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The evaluation of several tasks in lexical semantics is often limited by the lack of large amounts
of manual annotations, not only for training purposes, but also for testing purposes. Word Sense
Disambiguation (WSD) is a case in point, as hand-labeled datasets are particularly hard and
time-consuming to create. Consequently, evaluations tend to be performed on a small scale, which
does not allow for in-depth analysis of the factors that determine a systems’ performance.

In this paper we address this issue by means of a realistic simulation of large-scale evaluation
for the WSD task. We do this by providing two main contributions: first, we put forward
two novel approaches to the wide-coverage generation of semantically-aware pseudowords, i.e.,
artificial words capable of modeling real polysemous words; second, we leverage the most suitable
type of pseudoword to create large pseudosense-annotated corpora, which enable a large-scale
experimental framework for the comparison of state-of-the-art supervised and knowledge-based
algorithms. Using this framework, we study the impact of supervision and knowledge on the two
major disambiguation paradigms and perform an in-depth analysis of the factors which affect
their performance.

1. Introduction

Word Sense Disambiguation (WSD) is a core research field in computational linguis-
tics, dealing with the automatic assignment of senses to words occurring in a given
context (Navigli 2009, 2012). There are two major paradigms in WSD: supervised and
knowledge-based. Supervised WSD starts from a training set and learns a computa-
tional model of the word of interest, which is later used at test time to classify new
instances of the same word. Knowledge-based WSD, instead, performs the disam-
biguation task by using an existing lexical knowledge base, i.e., a semantic network to
which graph algorithms, for example, can be applied. However, both disambiguation
paradigms have to face the so-called knowledge acquisition bottleneck, i.e., the diffi-
culty of capturing knowledge in a computer-usable form (Buchanan and Wilkins 1993).

Unfortunately, providing knowledge on a large scale is a time-consuming process,
which has to be carried out separately for each word sense, and repeated for each
new language of interest. Importantly, the largest manual efforts for providing a wide-
coverage semantic network and training corpus for WSD date back to the early 1990s for
the WordNet dictionary (Miller et al. 1990; Fellbaum 1998) and to 1993 for the SemCor
corpus (Miller et al. 1993). In fact, although cheap and fast annotations could be obtained
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by means of the Amazon Mechanical Turk (Snow et al. 2008) or voluntary collaborative
editing such as in Wikipedia (Mihalcea 2007), producing annotated resources manually
is still an arduous and understandably infrequent endeavour. Despite recent efforts in
this direction, including OntoNotes (Pradhan et al. 2007b) and MASC (Ide et al. 2010),
most work is now aimed either at the automatic acquisition of training data (Zhong and
Ng 2009; Moro et al. 2014) and lexical knowledge resources (Navigli 2005; Cuadros and
Rigau 2008; Ponzetto and Navigli 2010), or at the large-scale acquisition of annotations
via games (Venhuizen et al. 2013) or even video games with a purpose, as recently
proposed by Vannella et al. (2014). As a result, state-of-the-art performance can be
achieved with both supervised (Zhong and Ng 2010) and knowledge-based (Navigli
and Ponzetto 2012b; Moro, Raganato, and Navigli 2014) paradigms in different settings
and conditions. Moreover, existing studies hypothesize that this performance can be
further improved when larger amounts of manually-crafted sense-tagged data or struc-
tured knowledge is made available (Martinez 2004; Martinez, de Lacalle, and Agirre
2008; Cuadros and Rigau 2008; Navigli and Lapata 2010). All these results, however, are
obtained on small-scale datasets with different characteristics, thus making it difficult
to draw conclusions on the factors which impact the systems’ performance.

In this paper we address this issue by providing two main contributions:r We first focus on novel, flexible techniques for creating new types of
artificial words which model real words by preserving their semantics as
much as possible. Our semantically-aware pseudowords can be used to
model any word in the lexicon,1 therefore aiming for wide coverage. We
perform different experiments to show that our semantically-aware
pseudowords are good at modeling existing ambiguous words in terms of
disambiguation difficulty, representativeness and distinguishability of the
artificial senses.r We leverage our semantically-aware pseudowords to create, for the first
time, a large-scale evaluation framework for WSD. Using this framework,
we are able to perform an experimental comparison of state-of-the-art
systems for supervised and knowledge-based WSD on a very large dataset
made up of millions of sense-tagged sentences. Our large-scale framework
enables us to carry out an in-depth analysis of the factors and conditions
which determine the systems’ performance.

In our recent work (Pilehvar and Navigli 2013), we presented an approach for the
generation of semantically-aware pseudowords, called similarity-based pseudowords.
At the core of this approach was the Personalized PageRank algorithm (Haveliwala
2002) on the WordNet graph which was utilized to find the most semantically-similar
monosemous representative for a given sense of a real ambiguous word. The main
strength of the similarity-based approach lies in its flexibility, allowing high minimum
frequency constraints to be set on its selection of pseudosenses, while maintaining its
overall sense modeling quality.

In this paper we extend our previous work as follows: i) we propose a new approach
for generating semantically-aware pseudowords which leverages topic signatures; ii)
we utilize the best type of pseudoword to create a novel framework for large-scale

1 While in our experiments we focus on nouns only, the same approach can potentially be used for any
other open-class part of speech.
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evaluation and comparison of WSD systems; iii) based on this framework, we carry
out a large-scale comparison of state-of-the-art supervised and knowledge-based WSD
algorithms; iv) we study the impact of the amount of supervision and knowledge on the
two major disambiguation paradigms and perform an in-depth analysis of the factors
and conditions which determine their performance.

The remainder of this article is organized as follows: in Section 2 we survey related
work concerning the impact of the knowledge acquisition bottleneck on WSD and pro-
vide an explanation of our pseudoword-based approach. In Section 3 we describe pseu-
dowords and overview the existing approaches to their generation. We then present two
new approaches which address the issues associated with existing pseudowords, hence
enabling the wide-coverage generation of semantically-aware pseudowords. In Section
4, we perform various experiments to assess the degree of realism of our proposed
pseudowords. We then illustrate how we leverage our pseudowords to generate large
sense-tagged datasets in Section 5. The experimental setup for pseudoword-based WSD
is described in Section 6. Experimental results as well as the findings are presented and
discussed in Section 7. Finally, we provide concluding remarks in Section 8.

