
A Framework to Evaluate Multi-Objective
Optimization Algorithms in Multi-Agent Negotiations

Mehran Ziadloo
Computer Engineering Dep.

Iran University of Science and Technology
Tehran, Iran

mehran@method.ir

Siamak Sobhany Ghamsary
Method Ltd.
Tehran, Iran

siamak@method.ir

Nasser Mozayani
Computer Engineering Dep.

Iran University of Science and Technology
Tehran, Iran

mozayani@iust.ac.ir

Abstract—Multi-objective optimization algorithms are designed
to find Pareto frontier set. This set plays a major role in multi-
agent systems’ negotiations. Different applications might be
interested in different parts of Pareto frontier. In this paper we
present a framework to show how a multi-objective optimization
algorithm is evaluated against others. We used eleven algorithms
implemented in MOMHLib++ library to test our framework on a
two agent negotiation of binary issues and binary dependency.
But our framework is easily expandable to higher number of
objectives and all types of negotiations. Our analysis shows that a
single scalarization value of Pareto frontier is not enough to
compare multi-objective optimization algorithms, as it is done in
most cases.

Multi-objective optimization; Pareto frontier; multi-agent
systems; negotiation

I. INTRODUCTION
Negotiation techniques are used in multi-agent systems for

different tasks. In general, negotiation includes two or more
agents which interact over a number of issues to come to an
agreement, we call a deal. The goal of each agent is to
maximize its own utility which is defined as a function of
debatable issues. Deals must be mutually acceptable between
agents. Upper bound of deals in utility space is Pareto frontier
explained in detail later.

In this paper we have applied eleven different algorithms of
multi-objective optimization to find Pareto frontier of problems
with two agents and 100 binary issues. The algorithms are
chosen from MOMHLib++ [1]. Each algorithm was allowed to
run within a fixed amount of time. The constant execution time
together with the fact that all the algorithms share most of their
code, allow an accurate comparison of performances. The
purpose of this paper is to show how to evaluate such
algorithms. Selected algorithms are: MOGLS, PSA, PMA,
IMMOGLS, SMOSA, MOSA, NSGA, NSGAII and NSGAIIC,
SPEA and a simple multiple-objective multiple start local
search, MOMSLS. For more information about each algorithm,
and their references please refer to [1].

The rest of paper is organized as follow. First we present
some preliminary concepts in section two. Then, in section
three, we will define the problem. Evaluation framework and
related topics are detailed in section four. Finally, results and
conclusion will be presented in section five and six.

II. PRELIMINARY CONCEPTS
Woolridge defines negotiation as a technique for agents to

reach agreements on matters of mutual interest [3]. Each
‘matter’ is called an issue and a set of issues is called a deal.
There are two kinds of deals, acceptable and unsatisfactory. A
deal is acceptable if all the agents in negotiation accept it. We
define xK a vector of issues to show a deal in issue space and
zK a vector of utilities to show a deal in utility space, while

ixK and izK indicates ith issue and ith agent’s utility respectively.
Comparison of deals is done in utility space with the concept of
dominance. A deal 1zK , dominates 2zK , 1zK ≻ 2zK , if ∀i:

1
izK ≥

2
izK

and ∃j:
1
izK > 2

izK . A deal that is not dominated by any other deal
is called nondominand or Pareto optimal. The set of all Pareto
optimal deals for a problem is called Pareto frontier. Finding
Pareto frontier is the aim of multi-objective optimization
algorithms. There is no preference over the set of Pareto
frontier members and all Pareto optimal deals are of the same
value to us unless some extra criteria are introduced. One of the
most important criteria in this field is Nash Bargaining
Solution. Nash Bargaining Solutions are those deals that
maximize the product of agents’ utilities. To indicate the
hardness of such problems, special cases of negotiation can be
reduced to the set covering problem which is of NP-complete
complexity [4].

III. PROBLEM STRUCTURE
The definition of a negotiation problem includes: the

number of agents, a structure for the deal and utility functions
for each agent. In this paper we have tested a two-agent

CIMSA 2009 - International Conference on Computational Intelligence for Measurement Systems and Applications
Hong Kong, China
May 11-13, 2009

978-1-4244-3820-4/09/$25.00 ©2009 IEEE 264

problem with 100 binary issues. A deal in this problem is
presented by a bit string with 100 bits. Nonlinear utility
functions are used which include binary dependencies between
issues. By dependency between issues we mean co-occurrence
of them can convey extra meaning and affect utility of an
agent. A problem with no dependency between issues is
considered linear and is relatively easy to solve [5]. In our
paper issues have a utility of their own and an additional
contribution when happen with other issues. Such problems
consist of a lot of local optimums [2]. To implement a utility
function with binary dependencies, we used an influence
matrix with elements of random values between -1 and +1.
Each element in such a matrix shows the influence of enabling
two bits of a deal simultaneously. For example, element in
location (i, j) of matrix is the utility of issue i and issue j when
both enabled. Values on main diagonal of the matrix indicate
the influence of issues individually. Obviously, such a matrix is
symmetric and only half of it completely presents the utility
function. Thus, having a deal xK as a vertical vector, and
influence matrix H, one can compute the agent’s utility by (1).

