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Abstract This paper introduces a novel framework with the ability to adjust simula-
tion’s accuracy level dynamically for simplifying the dynamics computation of large
particle systems to improve simulation speed. Our new approach follows the overall
structure of the well-known Fast Multipole Method (FMM) coming from computa-
tional physics. The main difference is that another level of simplification has been in-
troduced by combining the concept of motion levels of detail from computer graphics
with the FMM. This enables us to have more control on the FMM execution time and
thus to trade accuracy for efficiency whenever possible. At each simulation cycle,
the motion levels of detail are updated and the appropriate ones are chosen adap-
tively to reduce computational costs. The proposed framework has been tested on the
simulation of a large dynamical flocking system. The preliminary results show a sig-
nificant complexity reduction without any remarkable loss in the visual appearance
of the simulation, indicating the potential use of the proposed model in more realistic
situations such as crowd simulation.
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1 Introduction

In recent years, simulation of large complex systems has attracted many researchers
from a growing number of diverse areas and it is appealing to more and more scien-
tific domains such as sociology, biology, physics, chemistry, ecology, economy, etc.
In many cases, simulation of a complex system requires to compute all the pairwise
interactions between particles. Assuming N particles, there are totally O(N2) pair-
wise interactions which result in a computational cost of O(N2), which is clearly
prohibitive for large values of N . That is, computing the pairwise interactions be-
tween particles is the main bottleneck in the simulation of many large complex sys-
tems. The challenge of efficiently carrying out the related calculations is generally
known as the N -body problem.

Among several attempts done to reduce this complexity, we can refer to the Fast
Multipole Method (FMM) as one of the most successful ones. The FMM is an al-
gorithm originally proposed by Rokhlin [1] as a fast scheme for accelerating the
numerical solution of the Laplace equation in two dimensions. It was further im-
proved by Greengard and Rokhlin when it was applied to particle simulations [2, 3],
and has since been identified as one of the ten most important algorithmic contri-
butions in the 20th century [4]. It evaluates pairwise interactions in large ensembles
of N particles in O(N logN ) or even O(N ) time. This is an improvement over the
O(N2) time required by direct methods. Since the invention of the FMM, it has been
widely used for problems arising in diverse areas (molecular dynamics, astrophysics,
acoustics, fluid mechanics, scattered data interpolation, etc.) because of its ability to
achieve linear time and memory in computing dense matrix vector products to a fixed
user-prescribed accuracy ε.

The main idea used in the FMM is that it considers well-separated or “far-away”
groups of particles as one particle. To implement this idea, it imposes a hierarchical
spatial partitioning structure on the computational domains. Based on our previous
works [5, 6], we believe that we can take advantage of this hierarchical structure in
several ways to further reduce the overall computational cost, of course at the ex-
pense of accuracy. In particular, the main goal of this work is to combine the FMM
with simulation acceleration techniques from computer graphics to improve simula-
tion speed for N -body simulations while controlling the desired level of accuracy.
Simulation acceleration techniques including motion levels of detail often need some
hierarchical partitioning of the computational space for dynamics simplification and
fortunately this is available in the FMM.

In fact, the FMM algorithm clusters particles into hierarchical groups based on
their relative positions in the domain, but it deals with each particle in the same group
separately, computing a different potential for every particle in the group resulting in
different behaviors for different particles in the same group. However, particle sys-
tems generally exhibit a high level spatial coherence, meaning nearby particles be-
have in approximately the same way. Therefore, the main idea is that we can compute
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only one approximated behavior for a group, then making all particles in the group to
follow the same behavior. This is achieved by replacing particles inside a cluster by
one weighted particle and approximating the motion models of those particles in the
force computations during FMM.

Although there exist simulation acceleration techniques such as given in [7–10],
there is no known algorithm for the automatic dynamics simplification of complex
physical or biological systems especially when all the pairwise interactions between
particles are needed. In this paper, we limit the scope of our investigation to particle
systems as a first step towards the design of automatic dynamics simplification. Par-
ticle systems are commonly used in computer graphics, physically based modeling,
and animation of natural phenomena and group behavior. Additionally, they are often
the building blocks of highly complex dynamical systems. Therefore, we hope the
results of this paper can lead to the generalization of dynamics simplification for a
broader class of dynamical systems (e.g. pedestrians and crowds simulation).

As the preliminary results confirm, this automatic simplification results in a sub-
stantial performance improvement, but it introduces a new source of inaccuracy as
well. This is a natural trade-off between accuracy and efficiency common in the field
of simulation and shared with other simplification techniques. However, to keep the
error of the FMM below a user-prescribed level ε, which is an essential component
of the FMM, we need to be very careful about choosing when and which group’s be-
havior can be simplified. Therefore, in addition to a hierarchy of approximate motion
models, we need a mechanism enabling us to automatically switch between these dif-
ferent levels of details. It is important that any switching should be very smooth so
that it does not cause a noticeable change in the flow of the simulation. The creation
of the motion levels of detail and the switching mechanism are discussed in Sect. 5.

1.1 Contributions

For dynamics simplification, a mechanism is needed for generating a hierarchy of
approximated motion models or motion levels of detail in order to perform automatic
dynamics simplification of a particle system. Here, we have decided to use the same
hierarchical physically based subdivision scheme in the FMM. This way we can take
advantage of the approximate computations used in the FMM to reduce the com-
plexity beside our automatic dynamics simplification. Also, a similarity measure is
required to compare particles or groups of particles to generate approximated motion
models and to select between them. For now, we have used the velocity vector angle
ratio and speed ratio for this purpose, both common in the field. However, it seems
rational to investigate other possibilities such as entropy from information theory or
Boltzmann partition function, but we leave this investigation to another occasion in
the future.