2. Related Work

2.1 Supervised WSD and the knowledge acquisition bottleneck

Over the last few decades, WSD systems have been suffering from disappointingly low
performance, especially in an all-words setting in which one has to cover the entire
lexicon of the given language (Snyder and Palmer 2004; Pradhan et al. 2007a). In fact one
of the major obstacles to high-performance WSD is the so-called knowledge acquisition
bottleneck (Gale, Church, and Yarowsky 1992b): in order to learn accurate word experts,
supervised systems need training data for each word of interest, a very demanding
task as far as wide coverage is concerned, i.e., one which would require the manual
annotation of millions of word instances in context.

In an effort to address this issue, several approaches to the automatic acquisition
of sense-tagged corpora have been proposed. Some of these approaches are based on
bootstrapping techniques (Yarowsky 1995; Mihalcea 2002; Pham, Ng, and Lee 2005),
i.e., algorithms which start from a large unlabeled corpus, and a small labeled one, and
iteratively populate the latter with an increasing number of sense-annotated sentences
from the former dataset. Other approaches search the Web or large corpora to retrieve,
for each sense, a large number of sentences containing either a set of sense-specific
monosemous relatives (Leacock, Chodorow, and Miller 1998; Martinez, de Lacalle, and
Agirre 2008) or search phrases (Mihalcea and Moldovan 1999). Collaborative knowl-
edge resources, such as Wikipedia, have also been exploited for generating sense-tagged
data (Mihalcea 2007; Shen, Bunescu, and Mihalcea 2013), giving rise to issues, however,
such as the encyclopedic nature of the sense inventory and the lack of training of
annotators.

An alternative approach to acquiring sense-tagged data is to leverage multilingual
resources such as parallel corpora (Chan and Ng 2005a; Wang and Carroll 2005; Chan,
Ng, and Zhong 2007). Most of these techniques, however, require human intervention
for mapping the translation of a word in the target language to the correct sense of the
corresponding word in the source language. Recently, Zhong and Ng (2009) tackled this
problem by using a bilingual dictionary. However, the dictionary has to be aligned to the
sense inventory of interest, e.g., WordNet, and a large parallel corpus must be available
which covers the full range of meanings in a lexicon. The approach, implemented in a
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system based on Support Vector Machines and called It Makes Sense (Zhong and Ng
2010, IMS), attains state-of-the-art performance on lexical sample and all-words WSD
tasks. However, according to our calculation on the available models2, this approach can
only provide training examples for about one third of ambiguous nouns in WordNet,
more than half of which have only one of their senses covered.

Middle ground approaches have also been proposed which either mix arbitrary
sense-tagged corpora with a small amount of tagged data for the domain of interest
(Khapra et al. 2010), or estimate the sense distribution of the new domain dataset with
the help of parallel corpora (Chan and Ng 2005b, 2007), thus relieving the knowledge
acquisition bottleneck. However, domain adaptation approaches typically suffer from
lower disambiguation performance and still require annotated data for the domain of
interest.

2.2 Knowledge-based WSD and the knowledge acquisition bottleneck

Knowledge-based WSD systems are equally affected by the knowledge acquisition
bottleneck, as they exploit the knowledge and structure of lexical knowledge bases in
carrying out the disambiguation task. Therefore, in order to obtain high performance,
knowledge-based systems are applied to large, wide-coverage lexical knowledge bases.
However, the largest hand-crafted resource of this kind, i.e., WordNet, dates back to
1990 with subsequent updates, which attests to the high cost of knowledge engineering
on a large scale. Moreover, WordNet mostly provides taxonomic knowledge, while ne-
glecting much syntagmatic relational information between concepts. As a consequence,
over the past few years, several automatic techniques have been proposed which enrich
WordNet with new relation edges, such as those obtained from disambiguated glosses
(Mihalcea and Moldovan 2001), collocation dictionaries (Navigli 2005), topic signatures
(Agirre et al. 2001; Cuadros and Rigau 2008), and collaborative semi-structured re-
sources (Hovy, Navigli, and Ponzetto 2013).

Enriched knowledge bases have been shown to greatly benefit graph-based ap-
proaches such as Personalized PageRank (Agirre, de Lacalle, and Soroa 2009; Agirre,
Lopez de Lacalle, and Soroa 2014, PPR), context-based vertex degree (Navigli and Lap-
ata 2010) or, more recently, a densest-subgraph algorithm which jointly performs WSD
and Entity Linking (Moro, Raganato, and Navigli 2014). Not only do these methods
outperform supervised WSD systems when applied within a domain but, when the
knowledge base is enriched with tens of thousands of semantic relations automatically
extracted from Wikipedia, performance comparable to that of state-of-the-art super-
vised systems can be obtained in a general all-words setting, too (Ponzetto and Navigli
2010; Moro, Raganato, and Navigli 2014).

Recently, a multilingual graph-based WSD approach has been developed which
leverages a large multilingual semantic network, called BabelNet (Navigli and Ponzetto
2012a), to achieve state-of-the-art results on both general all-words and domain-
oriented WSD (Navigli and Ponzetto 2012b). Experimental results show that the joint
use of multilingual knowledge enables further improvements over monolingual WSD.
However, the power of this disambiguation system lies mainly in its usage of the
BabelNet multilingual semantic network. In fact, Agirre, Lopez de Lacalle, and Soroa
(2014) showed that under similar conditions, i.e., when the same lexical knowledge base

2 http://nlp.comp.nus.edu.sg/sw/models.tar.gz
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was used, the PPR algorithm can outperform the graph-based WSD algorithms used by
Navigli and Ponzetto (2012b).

2.3 The supervision vs. knowledge dilemma

Unfortunately as of today we do not have unequivocal insights into which disambigua-
tion paradigm is more suitable under which conditions. As a matter of fact, not only
does each implemented system come with its own amount and kind of supervision
or knowledge, making it hard to determine the contribution of the supervision or
knowledge vs. that of the WSD algorithm, but test datasets are small, typically compris-
ing one or two thousand sense-tagged word items, which prevents us from drawing
solid conclusions. Even the largest annotation effort ever, i.e., the SemCor sense-tagged
dataset (Miller et al. 1993), comprising around 235,000 semantic annotations, covers
only about 15% of word types in WordNet with an average of 10 instances per word,
thus precluding large-scale experimental studies.