 Hxxu T .)(KK×= . (1)

Considering a deal with 100 issues, it constructs a problem
with input space of 2100 cardinality. Such huge spaces cannot be
searched exhaustively; search algorithms are of absolute need
to find the optimums. In this paper we use random instances of
this problem to evaluate selected algorithms. As mentioned
before, there is usually more than one optimum for such
problems and one can never be sure that have found them all.
There is even no way to be sure that the optimums found, truly
belong to Pareto frontier. This property makes it difficult to
evaluate quality of best solutions found by each algorithm.
Thus, the only possible evaluation approach is inevitably based
on comparison between algorithms.

IV. EVALUATION FRAMEWORK
An accurate assessment of search results requires a concrete

ground truth which is not available for our problem. As
discussed in previous section, only comparison based
evaluations are possible for this kind of problems. We have
used three criteria to compare algorithms’ results: average
distance of deals to a reference point in utility space,
distribution of found deals in utility space, and the total number
of nondominant deals found by each algorithm.

A deal can be plotted as a point in utility space by mapping
each agent’s utilities to a coordinate axis. In order to compare
two deals in a negotiation, a common way is to calculate a
scalar value for each of them and compare them as their
representers [1]. To do so, we need a reference point which in
this problem we can assume origin as the reference point
without losing generality. Deals are scalarized using (2).

ψ
ψ∑ ∈Λ

Λ
=

K
KK

K z
zScalarize

 .
)(. (2)

Where Λ
K

 is a weight (scalarize) vector from Ψ , the
collection of all possible assignments of weights to agent’s
utilities. And zK is the deal to be scalarized. Ψ is defined as (3).

 []
⎭
⎬
⎫

⎩
⎨
⎧ =

⎭
⎬
⎫

⎩
⎨
⎧ =∈=Λ=Ψ ∑

=

1,0,|
1

21

I

i
ii kb

k
b λλλλ ……

K
.

 (3)

In (3), k is the sampling parameter. Increasing k, results in
more accurate scalarization. In our experiment k was set to 100.
We tend to consider the higher scalarized values as indications
of better result sets. So now we can represent each deal with a
scalarized value and easily compare these values. But a
problem arises if we simply compare scalarized values. In Fig.
1 assume dot points are results obtained by algorithm A and
cross points by the algorithm B, while all of the points belong
to Pareto frontier. Since average magnitude of dot points are
higher than cross points, if we calculate a scalarized value for
both of them, algorithm A will show better performance. To
resolve this problem we divided the utility space into nine
sectors, each containing 10°of polar coordinate system as
shown in Fig. 1. We would then compare the results of
different algorithms only if they belong to the same sector. To
be able to aggregate results of different problems with each
other, we have normalized the scalarized deals of found results
by all the algorithms for each sector separately. This way
normalized scalarized deals above the zero are the results better
than average and those below zero are worse than average.
Equation (4) is normalization formula.

km,

km,mk,j,i,
mk,j,i,

)Avg-(S_deal
NS_deal

STDEV
= . (4)

In (4) S_deali,j,k,m is the scalarized result of ith run of jth
algorithm to solve the mth problem that is placed in the kth
sector and NS_deali,j,k,m is its normalized value. Avgm,k presents
the average of all results found by all the algorithms through all
the runs for kth problem in sector mth and STDEVm,k is its
standard deviation.

Figure 1. Problem of scalarizing Pareto frontier into one value and its solution.

265

As for the second criteria, distribution of results over clock
is used as another indication of algorithm performance. So we
also count the number of deals in each sector to form a
distribution per angle. The total number of deals found by
algorithms is also used for evaluation. This is important
because two mutually nondominant deals are not comparable in
general. Therefore, the total number of such deals found by an
algorithm could be a good indication of its efficiency for some
applications.

V. RESULTS
Before we start with results, it is necessary to specify the

way we used MOMHLib++ library. MOMHLib++ defines a
framework for algorithm implementation. Each implementation
can define its own problem and solution representations
together with three operations: Recombination, Mutation and
Local Search. The library constructs solutions and applies
operations during a unified search process. Algorithms in this
library could be divided into four classes. To make a balance
between these four classes, we have limited the execution time
for each algorithm to 50 seconds so that we can fairly compare
their performance with each other. The rest of parameters for
each algorithm are set for best performance, based on
experience. Here are the four classes:

Simulated Annealing based (SA): There are three
algorithms in this class, MOSA, SMOSA and PSA which are
all different kinds of SA. In the MOMHLib++, these
algorithms only need the Local Search operation to be
implemented. We used random bit flips for this operation. That
is, whenever a local search is needed, one bit of the deal,
representing an issue, is randomly selected and negated.