To perform automatic dynamics simplification, the original FMM is modified as
following: During the upward pass of the FMM, the similarity measures are com-
puted for each box in the FMM tree. We then approximate those boxes or groups of
boxes which have satisfied the similarity measure as one weighted particle in the po-
tential computations, and apply the same result to all particles inside those boxes or
groups of boxes. This multilevel dynamics simplification can result in a more efficient
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computation of pairwise interactions while maintaining the total error below a user-
prescribed error level, resulting in no loss or minimal loss in the visual appearance
and the correctness of the simulation. The complete algorithm is given in Sect. 5.

Therefore, at each simulation step the tree is updated based on changing simula-
tion requirements as defined by the user or by the nature of simulation. Appropriate
motion levels of detail are adaptively generated based on this subdivision given the
requirements for different regions of the simulation and a desired execution time for
each step. We have implemented a prototype system that can automatically gener-
ate simplified motion models, select appropriate models, and switch between them
seamlessly. Then, the proposed framework is applied to the dynamic simulation of a
large ensemble of flocking agents, which is a common example for N -body systems.
The preliminary results are very promising, indicating a significant reduction in the
complexity of the simulation while maintaining its correctness, and thus the potential
to generalize the framework to the dynamic simulation of more systems.

1.2 Outline

The rest of this paper is organized as follows. Section 2 gives a brief review of some
related works regarding simulation acceleration techniques and motion levels of de-
tail. Section 3 presents an introduction to the FMM which is used to solve our tar-
get application in this paper and reviews some of the key concepts relevant to our
proposed model. Section 4 describes the flocking model and its interesting proper-
ties which have made this model a well-suited candidate for automatic dynamics
simplification. Section 5 describes the proposed framework, including the automatic
generation of motion levels of detail and the mechanism used to select appropriate
models and to switch between them adaptively. Some experimental results are given
in Sect. 6. In particular, it presents the results of our prototype implementation, and
compares its performance against the traditional FMM. Finally, we conclude with
some future research guidelines and perspectives in Sect. 7.

2 Literature review

In this section, various attempts related to level of details done in the field of inter-
active computer graphics are summarized. To achieve dynamic realism in computer
graphics, often the polygonal geometry of small or distant portions of the model is
simplified to reduce the rendering cost without a significant loss in the visual content
of the scene. Therefore, the goal of polygonal simplification in rendering is to reduce
the complexity of a polygonal model to a level that can be rendered at interactive
rates. In an offline preprocessing step, multiple versions of each object are created
at progressively coarser levels of detail, or LODs. Once the LODs have been created
and stored for every object in the model, complexity can be regulated at run-time by
choosing for each frame which LOD will represent each object. As an object grows
more and more distant, the system switches to coarser and coarser LODs. This type
of simplification is called geometrical simplification or graphical levels of detail. It is
important to distinguish it from simulation level of detail.
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Simulation levels of detail or motion levels of detail techniques have been pro-
posed for reducing the computational cost of the dynamic simulation of the charac-
ter motion. Motion models can be generated from pre-recorded motion sequences,
procedural approaches, kinematics, or based on dynamics computation. Some of the
earlier human motion models in computer animation exploited this concept implicitly
by using procedurally generated motion, simplified dynamics and control algorithms,
off-line motion mapping, or motion playback [11–13].

Carlson and Hodgins applied simulation LOD techniques to a graphical environ-
ment populated with multiple, physically simulated one-legged robots [7]. Three sim-
ulation LOD models represent varying animation qualities: a point-mass model with
no animated degrees of freedom, a point-mass model with cinematically animated
degrees of freedom, and a fully simulated version. Higher-quality LODs are reserved
for characters at very dynamic moments, as when avoiding or experiencing colli-
sions and those near the viewer in the field of view. They demonstrated that a group
of characters that dynamically switches between LODs can sufficiently replicate the
performance of a fully simulated group. In this work, the generation of simulation
LODs, switching and selection are designed by hand for a group of legged creatures.
However, their experimental results are indicative of the potential of automatic sim-
plification of general dynamical systems.

By using the space–time constraint dynamics formulation, Popovic and Witkin in-
troduced a motion transformation technique that preserves the essential properties of
animated character motion with drastically lesser number of degrees of freedom [10].
Multon et al. suggested a series of simplified walking models for mobilizing on com-
plex terrain, as well as how and when the transition takes place [14].

Other types of simulation acceleration techniques have also been investigated to
reduce the total computational simulation costs for a large, complex dynamical sys-
tem. Chenney and Forsyth proposed view-dependent culling of dynamic systems
to speed up the computation of dynamics by ignoring what is not visible to the
viewer [8], similar to view culling. Faloutsos et al. developed a system that accom-
plishes complex tasks by evaluating multiple controllers automatically and selecting
an appropriate sequence [15]. The authors use an online machine learning technique
to build a database that models the effectiveness of each controller for a character in
a given state. Run-time queries of the database identify controllers that best suit the
current state of the character and its desired final state. The database of controllers is
similar to our simulation LODs because it supports the evaluation, comparison, and
selection of controllers. However, the simulation LODs store more controllers and
switch between them more frequently.