A possible solution to this current limit in the evaluation of WSD systems is
to generate sense-annotated data with the help of artificial ambiguous words, called
pseudowords. Pseudowords are created by conflating a set of unambiguous words
called pseudosenses. The idea of pseudowords was simultaneously introduced by Gale,
Church, and Yarowsky (1992a) and Schütze (1992) as a means of generating large
amounts of artificially sense-tagged evaluation data for WSD algorithms. Pseudowords
have also been employed in other work aimed at studying the effects of data size on
machine learning for confusion set disambiguation (Banko and Brill 2001), evaluation
of selectional preferences (Erk 2007; Bergsma, Lin, and Goebel 2008; Chambers and
Jurafsky 2010) or Word Sense Induction (Di Marco and Navigli 2013; Jurgens and
Stevens 2011).

However, constructing a pseudoword by merely combining a random set of unam-
biguous words picked out to be in the same range of occurrence frequency (Schütze
1992), or leveraging homophones and OCR ambiguities (Yarowsky 1993), does not
provide a suitable model of a real polysemous word (Gaustad 2001), since in the real
world different senses, unless homonymous, share some semantic or pragmatic relation.
For this reason, random pseudowords, when used for WSD evaluation, were found to
be easier to disambiguate compared to the human-generated pseudowords (Gaustad
2001), thus leading to an optimistic upper-bound estimate on the performance of WSD
classifiers (Nakov and Hearst 2003).

Several researchers addressed the issue of producing pseudowords that can model
semantic relationships between senses. To this end Nakov and Hearst (2003) used lexical
category membership from a medical term hierarchy (extracted from MeSH3 (Medical
Subject Headings)) to create “more plausible” pseudowords. By considering the distri-
butions from lexical category co-occurrence, they produced a set of pseudowords which
were closer to real ambiguous words in terms of disambiguation difficulty than random
pseudowords. However, this approach requires a specific hierarchical lexicon and falls
short of creating many pseudowords with high polysemy.

More recent work has focused on the identification of monosemous representatives
in the surroundings of a sense, that is, selected among concepts directly related to
the given sense. Senses of a real ambiguous word have been modeled by picking out
the most similar monosemous morpheme from a Chinese hierarchical lexicon (Lu et

3 http://www.nlm.nih.gov/mesh
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al. 2006). Pseudowords are then constructed by conflating these morphemes accord-
ingly. However, this method leverages a specific Chinese hierarchical lexicon, in which
different levels of the hierarchy correspond to different levels of sense granularity. A
more flexible approach is proposed by Otrusina and Smrz (2010) who model ambigu-
ous words in WordNet. For each particular sense, they search its surroundings in the
WordNet graph in order to find an unambiguous representative for that sense.

Unfortunately, as we discuss in detail in the next section, none of the above propos-
als can enable a large-scale evaluation framework for WSD, mainly because they suffer
from coverage issues which prevent the creation of wide-coverage sense-annotated
datasets. In this paper we propose new pseudoword generation techniques, which
allow for the creation of thousands of artificial words having sufficient occurrence
coverage within a large corpus. We then leverage our semantically-aware pseudowords
to create an evaluation framework which enables a large-scale comparison of state-of-
the-art supervised and knowledge-based WSD.

3. Pseudowords

A pseudoword is an artificially-created ambiguous word created by concatenating two
or more distinct words. Formally, p = w1*w2*. . . *wn is a pseudoword with polysemy
degree n where each wi is called a pseudosense. Each pseudosense is usually identified
by an unambiguous word drawn from the set of monosemous words in a given lexicon
(e.g., WordNet). For instance, press_release*ship*camel is a pseudoword with three distinct
meanings explicitly identified by its pseudosenses, i.e., press_release, ship, and camel.

Pseudowords are particularly useful for creating artificially annotated datasets.
To this end, an untagged corpus C is automatically annotated with a pseudoword
p = w1*w2*. . . *wn by substituting all occurrences of wi in C with p for each pseudosense
i ∈ {1, . . . , n}. As an example, consider the following three sentences:

a1. The goal of a press release is to attract favorable media attention.
a2. For a ship to float, its weight must be less than that of the water displaced by its hull.
a3. During the winter, the camel can go fifty days without being watered.

In order to generate annotated data, it is enough to replace the individual occur-
rences of press_release, ship and camel with the pseudoword press_release*ship*camel, while
noting the replaced term as the corresponding sense:

b1. The goal of a press_release*ship*camelpress_release is to attract favorable media attention.
b2. For a press_release*ship*camelship to float, its weight must be less than that of the water

displaced by the hull.
b3. During the winter, the press_release*ship*camelcamel can go fifty days without being watered.

where b1, b2 and b3 are three annotated sentences for our pseudoword
press_release*ship*camel with three different intended senses. This way, pseudowords
can be leveraged to automatically annotate an arbitrarily-large number of sentences. As
mentioned earlier, the first restriction on the choice of pseudosenses is that they need
to be unambiguous, so as to avoid the introduction of uncontrolled ambiguity. Another
constraint is that the pseudosense wi must appear in a sufficient number of sentences in
the corpus C. This constraint on the occurrence frequency guarantees that there exist as
many sentences in the corpus as the number of annotated sentences that are requested
for the task of interest which will exploit the resulting annotated corpus.

The pseudoword in our example above was generated by randomly selecting three
monosemous words from WordNet. This can be considered as the most immediate
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approach for generating a pseudoword where constituents are randomly picked from
the set of all monosemous words given by a lexicon. This results in a set of pseudowords
(hereafter named “random pseudowords”) that are highly likely to have semantically
unrelated pseudosenses. However, we know that the different senses of a real word
are often in a semantic or etymological relationship. Therefore, random pseudowords
can only model homonymous distinctions (such as the centimeter vs. curium senses of
the noun cm), and fall short of modeling systematic polysemy (such as the lack vs.
insufficiency senses of the noun deficiency).

