NSGAII 
and NSGAIIC are considerable only when we are interested in 
deals around 45°, especially considering the number of deals 
these algorithms could find. The algorithms of HGA did not do 
well among the rest since all of their results are below the 
average. Yet the worst results belong to MOMSLS, as it was 
expected. A completely different result set would have gained 
if we were to use only a scalarized value for each algorithm. 

Our evaluation covers only the type of problems with 
binary issue and binary dependency. Considering problems 
with higher order dependencies and working on other types of 
issue, e.g. real numbers are good paths for future works. 

TABLE I: Algorithms’ average number of deals (Avg. #) found per each run 

Algorithm Avg. # Algorithm Avg. # 

MOSA 216.37 NSGAIIC 114.39 
SMOSA 136.58 MOGLS 147.42 
PSA 239.09 IMMOGLS 72.43 
SPEA 178.57 PMA 149.04 
NSGA 119.22 MOMSLS 9.89 
NSGAII 117.79   
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Figure 2. Averages, standard deviations and distributions of deals for each algorithm per sector. Charts are presented in pair, in each pair the left chart shows the 

averages and standard deviations and the right chart contains the distribution of results over the sectors. Horizontal axis in all of the charts shows ranges of degree 
from zero to 90° (sectors). Vertical axis in right column of each pair is the ratio of deals’ occurrence in each sector. In the left column of each pair, the vertical 

axis shows the average of normalized scalarized deals. Each chart is labeled with the name of corresponding algorithm. 
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