Genetic Algorithm based (GA): Four algorithms; SPEA,
NSGA, NSGAII and NSGAIIC are members of this class. As
the name shows, all of the algorithms in this class are
variations of GA. Therefore mutation and recombination
operator of MOMHLib++ need to be implemented for them.
We used the same bit-flip technique explained above as the
mutation operator and a uniform crossover as the
recombination operator with a fixed probability of 0.5.

Hybrid Genetic Algorithms based (HGA): MOGLS,
IMMOGLS and PMA are in this class. Again, all of the
algorithms in this class are GAs but they use a recombination
operator, combined with a local search. We have implemented
recombination method with a uniform crossover, just like the
previous class and local search as SA.

Random Start Local Search: The last class has only one
member, MOMSLS. This algorithm initializes a random deal
and finds its nearest local optimum. We used gray coding to
define neighborhood between deals. That means two deals are
neighbor if they differ only by one issue.

We used 10 randomly generated problems to avoid any
possible bias induced by selecting a specific problem; each
problem consists of one influence matrix for each agent filled
with random numbers between -1 and +1. We ran each
algorithm 10 times for each problem to avoid randomness
outcome bias. Each run takes 50 seconds and after this period it
was forced to exit and give out the results. Fig. 2 shows the

averages, standard deviations and distributions of results for
each algorithm per each sector. The analysis of charts in Fig. 4
could be so extensive and we will present just a small part of it.
The worst performance belongs to MOMSLS (simplest
algorithm) which indicates the hardness of problem. The results
of this algorithm are distributed in sectors almost uniformly,
which shows that even though a local search is performed after
the random start, but since there are a lot of local optimum in
problem, the results are not focused in a sector or two and each
sector has its own local optimum(s). Three algorithms of
MOSA, PSA and SPEA have done impressive among the rest.
These algorithms are all above the average in all of the sectors.
MOGLS, IMMOGLS, PMA and of course MOMSLS, on the
other hand, are the worst ones as their results are all below the
average. The rest of algorithms showed intermediate
performance, above the average in some sectors and below in
the rest. All solutions suffer from the size of standard deviation
of their results. Such large standard deviation is an indication
of instability. So if you are looking for a confident result, you
must run each algorithm a number of times before you can trust
the outcome (or use combination of algorithms together).

As for the last criteria, TABLE I shows the average number
of deals each algorithm was able to find per each run.

VI. CONCLOSION
In this paper, we evaluated eleven different algorithms for

the problem of negotiation between two agents and 100 binary
issues with binary dependency. The algorithms were evaluated
by applying them to 10 randomly generated problems.
Nonlinearity nature of problems and huge input space makes
them so hard that no ground truth can be found. So we
proposed a framework for comparing different algorithms of
multi-objective optimization. Our comparison showed that
three algorithms of MOSA, PSA and SPEA are above the
average in all sectors of utility space. While NSGA, NSGAII
and NSGAIIC are considerable only when we are interested in
deals around 45°, especially considering the number of deals
these algorithms could find. The algorithms of HGA did not do
well among the rest since all of their results are below the
average. Yet the worst results belong to MOMSLS, as it was
expected. A completely different result set would have gained
if we were to use only a scalarized value for each algorithm.

Our evaluation covers only the type of problems with
binary issue and binary dependency. Considering problems
with higher order dependencies and working on other types of
issue, e.g. real numbers are good paths for future works.

TABLE I: Algorithms’ average number of deals (Avg. #) found per each run

Algorithm Avg. # Algorithm Avg. #

MOSA 216.37 NSGAIIC 114.39
SMOSA 136.58 MOGLS 147.42
PSA 239.09 IMMOGLS 72.43
SPEA 178.57 PMA 149.04
NSGA 119.22 MOMSLS 9.89
NSGAII 117.79

266

Figure 2. Averages, standard deviations and distributions of deals for each algorithm per sector. Charts are presented in pair, in each pair the left chart shows the

averages and standard deviations and the right chart contains the distribution of results over the sectors. Horizontal axis in all of the charts shows ranges of degree
from zero to 90° (sectors). Vertical axis in right column of each pair is the ratio of deals’ occurrence in each sector. In the left column of each pair, the vertical

axis shows the average of normalized scalarized deals. Each chart is labeled with the name of corresponding algorithm.

REFERENCES
[1] A. Jaszkiewicz, “A Comparative Study of Multiple-Objective

Metaheuristics on the Bi-Objective Set Covering Problem and the Pareto
Memetic Algorithm”. Annals of Operations Research. 131(1): pp. 135-
158, 2004.

[2] Y. Bar-Yam, Dynamics of Complex Systems, Westview Press, 2003, p.
172, pp. 211-214.

[3] M. Wooldridge, and M.J. Wooldridge, Introduction to Multiagent
Systems, John Wiley & Sons, Inc. New York, 2001.

[4] Garey, M.R. and D.S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-completeness, W.F. Freeman and Co., San Francisco,
1979.

[5] M. Klein, P. Faratin, H. Sayama, Y. Bar-Yam, “Negotiating complex
contracts”. In Proceedings of the first international joint conference on
Autonomous agents and multiagent systems: part 2. 2002, pp. 753-757.

267