A pseudoword generation approach ought to be able to address the above-
mentioned weakness of random pseudowords. A possible solution is to create pseu-
dowords that model existing ambiguous words by providing, for each pseudoword, a
one-to-one correspondence between each pseudosense and a corresponding sense of the
modeled word. For instance, lack*shortfall is a good pseudoword modeling the real word
deficiency as its pseudosenses preserve the meanings of their corresponding real word’s
senses. We call artificial words of this kind semantically-aware pseudowords, in that
they aim at listing senses which are in specific relations to each other, thus mirroring the
relations existing between the senses of real words in the lexicon. For example, the lack-
insufficiency relation is encoded in the above pseudoword for deficiency, which would
not be possible if we generated a random pseudoword.

Semantically-aware pseudowords enable the generation of artificially-annotated
datasets that have similar properties to their real counterparts and this makes them
particularly suitable for the evaluation of Word Sense Disambiguation and Induction
algorithms (Bordag 2006; Di Marco and Navigli 2013; Jurgens and Stevens 2011). In
fact, in a real sense-annotated dataset different senses of a word appear in distinct
contexts. The extent of this distinction, however, depends on the semantic relatedness
of the corresponding senses. The intuition behind semantically-aware pseudowords
is that they model each sense of an ambiguous word through a semantically similar
monosemous representative which should appear naturally in contexts that are similar
to its corresponding real sense. For this reason, these pseudowords should be expected
to result in datasets wherein the distinctions between different sense contexts are similar
to those in real sense-annotated datasets.

In the next three subsections we describe three techniques, two of which are pre-
sented in full detail for the first time in this paper, for the generation of semantically-
aware pseudowords that use WordNet as the reference lexicon. In what follows we focus
on nominal pseudowords, and leave the extension to other parts of speech to future
work.

3.1 Vicinity-based Pseudowords

As discussed in Section 2, earlier techniques for the generation of semantically-aware
pseudowords were either inherently restricted to specific hierarchical lexicons utilized
in the generation process, or to the number of pseudowords they could generate. An
idea put forward by Otrusina and Smrz (2010) was to create pseudowords by combining
representatives for each individual sense of a real ambiguous word in WordNet. The
representatives were selected among monosemous relatives, i.e., unambiguous words
that are structurally related to a given sense. This method for finding monosemous
representatives for senses has been in use since 1998, when it was first proposed for
the unsupervised acquisition of sense-tagged corpora (Leacock, Chodorow, and Miller
1998).
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Table 1
Synset neighbours of the three senses of coke (we use the sense notation of Navigli (2009) where
the ith sense of word w is denoted as wi. We also highlight monosemous words in bold).

Synset literals sense 1 {coke1}
sense 2 {coca_cola1, coke2}
sense 3 {coke3, blow6, nose_candy1, snow4, C12}

Direct siblings sense 1 {biomass1}, {butane1}, {charcoal1, wood_coal2}, {coal_gas1},
{coke1}, {diesel_oil1}, diesel_fuel1}, {fire7}, {fossil_fuel1},
{fuel_oil1, heating_oil1}, {gasohol1}, {gasoline1, gasolene1,
gas3, petrol1}, {illuminant1}, {kerosene1, kerosine1, lamp_oil1,
coal_oil1}, {methyl_alcohol1, wood_alcohol1, wood_spirit1},
{nuclear_fuel1}, {propane1}, {red_fire1}, {combustible1,
combustible_material1}, {water_gas1}, {firewood1}, {igniter1,
ignitor1, lighter1}

sense 2 {Pepsi1, pepsi_cola1}
sense 3 {basuco1}, {crack8, crack_cocaine1, tornado2}

Meronyms sense 1 -
sense 2 -
sense 3 {coca_cola1, coke2 }

Hyponyms sense 1 -
sense 2 -
sense 3 -

Specifically, Otrusina and Smrz (2010) exploit WordNet, whose conceptual units are
synonym sets, called synsets, which encode the different meanings of words. In order to
find a monosemous representative for a given synset, the approach (hereafter referred
to as the vicinity-based approach) performs a search on the set of words in the same
synset and the surrounding ones, i.e., the synsets connected to that synset by means of
WordNet’s lexico-semantic relations. These related synsets include siblings and direct
hyponyms. In the case where no monosemous candidate could be found among these
synsets, the search space is further extended to hypernyms and meronyms.

As an example, consider the ambiguous noun coke which has three senses (i.e., fuel,
drink and drug) in WordNet 3.0. We show in Table 1, for each of the three senses of
coke, the set of nouns in the corresponding synset as well as in the surrounding synsets.
Monosemous words are shown in bold in the table. As can be seen, there exist multiple
monosemous candidates for each sense (coca_cola, pepsi and pepsi_cola for the second
sense, nose_candy and coca_cola for the third sense, and dozens of candidates in the direct
siblings’ vicinity of the first sense). Among these candidates Otrusina and Smrz (2010)
select those whose occurrence frequency ratio in a given text corpus is most similar
to that of the senses of the corresponding real word as given by a sense-annotated
corpus. However, calculating the occurrence frequency of individual senses of a word
requires a large-enough sense-tagged corpus. This dependency on sense-annotated data
is a disadvantage of the vicinity-based approach which limits its ability in modeling
arbitrary words.

In addition to this limitation, the vicinity-based approach suffers from lack of
flexibility in generating pseudowords that can be leveraged for creating a large-scale
pseudosense-tagged corpus, where we need each pseudosense to occur with a relatively
large minimum frequency. Due to its small search space, the approach falls short of
identifying suitable monosemous representatives for many given senses, which under-
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Table 2
Noun coverage percentage of vicinity-based pseudowords by degree of polysemy for different
values of minimum frequency.

Polysemy 2 3 4 5 6 7 8 9 10 11 12 >12 overall

M
in

im
um

Fr
eq

ue
nc

y 0 87 82 74 71 67 70 60 64 45 46 44 28 83
50 64 56 47 44 38 41 31 33 17 13 20 10 59

200 52 43 33 27 22 25 19 17 8 10 8 10 46
1000 31 20 16 7 4 6 4 3 0 0 0 0 25

mines its ability to cover most of the ambiguous nouns in WordNet. We show in Table
2 the percentage of nouns in WordNet that could be modeled using the vicinity-based
approach when Gigaword (Graff and Cieri 2003) was used as our corpus. Coverage
statistics are presented for four different values of minimum frequency: 0 (no mini-
mum frequency constraint), 50, 200, and 1000. Besides the overall coverage (rightmost
column), in the table we also present the coverage percentage by degree of polysemy.
Here, an ambiguous noun in WordNet is considered as covered by its corresponding
vicinity-based pseudoword if, for each of its senses, a suitable monosemous candidate
can be found in its surrounding which also satisfies the specified minimum frequency
in the corpus. As can be seen from the table, the approach can only model about 60% of
ambiguous nouns in WordNet 3.0 when a small minimum frequency of 50 sentences
in the large Gigaword corpus is assumed. The coverage continues to drop with the
increase of minimum frequency up to only 25% of the ambiguous nouns covered when
a minimum frequency of 1000 noun occurrences is required (last row of Table 2), with
most of the covered words having low polysemy. This shows that the approach is not
flexible enough for generating pseudowords that can be leveraged for creating large,
wide-coverage pseudosense-annotated datasets.