Additional graphics researchers are investigating ways to simplify physical simu-
lations to reduce computation costs. Grzeszczuk et al. developed a technique that uses
neural network approximations to emulate physically simulated characters’ equations
of motion [9]. After the neural network is trained to sufficiently model the origi-
nal system, it can produce motions more efficiently than a full dynamic simulation.
O’Sullivan and Dingliana investigate the opportunities to replace simulated particles
with simplified counterparts when imperceptible to the viewer [16]. In particular, they
find inaccurate dynamics are less noticeable in the peripheral vision and when the
movements are complex. O’Brien et al. describe a method to automatically simplify
particle simulations through clustering into spatially localized groups [17].



1542 S.N. Razavi et al.

It is very important to notice that the practitioners of interactive computer graphics
are concerned more with finding better and faster ways to approximate the simulation
results than with accurately simulating the physics of the system. This is very differ-
ent from a situation like ours in which the accuracy of the simulation is paramount.
However, if we pay careful attention, we will be able to apply the same ideas to these
kinds of applications to reduce the time complexity while preserving accuracy. This is
a major feature distinguishing this work from those in the field of computer graphics.
Therefore, the work presented in this paper may be considered as a link connecting
the rich body of literature on real-time computer graphics with those in N -body sim-
ulations. In fact, there are many useful ideas in interactive computer graphics, which
can be applied as well to the simulation of large N -body systems to reduce time
complexity.

3 An introduction to the Fast Multipole Method

Consider the problem of simulating the evolution of stars in a galaxy under gravita-
tional forces, or of ions in a medium under electrostatic forces. These problems and
many other similar ones need to compute the interactions among a system of bod-
ies or particles and are known as N -body problems. In many of these problems the
long-range interactions between bodies cannot be ignored; however, there is a nice
property which forms the basis for many approximation algorithms including the Fast
Multipole Method (FMM) [18]: the magnitude of interactions falls off with distance
between the interacting bodies. The hierarchically structured FMM is a very efficient,
accurate, and hence very promising algorithm for solving such problems and not sur-
prisingly it has been applied successfully to a wide variety of applications, such as
computational astronomy, molecular dynamics, fluid dynamics, radar scattering, etc.

According to the distribution of the particles in the computational domain, there
are two main versions of the FMM: the uniform FMM which works very well when
the particles in the domain are uniformly distributed, and the so-called adaptive FMM
which is the method of choice when the distribution of particles in the domain is
highly non-uniform, resulting in a significant saving of both time and space. How-
ever, comparing to the uniform FMM, the adaptive one is a much more complicated
algorithm both to implement and to understand.

Our example N -body application studies the evolution of a large flocking sys-
tem of particles acting under the influence of pairwise interactions, interactions with
surrounding obstacles, and group objectives (see Sect. 4.2). It is a classical N -body
simulation in which every body exerts forces on all others. The simulation proceeds
over a large number of time-steps, every time-step computing the net force on every
particle and updating its position and other attributes.

The most time-consuming phase in every time-step is by far the computation of the
pairwise interactions among all the particles in the system. The simplest method to do
this is to compute these pairwise interactions between particles directly. It is clear that
this direct method has an O(N2) time complexity (with N the number of particles),
which is prohibitive for large N . Hierarchical, tree-based methods have therefore
been developed that reduce the complexity to O(N logN ) for general distributions
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or even to O(N ) for uniform distributions, while still maintaining a high degree of
accuracy [2]. They do this by exploiting a fundamental insight into the physics of
most systems that N -body problems simulate, an insight that was first provided by
Isaac Newton in 1687 A.D.: Since the magnitude of interaction between particles falls
off rapidly with distance, the effect of a large group of particles may be approximated
by a single equivalent particle, if the group of particles is far enough away from the
point at which the effect is being evaluated.

The most widely used and promising hierarchical N -body methods are the
Barnes–Hut [19] and the Fast Multipole methods [2]. The FMM is more complex
to program than the Barnes–Hut method, but provides better control over error and
has better asymptotic complexity, particularly for uniform distributions (although
the constant factors in the complexity expressions are larger for the FMM than for
Barnes–Hut in three-dimensional simulations). In addition to classical N -body prob-
lems, the FMM and its variants are used to solve important problems in domains
ranging from fluid dynamics to numerical complex analysis, and have inspired break-
through methods in domains as seemingly unrelated as radiosity calculations in 3D
computer graphics [20].

As discussed earlier, several versions of the FMM have been proposed, the sim-
plest one being the two-dimensional uniform algorithm. This is itself far more com-
plex to program than the Barnes–Hut method, but is considerably simpler than the
adaptive two-dimensional version and the three-dimensional versions. Since we are
interested in non-uniform distributions, and since the principles are very similar for
the two and three-dimensional cases, we use the adaptive two-dimensional FMM in
this paper. The following section provides a brief review of the adaptive FMM.

3.1 The adaptive Fast Multipole Method in 2D

FMM achieves its performance by introducing a hierarchical partition of a bounding
square D, enclosing all particles, and two series expansions for each box at each level
of the hierarchy. More precisely, the root of the tree is associated with the square D

and referred to as level 0. The boxes (squares) at level l + 1 are obtained recursively,
subdividing each box at level l into four squares, referred to as its children. The tree is
constructed so that the leaves contain no more than a certain fixed number of particles
(say s). Generally, we refer to s as the clustering size of the tree. For non-uniform
distributions, this leads to a potentially unbalanced tree, as shown in Fig. 1 (which
assumes s = 1). This tree is the main data structure used by the FMM.