In order to address the aforementioned coverage issue of the vicinity-based ap-
proach, in the next two subsections we propose two new approaches for the generation
of semantically-aware pseudowords.

3.2 Similarity-based Pseudowords

We propose a new approach to the generation of pseudowords that enables the creation
of semantically-aware pseudowords while tackling the coverage and flexibility issues
of the vicinity-based approach. In contrast to the vicinity-based method, which takes
as its search space the surroundings of a sense, our technique considers the WordNet
semantic network in its entirety, hence enabling us to determine a graded degree of
similarity between a given sense and all other synsets in WordNet. The similarity-based
approach identifies, for each sense of a given ambiguous word, the most semantically
similar monosemous word satisfying the minimum occurrence frequency constraint.
Our method can be considered an extension of the vicinity-based approach as it re-
places its pseudosense selection technique with a graph-based similarity measure. This
expands the search space for finding pseudosenses from a small set of surrounding
synsets to virtually all synsets in WordNet.

In order to measure semantic similarity we used the Personalized PageRank
(Haveliwala 2002, PPR) algorithm, a graph-based technique that has been used previ-
ously as a core component for semantic similarity (Hughes and Ramage 2007; Pilehvar,
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Algorithm 1: Generate a similarity-based pseudoword
Input: an ambiguous word w in WordNet
Output: a similarity-based pseudoword Pw and a confidence score averageRank

1 begin
2 Pw ← ∅
3 totalRank← 0
4 i← 1
5 foreach s ∈ Synsets(w) do
6 similarSynsets← PersonalizedPageRank(s)
7 sort similarSynsets in descending order;
8 foreach s′ ∈ similarSynsets do
9 totalRank← totalRank + 1

10 foreach w′ ∈ SynsetLiterals(s′) do
11 if |Synsets(w′)| = 1 and Freq(w′) ≥ minFreq then
12 Pw ← Pw ∪ {(i, w′)}
13 go to line 17
14 end
15 end
16 end
17 i← i+ 1
18 end
19 averageRank← totalRank / |Synsets(w)|
20 return (Pw, averageRank)
21 end

Jurgens, and Navigli 2013) and Word Sense Disambiguation (Agirre and Soroa 2009;
Agirre, Lopez de Lacalle, and Soroa 2014). PPR can be used to estimate a probability
distribution denoting the structural importance of all the nodes in a graph for a given
target node. When applied on a semantic network, such as the WordNet graph whose
nodes are synsets and edges the lexico-semantic relations, the notion of importance can
be interpreted as semantic similarity. The reason behind our selecting a graph-based
similarity measure was that the alternative context-based methods, such as Lin’s (1998)
measure, have been shown to require a wide-coverage sense-tagged dataset in order
to calculate similarities on a sense-by-sense basis for all words in the lexicon (Otrusina
and Smrz 2010). Also, among WordNet-based approaches, PPR reports state-of-the-art
results on semantic similarity (Agirre et al. 2009) and WSD datasets (Agirre, Lopez de
Lacalle, and Soroa 2014), thus representing a suitable graph-based measure for finding
the most appropriate pseudosenses.

In Algorithm 1 we present the procedure for the generation of our similarity-based
pseudowords. The algorithm takes as input an ambiguous word w, and generates its
corresponding similarity-based pseudoword Pw whose ith pseudosense models the ith

sense of w. Additionally, the algorithm provides, for each generated pseudoword, a
confidence degree denoting the average ranking of the selected pseudosenses.

The algorithm models a given ambiguous word w by iterating over the synsets
corresponding to its individual senses (lines 5-18) and identifying the most suitable
monosemous representative for each. For each sense of w, we run the PPR algorithm
by initializing it from the corresponding synset s (line 6). As a result, PPR outputs a
probability distribution over all synsets in WordNet denoting the semantic similarity of

10
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Table 3
Top-5 entries of the similarSynsets list for different senses of word coke (we show both WordNet
3.0 offsets and synsets). The highest-ranking monosemous noun in each list is shown in bold.

Sense no. Offset PPR score Terms in synset (literals)

1

14685768-n 0.225 coke1
14875077-n 0.148 fuel1
00498836-v 0.096 coke4
00146138-v 0.038 change_state1, turn14

15100644-n 0.011 firewood1

2

07927931-n 0.237 cola2, dope3
07928696-n 0.217 coca_cola1, coke2
07927197-n 0.083 soft_drink1

12197601-n 0.045 cola_nut1, kola_nut1
07928790-n 0.040 pepsi1, pepsi_cola1

3

03060294-n 0.278 cocaine1, cocain1

03066743-n 0.205 blow6, c12, coke3, nose_candy1, snow4

03492717-n 0.046 hard_drug1

00021679-v 0.041 cocainise1, cocainize1
03060074-n 0.041 coca3

each synset to s. 4 The synset distribution is then sorted according to its values (line 7).
We then go through all its nominal synsets (s′) in the search for a suitable monosemous
noun (line 11). This search continues until a suitable candidate is found which satisfies
the minimum occurrence frequency minFreq. Upon finding this candidate, the selected
monosemous word w′ is added as the corresponding pseudosense for the ith sense of
Pw (line 12). These steps are repeated for every sense of w.

The higher the position of a selected pseudosense in the sorted list of similarSynsets,
the more confidence we have in the preservation of meaning. Therefore, we calculate a
confidence score (averageRank in the algorithm) as the average of the synset’s positions
(in the various similarSynsets list) from which the pseudosenses of Pw are picked out
(line 19). We will later use this confidence score for evaluating our pseudowords. The
algorithm returns as its output, for a given word w, the corresponding pseudoword Pw

along with its averageRank score (line 20).
Consider the generation process of the similarity-based pseudoword for our word

coke. Table 3 shows the list of top-5 most similar synsets for each of the three senses
of this term, as given by the PPR algorithm. Our algorithm selects the highest ranking
monosemous candidates which satisfy the minimum frequency (=1000 in the example)
for each sense (shown in bold in the table). Hence, fuel*coca_cola*cocaine is returned as
the pseudoword corresponding to the word coke. Note that the top-ranking synsets are
those also found by the vicinity-based approach. However, thanks to PPR working
on the entire network, our similarity-based approach can back off to more distant,
though similar, synsets. We show in Table 4 some examples of ambiguous words along
with their generated similarity-based pseudowords (minimum frequency is again set to
1000).

Having the large search space of virtually all synsets in WordNet, the similarity-
based approach is able to select a monosemous candidate for each sense from a

4 In the PPR probabililty distribution, the top-ranking synsets contain words which are most likely similar
to the target sense, whereas we move to a graded notion of relatedness as far as lower-ranking ones are
concerned (Agirre et al. 2009).
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Table 4
Sample similarity-based pseudowords generated (with minimum frequency of 1000 occurrences
in Gigaword) for four different nouns in WordNet 3.0. Words shown in bold are those that could
not be modeled using the vicinity-based approach for the given minimum frequency.
Pseudosenses which are not picked out from the surrounding of the corresponding sense (hence,
could not be modeled using the vicinity-based approach) are shown in bold in the second
column of the table.

word similarity-based pseudoword
bernoulli physicist*mathematician*astronomer
coach football_coach*tutor*passenger_car*clarence*public_transport
green greenery*central_park*labor_leader*green_party*river*golf_course*greens*max
sunray sunbeam*vine*sunlight

Table 5
Statistics of averageRank scores of similarity-based pseudowords: we show mean and mode
positions for six different values of minimum occurrence frequency (0, 200, 500, 1000, 2000, and
5000) and for each polysemy degree (we show the average value in the case of multiple modes).

minFreq 0 200 500 1000 2000 5000
poly. mean mode mean mode mean mode mean mode mean mode mean mode
2 2.0 1.0 10.7 2.0 16.9 2.0 28.3 4.0 52.2 3.0 66.8 3.5
3 2.2 2.0 9.7 2.0 15.4 4.7 23.4 4.7 39.6 6.3 51.6 11.7
4 2.3 2.0 8.6 3.0 14.2 7.8 22.5 10.9 33.4 12.3 45.9 18.3
5 2.2 2.0 8.5 5.0 14.6 5.6 21.9 16.0 33.7 14.4 48.3 18.2
6 2.3 2.0 9.0 4.0 15.6 3.8 21.3 12.2 26.5 17.2 41.2 26.0
7 2.2 2.0 8.0 6.0 13.0 8.4 17.8 7.7 26.0 18.9 40.7 27.3
8 2.2 2.0 8.5 4.0 12.7 9.8 19.4 16.1 29.8 28.7 44.1 42.6
9 2.2 2.0 7.5 4.0 12.3 12.4 17.5 17.6 26.4 30.2 40.9 37.9
10 2.2 2.0 7.1 5.0 11.5 7.9 16.2 15.0 25.6 19.2 38.1 38.1
11 2.4 2.0 7.7 8.0 12.0 15.3 16.5 11.5 23.9 7.5 37.9 35.7
12 2.4 2.0 7.7 4.0 12.9 12.9 17.5 23.3 25.7 25.7 44.2 32.5
> 12 2.5 1.0 7.2 2.0 10.8 2.0 16.0 4.0 22.4 4.0 39.1 4.0
overall 2.1 1.0 10.1 2.0 16.1 2.0 26.1 4.0 46.3 4.0 60.2 4.0

relatively-large ranked list of similar synsets. This solves both the coverage and flex-
ibility issues of the vicinity-based approach for higher values of minimum frequency.
However, as mentioned earlier, the higher the position of a selected pseudosense in the
sorted list of similarSynsets, the more confidence we have in the preservation of meaning.
For this reason, we analyzed the averageRank values output by Algorithm 1 in order to
see how often our algorithm needs to resort to lower-ranking items in the similarSynsets
list. We present in Table 5, for each polysemy degree and for six different values of
minFreq, the mean and mode statistics of the averageRank scores of all the generated
pseudowords for all the nouns (up to polysemy degree 12) in WordNet. As can be seen
in the table, the higher the value of minFreq, the further the algorithm descends through
the list similarSynsets to select a pseudosense. However, the mode statistics in the table
suggests that even when minFreq is set to a large value, most of the pseudosenses are
picked out from the highest-ranking positions in the similarSynsets list.
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Table 6
Top-5 words in the topic signatures for different senses of noun coke. The first monosemous noun
for each sense is shown in bold.

Sense no. Sense 1 Sense 2 Sense 3

Topic Signatures

weight word weight word weight word
0.190 oil 0.477 pepsi 0.275 heroin
0.129 gas 0.069 colon 0.151 drug
0.108 fuel 0.031 coca 0.102 hard
0.092 wood 0.008 coke 0.034 cocaine
0.079 fire 0.007 star 0.025 user

3.3 Topic Signature-based Pseudowords

As an alternative means of finding suitable monosemous representatives for word
senses with the Personalized PageRank algorithm, we propose using automatically-
generated topic signatures. Topic signatures (TS) are weighted topical vectors which are
associated with senses or concepts (Lin and Hovy 2000). The dimensions of these vectors
are the words in the vocabulary and their weights determine the relatedness of each of
these words to the target word sense. These vectors can be obtained automatically from
large corpora or the Web with the help of monosemous relatives.

In order to generate a TS-based pseudoword for a word w, we first sort the weighted
vectors associated with the senses of w. Then, from each of these vectors, we select
the monosemous word with highest relatedness (i.e., largest weight) which satisfies the
minimum frequency constraint. The generation process of the TS-based pseudowords
is very similar to that of similarity-based pseudowords: whereas the latter performs a
search in the sorted PPR vector of a particular sense to obtain a suitable monosemous
representative, the former considers the sorted TS vectors as its search space. Also note
that the PPR vectors are indexed with synsets, whereas topic signatures have lemmas
as their indices.