A key concept in understanding the algorithm is that of well-separatedness.
A point or box is said to be well-separated from a box B if it lies outside the do-
main of B and B’s neighbors (neighbors are defined as the boxes having at least one
common vertex to B). In Fig. 2, B’s neighbors are marked with a “U” label. Using
this concept, the FMM translates Newton’s insight into the following: If a point P

is well-separated from a box B , then B can be represented by a multipole expansion
about its center as far as P is concerned.

For example, if you stand on the Earth and look at the sky, you will see the An-
dromeda (a galaxy approximately 2.5 million light-years away containing about one
trillions of stars) as a single star. So, it makes sense to consider it as a single point
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Fig. 1 A 2D particle distribution (left) and its corresponding quadtree (right)

Fig. 2 Different lists associated
with box B in the FMM

when computing the interaction between Earth and Andromeda. The same approxi-
mation is taken in the FMM. To compute the force exerted on P due to the particles
inside B , given P is far enough from box B , FMM simply evaluates B’s multipole
expansion at P , rather than computing the forces due to each particle inside B sep-
arately. The same multipole expansion, computed once, can be evaluated at several
points, thus saving a substantial amount of computation.

Thus, the multipole expansion for a box B encodes the potential due to the parti-
cles inside it to the far-field. The multipole expansion of a box is a series expansion
of the properties of the particles within it (expansions of non-leaf boxes are computed
from the expansions of their children). If we use an infinite number of terms in the
expansion, then the multipole expansion is an exact representation. But in practice we
can only use a finite number of terms, say p. This truncation number p determines
the accuracy of the representation and as a result the accuracy of the whole method.
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Truncating the number of terms in the series is a desired aspect in the FMM. In fact,
this truncation serves as a mechanism to trade accuracy for efficiency, which is the
main reason justifying the use of an approximation method instead of an exact one.

Turning back to our example, if you look at the Earth from Andromeda, then you
will see the Milky Way galaxy as a single point. Again, exploiting this idea will result
in a tremendous amount of saving in the computations. This is parallel to the so-called
local expansion in the FMM. More precisely, representing boxes by their multipole
expansions is not the only insight exploited by the FMM. If a point P (be it a particle
or the center of a box) is well-separated from box B , then the effects of P on particles
inside B can also be represented as a Taylor series or local expansion about the center
of B , which can then be evaluated at the particles inside B . Once again, the effects of
several such points can be converted just once each and accumulated into B’s local
expansion, which is then propagated down to B’s descendants and evaluated at every
particle within B . Thus, the local expansion for a box B encodes the potentials on
the particles inside it due to the sources in the far-field of B . The mathematics of
computing multipole expansions, translating them to local expansions, and shifting
both multipole and local expansions are described in [18].

Now, we have almost all the necessary background to give a brief description
of the FMM. But before that, the different lists associated with each box B in the
adaptive tree of the FMM algorithm must be defined. These lists contain all boxes
whose contributions need to be processed by B itself when we use an adaptive way
to partition the computational domain. Contributions from more distant boxes are
considered by B’s ancestors using local-to-local (L2L) translations. Some of these
lists are defined only for leaf boxes of the tree, while others are defined for internal
boxes as well. The lists for a leaf box B are described in Fig. 2, and their role is
discussed in more detail in [3, 18]:

• For a leaf box, LU
B contains B and its adjacent boxes. If B is not a leaf box, LU

B will
be empty. Since the boxes in LU

B are not well-separated from B , their contribution
on B should be computed directly.

• LV
B contains the set of the children of the neighbors of the parent of B , which

are not adjacent to B . The interaction from a box v ∈ LV
B to B is computed using

multipole-to-multipole (M2M) translations since v and B are well-separated.
• For a leaf box, LW

B includes all the descendants of B’s neighbors, which are not
adjacent to B but their parents are adjacent to B . Since B is in the far range of
w ∈ LW

B , the contribution from w to B is evaluated using multipole expansion
of w. Again, if B is not a leaf box, LW

B will be empty.
• Finally, if box B is in the list LW

A , then LX
B contains box A. The contribution from

x ∈ LX
B to B is evaluated directly since B is in the near-range of x.

3.2 Overall structure of the FMM

Using the lists described in the previous section, the adaptive FMM proceeds in the
following steps:

STEP 1: Space partitioning The tree is built by loading particles into an initially
empty root box and then this root box is partitioned recursively until there are no
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more than s particles in each box. Also, for each box B , the lists LU
B , LV

B and LW
B

are constructed explicitly. As LX
B is the dual of LW

B , it is not constructed.
STEP 2: Upward Pass Starting from leaf boxes, the multipole expansions of all

boxes are computed in an upward pass through the tree. Expansions of leaf boxes
are computed from the particles inside them, and expansions of internal boxes from
those of their children using multipole-to-multipole (M2M) translations as shown in
Fig. 3.

STEP 3: Downward Pass Starting from level 2 in the tree, the local expansions of
internal boxes are computed and then recursively propagated down to the leaf boxes
in the tree:

3.1. For each box B , the contribution from its parent’s far-field is computed by
translating the local expansion of B’s parent to the center of B (the L2L trans-
lation in Fig. 3).

3.2. The multipole expansions of all boxes in the LV
B list are translated and accu-

mulated into local expansions about the center of B (the M2L translation in
Fig. 3).