In our experiments we used the topic signatures provided by Agirre and de Lacalle
(2004) for nominal senses of polysemous nouns in WordNet 1.6.5 The monosemous
relatives for each sense were obtained by taking into account WordNet relations such
as synonyms, hypernyms, hyponyms, and siblings which were later used to query the
Web and create a large corpus. This corpus was then used to build topic signatures.

Table 6 shows the top-5 words in the topic signatures for different senses of word
coke. The first monosemous candidate for each sense is shown in bold (again, the mini-
mum frequency is assumed to be 1000 here). The corresponding pseudoword generated
using this approach is fuel*pepsi*heroin.

Even though the TS-based approach shares the monosemous relatives idea with
the vicinity-based approach, the additional step of gathering related instances for these
representatives guarantees wider coverage. We calculated the coverage of TS-based
pseudowords to be 84% (over ambiguous nouns of WordNet 1.6 and with no minimum
frequency constraint), which is comparable to that of vicinity-based pseudowords (i.e.,
83%, see Table 2). We observed in Table 2 that the coverage of the vicinity-based
pseudowords drops rapidly with the increase in minimum frequency such that for a

5 Available from: http://ixa.si.ehu.es/Ixa/resources/sensecorpus
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minimum frequency of 1000 only 25% of the polysemous nouns could be modeled. The
TS-based approach, instead, provides a better flexibility for higher values of minimum
frequency, hence enabling the generation of large-scale annotated datasets. Thanks to
its larger search space, the TS-based approach is able to retain the same 84% coverage
for a minimum frequency of 1000.

Compared to the similarity-based pseudoword generation (described in Section
3.2), this approach provides a different way of overcoming the coverage issue of
vicinity-based pseudowords. However, the former guarantees 100% coverage, while the
latter suffers from the lack of monosemous relatives for a portion of WordNet senses,
leading to non-optimal coverage.

4. Pseudoword Evaluation

In Sections 3.2 and 3.3 we presented two techniques for the generation of semantically-
aware pseudowords that were able to address the coverage and flexibility issues of the
vicinity-based approach. In order to verify the ability of these pseudowords to model
various properties of real ambiguous words, we performed three separate evaluations
so as to assess them from different perspectives:r Disambiguation difficulty in comparison to real words, where we

extrinsically study the impact of the pseudoword quality on the
disambiguation performance (Section 4.1);r Representative power of pseudosenses, where we assess the semantic
closeness of pseudosenses to their corresponding real senses (Section 4.2);r Distinguishability of pseudosenses, where we determine to what extent
pseudosenses are specific to a fine-grained real sense rather than covering
multiple senses (Section 4.3).

Given that our aim was to leverage these pseudowords for creating large-scale
pseudosense-annotated datasets, we performed evaluations on pseudowords generated
with minFreq per pseudosense set to a high value of 1000 (i.e., we can generate 1000
annotated sentences for each pseudosense) using the English Gigaword corpus (Graff
and Cieri 2003).

4.1 Disambiguation Difficulty of Pseudowords

Our first experiment is an extrinsic evaluation to assess the correlation between the
difficulty of the disambiguation task when using pseudowords and real words. The
basic idea behind this experiment is to verify, through a disambiguation task, if the
semantic similarity among the senses of an ambiguous word is preserved in its corre-
sponding pseudoword. Semantically similar senses of an ambiguous word will tend to
appear in similar contexts, making it relatively difficult to discriminate between them.
Conversely, ambiguous words that have semantically distinct senses, e.g., homonyms,
will be relatively easier to disambiguate. Given that our pseudowords directly model
real ambiguous words, we ideally expect a pseudoword to preserve the same level
of semantic similarity between pseudosenses as that of its corresponding real word,
and therefore to exhibit a comparable degree of disambiguation difficulty to that of its
corresponding real word.

14
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We performed this evaluation in the style of earlier work (Otrusina and Smrz 2010;
Lu et al. 2006). In order to test a pseudoword generation approach using this style,
first, all the sense-tagged words in a manually-annotated lexical sample dataset are
modeled using the approach. Next, a corresponding pseudosense-annotated dataset
is automatically constructed by sampling sentences from a corpus while maintaining
the same number of training and test sentences for each word as that of the original
manually-tagged dataset. A correlation analysis is then carried out to compare the
disambiguation performance of a supervised WSD system on a given ambiguous word
against its corresponding pseudoword. In this experiment we evaluate our similarity-
based, TS-based and, as baseline, random pseudowords. Owing to the fact that for the
given minimum frequency of 1000 we could generate only 5 of the 20 nouns using the
vicinity-based approach, we had to exclude the approach from this experiment.

We selected the Senseval-3 English lexical sample dataset (Mihalcea, Chklovski,
and Kilgarriff 2004) as our manually sense-tagged corpus. The dataset provides for 20
nouns of polysemy 3 to 10 an average number of 180 and 90 sense-tagged sentences in
its training and test sets, respectively. We generated the similarity-based and TS-based
pseudowords corresponding to these 20 nouns, as well as a set of 20 random pseu-
dowords. For each set of these pseudowords we generated corresponding pseudosense-
annotated training and test datasets by randomly sampling distinct sentences from the
English Gigaword corpus (Graff and Cieri 2003). Therefore, we ended up with four
datasets, namely: the Senseval-3 dataset of real words, and the three artificially sense-
tagged datasets for the similarity-based, TS-based and random pseudowords. Each of
the artificially-annotated datasets consisted of training and test portions comprising the
same number of instances per sense (i.e., the same sense distribution) as that of the
original Senseval-3 training and test datasets. Next, for each of our four datasets, we
trained a supervised WSD system on the training set and applied it to the corresponding
test set. In order to ensure more reliable results we follow Otrusina and Smrz (2010) and
report, for all experiments in this evaluation, the average results for five runs. To this
end, we randomly sampled the training and test datasets from the combination of all
items while preserving the original proportions. Also, in the random setting, we provide
the results averaged on a set of 25 different pseudowords modeling a given ambiguous
noun.