3.3. If B is a leaf, the multipole expansions of the boxes in LW
B are evaluated at

the particles in B . Since the LX
B is the dual of the LW

B and does not need to
be constructed explicitly, LX

B interactions are computed at the same time as
the LW

B list interactions. That is, for every box w ∈ LW
B , B first computes the

contribution from w to the particles inside it and updates the forces on its own
particles accordingly, and then computes the LX

B list interaction and updates the
local expansion of w. Since LX

B interactions are thus computed by leaf boxes,
internal boxes compute only their LV

B interactions.

STEP 4: Final summation In this step, for a leaf box B , the force exerted on each
particle inside B is computed by combining the far-field interactions (Step 4.1) and
the near-field interactions (Step 4.2). This is done in two steps:

4.1. The resulting local expansion of B (obtained from the downward pass) is eval-
uated at each particle inside it.

Fig. 3 The Fast Multipole
Algorithm mechanisms: (a),
(b) after spatial decomposition,
the child boxes use the
Multipole to Multipole
translation to shift their
multipole expansion to the
center of the parent box;
(c) using the Multipole to Local
translation, well-separated boxes
interact by creating a local
expansion at the center of box B

due to box A; (d) the children of
box B feel the potential of box
A by using the Local to Local
translation to shift the parent’s
local expansion
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4.2. The interactions between all particles in the LU
B with all particle inside B are

computed directly.

Our example application iterates over several hundred time-steps, every time-step
executing the above steps as well as one more that updates the velocities and positions
of the particles at the end of the time-step. For the problems we have run, almost all
the execution time is spent in computing list interactions. The majority of this time
(about 60–70 %) is spent in computing V list interactions, next U list (about 20–
30 %) and finally the W and X lists (about 10 %). Building the tree and updating the
particle properties take less than 1 % of the time in sequential implementations.

3.3 Complexity of the adaptive FMM

Assuming that there are N particles and each box contains at most s particles, there
will be about N/s boxes in the tree. Also, each box B has at most 29 boxes in its LV

B

list and 9 boxes in its LU
B list. Therefore, the total operations count in the adaptive

FMM is approximately

Np + 29(N/s)p2 + Np + 9Ns

The terms correspond to formation of multipole expansions, translations, evalua-
tion of the local expansions at particles, and direct computation of the near-neighbor
interactions. By choosing s almost equal to p, the total operation count will be 40Np

or simply O(Np). While p is a small constant comparing to N , the adaptive FMM is
a linear time algorithm and is applicable for very large number of particles.

It is worth to notice that the richer analytic structure of the FMM permits a large
number of modifications and optimizations, which are not available to other hier-
archical schemes. These schemes have to do with the use of symmetry relations to
reduce the number of shifts [3] as well as schemes which reduce the cost of trans-
lation itself [21]. Section 5 discusses how we can use simplified motion models to
reduce FMM computational costs for simulation of a large complex system.

4 Flocking

Flocking behavior is the behavior exhibited when a group of birds, called a flock, are
foraging or in flight. There are similar behaviors in other groups of animals or insects
like the shoaling behavior of a group of fishes, the swarming behavior of bees, and
the herd behavior of land animals [22]. From the perspective of the mathematical
modeler, flocking is a collective motion of a large number of self-propelled entities
and is a collective animal behavior exhibited by many living beings such as birds,
fish, bacteria, and insects [23]. It is considered an emergent behavior arising from
simple rules that are followed by individuals and does not involve any central coordi-
nation. Flocking behavior was first simulated on a computer in 1986, when Reynolds
introduced the first three heuristic rules for flocking behaviors [24]:

1. Separation—avoid crowding neighbors;
2. Alignment—steer towards average heading of neighbors; and
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3. Cohesion—steer towards average positions of neighbors.

Among the physics-inspired theoretical approaches studying flocking particles
systems, we may mention the work of [25] that mainly focuses on the study of align-
ment rules and associated emergent phenomena. References [26] and [27] propose
continuum models to study alignment and swarming. In [28], a model based on arti-
ficial potential function (APF) in a network with fixed or dynamic topologies is pre-
sented. It proposes a centralized algorithm for particle systems that leads to irregular
collapse for generic initial states. It also introduces a distributed version that leads to
irregular fragmentation (disintegration of a flock into smaller groups combined with
violation of inter-agent constraints). Fragmentation and collapse are two well-known
pitfalls of flocking algorithms most likely occurring for generic set of initial states
and large number of agents [29–32].

Here, we have used a flocking model based on the theoretical framework for de-
sign and analysis of distributed flocking algorithms from Refs. [30, 33]. This model
may be considered as a modified version of APF in [28] trying to avoid traditional
pitfalls of flocking. Reference [34] provides a definition of “flocking” for particle sys-
tems that is independent of the method of trajectory generation for particles. In this
sense, it has the same role as “Lyapunov stability” for nonlinear dynamical systems.
This model is based on a systematic method for construction of collective potential
functions for flocking. The flocking behavior is accomplished by a set of physical
laws governing the pairwise interactions between flocking agents and also their inter-
actions with the environment.

In this model, a lattice-type structure is used to model the geometry of desired
conformation of agents in a flock. In such a conformation, each agent should be
equally distanced from all of its neighbors while moving towards its objective that
may be static or dynamic. As shown in Fig. 4, this lattice-type structure exhibits
a high degree of spatial order among agents and this is exactly where we can use
simplified motion models to reduce complexity. Using the terminology of information
theory, order means redundancy and the redundancy can be removed from the system
with no loss or minimal loss in the information contents. This is an important reason
motivating us to use this flocking system as our target application in this work. This
type of order exists more or less in many systems and so the work presented in this
paper may be considered as a general framework to reduce complexity in simulating
those systems.

As flocking occurs in the presence of multiple obstacles, each agent in the flock-
ing model is equipped with obstacle avoidance capability. In fact, each agent has
interactions with three kinds of objects in the environment:

• Nearby flockmates (α-agents),
• Obstacles (β-agents), and
• A virtual leader (γ -agent).

Each agent in the flock applies a control input that consists of three different terms
which are discussed in the following sections:

ui = uα
i + u

β
i + u

γ

i
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Fig. 4 Lattice-type conformations for a group of flocking agents (left) and associated obstacle avoidance

4.1 Interaction with nearby flocking agents

Following the basic rules of Reynolds, each agent in the flock should coordinate itself
with nearby flockmates in terms of position and velocity. In this model, an interaction
range r is defined between two agents. The neighbors of a flocking agent i are defined
to be the set of all nearby flockmates with a distance less than or equal to r . During
flocking, agent i tries to maintain an equal distance from its neighbors and also to
match its velocity with theirs. The term uα

i in the control input is responsible for
coordinating agent i with its neighbors to form the lattice-type structure as illustrated
in the left part of Fig. 4.

4.2 Interaction with the virtual leader

Coordinating each agent with its neighbors is not sufficient to produce a real flocking
behavior as it results in a diverging group of agents. In real situations, all agents
in the flock have to move towards the same destination (the location of food or the
destination of migration). In this model, the target position is represented by a virtual
leader (γ -agent). A γ -agent has the role of a virtual leader in charge of navigation
and control of the behavior of a flock as a whole. It is a mechanism that provides a
common objective for a group of flocking agents. This objective may be static (fixed
position) or dynamic (moving object). The term u

γ

i in the control input manages this
leader-tracking procedure; it may be considered as a navigational feedback.

4.3 Interaction with surrounding obstacles

Beside interactions with nearby agents and tracking the virtual leader, each agent in
the flock has the ability to avoid obstacles. Obstacle avoidance is achieved by intro-
ducing a third type of agent called β-agent. Whenever an agent is in close proximity
of an obstacle, a β-agent will be induced on the border of that obstacle. The interac-
tion between the α-agent and β-agent produces a short-range impulse which prevents
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α-agent to further approach the obstacle and hence helps it to avoid that obstacle (see
the right part of Fig. 4). The term u

β
i in the control input accounts for all of the in-

teractions between agent i and its nearby obstacles. For more details on the exact
definitions of uα

i , u
β
i and u

γ

i the reader may refer to [30].

5 Framework for automatic dynamics simplification

This section presents our proposed method for automatic dynamics simplification
with application in the simulation of large dynamical systems. Since the proposed
method follows the overall structure of the FMM (see Sect. 3.2), this section mainly
focuses on the differences rather than the similarities. We start first by presenting the
details about computing the Center of Mass (COM) particle for each box or group
of boxes. We then follow the discussion by introducing the criteria used in the new
algorithm to determine when and which boxes in the FMM tree may be merged to
simplify calculations.

Before giving the details of the framework, it should be mentioned that a variant
of the FMM, called kernel-independent FMM, is used to implement our flocking
systems [5]. The kernel-independent FMM follows the overall structure of the FMM
but it does not require the analytical expansions (local and multipole expansions) of
the kernel and only relies on direct evaluations of the kernel. As it is not obvious
to derive these expansions for many complex kernels, using the kernel-independent
method results in more flexibility and hence the framework presented here is a general
framework applicable to a wide variety of N -body systems.

5.1 Approximating motion models

For each box (a leaf box or an internal box in the FMM tree), dynamics simplification
is achieved by approximating its particles dynamics using the particles dynamics of
its center of mass. Given a box B consisting of k particles, the corresponding approx-
imated motion model is computed using the following procedure:

1. Compute the position PCOM and velocity VCOM of the center of mass particle
using:

PCOM =
∑k

i=1 miPi
∑k

i=1 mi

VCOM =
∑k

i=1 miVi
∑k

i=1 mi

where mi , Pi and Vi represent the mass, position and velocity of the ith particle
inside B . Please note that in a different application mi could represent some other
quantity. For example in Coulombic systems, it represents the charge of ith ion in
a medium rather than its mass.

2. Using the standard computations in the FMM, first compute the potential of the
COM for box B and then update its velocity and position accordingly.

3. Apply the same results computed for the COM to all particles inside B .
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5.2 Pruning the FMM tree

As discussed earlier, we need a mechanism to automatically decide for which boxes
we can use approximated motion models. From now on, we refer to such boxes as
simplified boxes. This is a key factor determining the overall success or failure of the
automatic dynamics simplification.

For a given box B , we use the following similarity measures to decide if we can
use dynamics simplification for that box: the speed ratio and the velocity vector angle
ratio. These computations differ for a leaf box and an internal box:

• If B is a leaf box, we compute these two measures for B from the velocities of
its particles. That is, the relative speed of its particles and also their relative angle
should be within certain limits.

• Otherwise, if B has children, the similarity measures for B are computed by con-
sidering the COM particles of its children. Again the relative speed of the COM
particles and their relative angle are constrained to be within certain limits.

The above computations are done during the upward pass of the FMM algorithm
(see Sect. 3.2). If box B satisfies these two conditions, then all of its particles are
replaced by its weighted center of mass particle which is computed directly from its
particles or indirectly from the center of mass of its children. After this simplifica-
tion, the new algorithm continues as the classical FMM. However, when the potentials
have been computed for every particle (a real particle or a weighted center of mass
particle), the computed potentials for a COM particle are applied to all of the particles
inside the corresponding simplified box. A snapshot of the developed system for 200
particles is given in Fig. 5. Because of dynamics simplification, the number of parti-
cles is reduced from 200 to 89 in this system resulting in a considerable reduction in
the execution time.

5.3 Automatic switching between different levels of simulation

Additionally, similarly to geometric simplifications used in computer graphics in
which special areas have higher priorities (for example, the areas closer to the viewer
and more centered in the viewing frustum) and hence should be simulated in more
detail, some events in our framework may require higher resolution to maintain simu-
lation correctness and integrity. Referring to Sect. 4.3, recall that the agents (particles)
in our flocking system have the ability to avoid obstacles in their path during flight.
This obstacle avoidance capability requires higher priority comparing to the other
behaviors of flocking agents. Fortunately, our framework has the ability to cope with
these critical situations.

For example, when a large box consisting of a large number of agents is near an
obstacle, the simulation automatically switches to a higher resolution level. That is,
the box automatically decomposes into its children (if it is a non-leaf box) or into its
individual particles (if it is a leaf box). This is a recursive process which continues
until reaching a level with a good enough accuracy. As the particles move away from
the obstacle, physical properties and spatial positions of those with similar motion
may again be regrouped into a box, or the children boxes may be regrouped into their
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Fig. 5 A snapshot of the
developed system with 200
agents. Each colored box
represents a box whose particles
dynamics are simplified using
dynamics of its COM particle
(the red particle in it)

parent box by ascending in the hierarchical tree. It is very important to notice that all
these switches among different levels are done automatically without any interference
from the user.

5.4 The complete algorithm

Now we are ready to give the complete algorithm. The complete algorithm is given in
Listing 1. As mentioned earlier, the new algorithm follows the overall structure of the
original FMM. However, this algorithm is capable to perform automatic dynamics
simplification (ADS) based on the measures introduced in Sect. 5.2.

5.5 Real-time simulations

The new algorithm presented in this paper can be used for real-time simulations of
large N -body systems, in which efficiency is much more important than accuracy as
well as the visual appearance of the simulation is acceptable to an end-user. Given
a target execution time and a target fidelity requirements defined by the user, the
algorithm uses the physically based subdivision of the entire system produced in the
first step of the FMM to generate the hierarchical motion levels of detail. As the
simulation proceeds, the hierarchy and hence the motion levels of detail are updated
and the user can see the results graphically.

During the simulation, it is possible to monitor the execution time of the last few
steps and compare it to the target. If the execution speed is too slow, the system per-
forms more simplifications by enlarging the maximum cluster size. This is achieved
by allowing larger boxes (those that are located at higher levels in the hierarchical
tree) to be merged. The inverse occurs when the speed is more than necessary. By
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Listing 1 FMM with automatic dynamics simplification

STEP 1—CONSTRUCT TREE T AND LISTS

build T such that each leaf B contains at most s points

for each box B in preorder traversal of T do

build list of nearest neighbors, LB
N

and interaction list, LB
I

end for

STEP 2—UPWARD PASS

for each box B in postorder traversal of T do

if B is a leaf box then

construct multipole expansion ak{0 ≤ k ≤ p}, from all source points using S2M

compute the similarity measures for B

if B satisfies the similarity measures then

compute COM position and velocity from particles inside B

replace all particles inside B with its COM particle

else

construct multipole expansion ak{0 ≤ k ≤ p} from each of B’s children using M2M

compute the similarity measures for B

if B satisfies the similarity measures then

compute the COM position and velocity from the COM of B’s children

replace all particles inside B’s children with its COM particle

remove B’s children from the tree //pruning of the tree

end if

end for

STEP 3—DOWNWARD PASS

for each box B in preorder traversal of T do

compute the B’s local expansion from its parent’s local expansion using the L2L operator

add to the B’s local expansion the contribution from LB
I

list using the M2L operator

end for

STEP 4—FINAL SUMMATION

for each leaf box B in T do

for each target location y in B do

Add to the potential of y the contribution from B’s local expansion

Add to the potential of y the contributions from LB
N

using direct calculations

end for

for each simplified box B do

apply the potential computed for COM agent on every target in B

constraining the size of boxes which can be merged, the simulation runs more ac-
curately while taking more time to be executed. All of these can be performed by
introducing a new parameter called simplification level. For a given simplification
level, only boxes below that level are allowed to be merged. A small value for this
parameter means that boxes at higher levels are allowed to be merged and a large
value means that only small boxes at lower levels are allowed to be merged. There-
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fore, each time we need a faster execution, the simplification level is decreased by one
and this allows larger boxes in higher levels to be merged. Increasing this parameter
does the inverse.

In summary, the proposed framework has several parameters which enable us to
control both the error and the execution time of the simulation. These parameters are:
the speed ratio and the velocity vector angle ratio, the maximum number of particles
in each box and the maximum cluster size or the simplification level. The set of these
parameters gives us the potential to apply our framework for real-time applications as
well. Future work is already planned to test this real-time capability of the proposed
framework.

6 Experimental results

We have implemented a prototype system in Java which can automatically generate
simulation levels of detail, select appropriate ones and switch between them. In this
section we present the results of our system tested on a large dynamical flocking
system which is a classic example for N -body systems (see Sect. 4). All experiments
were conducted on a desktop computer configured with one 2.5-GHz Quad-Core Intel
Pentium processor and 4-GB RAM running a Windows 7 Professional x32 Edition.
Our application was developed in Java and the Java VM used to execute the tests was
configured with 1-GB memory.

6.1 Simulation of a large dynamical flocking system

This experiment compares the execution time of the proposed method with the ability
to dynamically adjust the levels of motion to the original FMM. The results are shown
in Fig. 6 and the corresponding numerical results are reported in Table 1. For each
number of agents, the parameters of the proposed method have been set in order to
keep the error below a pre-specified level ε. The appropriate values for similarity
measures to achieve this are determined by try and error. Also, all the results reported
in Table 1 are computed by averaging the execution times over 1000 consecutive runs.
To keep the results comparable, we have fixed the truncation number p to 10 and the
clustering size s to 100 in all experiments.

Fig. 6 Execution times for the FMM method with automatic dynamics simplification and the original
FMM



Automatic dynamics simplification in Fast Multipole Method 1555

Fig. 7 Number of agents after automatic dynamics simplification

As shown in Fig. 6, the experimental results confirm the theoretical expectation
that to obtain more accuracy we need to spend more time. Conversely, more com-
putational time can be saved if the algorithm is allowed to be run less accurately.
For example, the FMM with automatic dynamics simplification is nearly five times
faster than the original FMM while the error is less than 10−2. Of course, it is pos-
sible to achieve more efficiency by relaxing accuracy requirements. This trade-off
between accuracy and efficiency enables us to cope with very large and complex sys-
tems which would be intractable otherwise. For a better comparison, Fig. 7 shows the
number of agents after dynamics simplification for each of the above experiments.
From this figure we can see that this factor is approximately 1/2 for ε = 10−4 and
1/3 for ε = 10−2. The corresponding numerical results are reported in Table 2.

7 Summary and future work

In this paper we present a new framework by combining the well-known Fast Multi-
pole Method from computational physics with the concept of motion levels of detail
from computer graphics and animations. Our goal is to reduce the computational
complexity of the FMM by adding automatic dynamics simplification to it and hence
to speed up the simulation of large N -body systems consisting of hundreds of thou-
sands or even millions of bodies. Dynamics simplification is achieved by first re-
placing all particles inside a box with one weighted center of mass particle and then
applying the potential computed for the COM particle to all the particles in that box.

This replacement of particles can be done for a box at the bottom level of the FMM
tree (i.e. a leaf box) or boxes at higher levels in the tree. This way we have a hierarchy
of approximated motion models or motion levels of detail which are updated at each
simulation cycle. These motion levels of detail enable us to adjust the level of simula-
tion dynamically and hence to trade accuracy for efficiency. Here, we implemented a
prototype of our model and applied it on a large dynamical flocking systems. As can
be seen in Sect. 6, the preliminary results are very satisfactory indicating the potential
use of our method to more dynamical systems.

However, the work presented in this paper is a first step towards the design of a
general multilevel simulation framework with the ability to automatically adjust the
simulation level with the hope of managing a good compromise between accuracy of
the simulation and execution time. The work can be extended in several dimensions:
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• Investigating other possible methods or heuristics for similarity measure instead of
speed ratio and velocity vector angle ratio. For example, one possibility is to use
the entropy related to the particles inside a box as a measure to decide switching
between levels of motion. Also, it is possible to use partition function and energy-
based measures for this purpose.

• Designing new experiments to gain a better understanding of the effects of each
parameter such as truncation number p and clustering size s on the execution time
of the simulation and its accuracy.

• Generalizing the proposed framework to be applicable in more dynamical systems,
such as simulation of large crowds or simulation of a large number of pedestrians
in urban areas.

• Giving a more complete complexity analysis and error analysis and studying the
effects of main parameters such as truncation number and clustering size on the
complexity and the error of the new method.

• Designing new test to study the functionality of the proposed algorithm for real-
time simulation of large N -body systems. This can be achieved through the anal-
ysis of specific constraints such as running the simulation within a fixed predeter-
mined amount of time and the way to minimize the error in these kinds of config-
urations.
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Appendix: Numerical results

Table 1 Computational results
for FMM and FMM with ADS
(p = 10, s = 100)

No. of
agents

Execution time (ms)

FMM FMM with automatic
dynamics simplification

ε = 10−2 ε = 10−4

10 000 2012 671 1682

20 000 5310 1061 3466

30 000 5653 2339 3547

40 000 7768 2668 4605

50 000 11481 3062 6833

60 000 14498 3432 8084

70 000 18966 3926 10299

80 000 22398 4909 11834

90 000 26298 5797 13934

100 000 27783 6505 14521

200 000 44231 12719 18044

300 000 84245 18142 30394

400 000 105726 24292 38371

500 000 116406 33675 45655

600 000 124134 37112 52983

700 000 144123 42354 57070

800 000 172635 45893 63502

900 000 207303 48213 71417

1000 000 254816 51126 82789

Table 2 Number of agents after
automatic dynamics
simplification

No. of
agents

FMM with automatic
dynamics simplification

ε = 10−2 ε = 10−4

10 000 4793 6934

20 000 9876 14251

40 000 18176 24214

60 000 27718 37686

80 000 34328 51496

100 000 42119 61307

200 000 84921 102651

400 000 183362 213793

600 000 241402 273151

800 000 306570 381463

1000 000 394537 465121
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