As our WSD system for this experiment, we used It Makes Sense (Zhong and Ng
2010, IMS), a state-of-the-art supervised WSD system that is based on support vector
machines (we will describe IMS in more detail in Section 6.4). Note that we measure
disambiguation difficulty in terms of system’s recall performance (cf. Section 6.6 for
evaluation measures).

We present in Figure 1 the scatter plot of the recall performance (hence the dis-
ambiguation difficulty) for real words vs. those for the similarity-based, TS-based and
random pseudowords. For each set of pseudowords, we also show the line fitted to
the corresponding set of points by means of linear regression. Ideally, this line should
coincide with the dashed diagonal line in figure, denoting perfect similarity. In the next
three subsections we provide an analysis of the scatter plot in Figure 1 and a discussion.

4.1.1 Overall disambiguation difficulty. The closer a line of best fit is to the center
of the plot, the closer are its corresponding pseudowords to real words in terms of
overall disambiguation difficulty (note that the plot’s axes are truncated to the range
[40,100] and the center point is shown by the star). As can be seen in Figure 1, the
line corresponding to our similarity-based pseudowords is the closest to the center
showing that these pseudowords provide a better modeling of real words in terms of
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Figure 1
Scatter plot of the recall performance (hence the disambiguation difficulty) of real words versus
those for similarity-based, TS-based and random pseudowords. The star shows the center of the
untruncated plot.

Table 7
Recall performance of IMS on the 20 nouns of the Senseval-3 lexical-sample test set (Real
column) compared to the corresponding similarity-based (SB), TS-based (TS) and random (Rnd)
pseudowords. The last three columns show absolute differences between the real setting and the
three pseudoword settings.

Word Real SB TS Rnd |Real - SB| |Real - TS| |Real - Rnd|
argument 50.44 68.79 76.26 77.15 18.35 25.82 26.71
arm 92.30 85.69 85.69 88.11 6.61 6.61 4.19
atmosphere 70.52 69.15 84.75 80.44 1.37 14.23 10.32
audience 81.28 73.74 80.61 83.76 7.54 0.67 4.22
bank 85.76 83.07 80.00 82.46 2.69 5.76 3.99
degree 78.42 81.58 82.63 80.59 3.16 4.21 4.35
difference 62.46 61.43 76.86 75.17 1.03 14.40 12.90
difficulty 52.72 51.82 73.64 67.23 0.90 20.92 14.97
disc 78.62 76.48 69.45 78.07 2.14 9.17 6.18
image 71.78 75.76 73.03 81.50 3.98 1.25 10.02
interest 77.34 73.19 60.88 71.70 4.15 16.46 6.85
judgment 55.64 66.87 55.00 59.64 11.23 0.64 9.01
organization 80.36 72.86 73.57 78.65 7.50 6.79 3.65
paper 60.84 66.29 65.33 73.14 5.45 4.49 12.59
party 82.94 80.00 79.41 81.04 2.94 3.53 3.74
performance 58.56 64.76 67.14 73.86 6.20 8.58 15.52
plan 88.42 85.41 90.27 87.39 3.01 1.85 3.12
shelter 58.48 74.75 87.00 80.21 16.27 28.52 21.73
sort 67.64 88.15 80.74 77.37 20.51 13.10 9.73
source 63.46 67.74 70.97 66.26 4.28 7.51 7.03
overall 73.26 75.43 76.42 78.80 129.31 194.51 196.35

disambiguation difficulty. We also show the corresponding values of recall performance
in Table 7. We can see from the table that the overall system performance of similarity-
based pseudowords (75.43) is closest to that of real words (73.26). This value is 76.42
and 78.80 for TS-based and random pseudowords, respectively.
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Table 8
The similarity-based (SB) and TS-based (TS) pseudowords obtained for 6 of the 20 nouns used in
our disambiguation experiment.

word type: equivalent pseudoword
difficulty SB: workout*deterrent*predicament*complexity

TS: get*autism*ski*credibility

arm SB: forearm*baseball_cap*sword*armchair*executive_branch*garment
TS: paralysis*glue*weaponry*wheelchair*pension*clothing

plan SB: retirement_plan*architect*diagram
TS: employee*european*pale

performance SB: concert*encore*achievement*feat*processing
TS: theatrical*musical*ballroom*recruitment*steady

party SB: political_party*dinner_party*clique*fiesta*someone
TS: socialist*prom*transaction*coronation*boomer

paper SB: piece_of_paper*papers*news_story*telecom*editorial*publishing_house*movie
TS: towel*moral*vitamin*brochure*weekly*firm*forecast

In addition, for 12 of the 20 nouns, the similarity-based approach provides the pseu-
dowords that are closest to real words in terms of WSD recall performance (|Real - SB|
column in the table) as shown in bold in the table. This number drops to 5 and 3 for the
TS-based and random pseudowords, respectively. Accordingly, the overall sum of the
differences (distance) between the recall values is smallest (128.57) for similarity-based
pseudowords among the three kinds of pseudoword (194.51 for TS-based pseudowords
and an average of 196.35 for random pseudowords, ranging from 158.32 to 262.04).

Even though TS-based pseudowords are only 1% away from similarity-based pseu-
dowords in terms of overall performance, their distance from real words is much higher
than that of similarity-based pseudowords (194.51 vs. 129.31). This suggests that the
former tend to have a lower correlation with real words than the latter. In the following,
we investigate the correlation between the disambiguation difficulties of real words and
our three types of pseudowords.

4.1.2 Correlation between disambiguation difficulties. The smaller the angular de-
viation of the line of best fit for a set of pseudowords is from the diagonal line, the
higher is the correlation between the disambiguation difficulties of those pseudowords
and real words. As can be seen in the figure, the line corresponding to the similarity-
based pseudowords has the smallest deviation from the diagonal line showing its
higher correlation with real words. The Pearson correlation coefficient between the
disambiguation difficulties of similarity-based pseudowords and real words is 0.74. This
value drops to 0.43 and 0.54 for TS-based and random pseudowords, respectively. Even
worse, the value of 0.54 is the average of 25 highly variable correlation values (in the
range of [0.18, 0.67]) over our 25 sets of random pseudowords. The reason why TS-based
pseudowords show a lower correlation than random pseudowords can be found in the
fact that the reported values for the latter are averaged over 25 runs. More precisely, the
correlation value of 0.43 of topic signatures has to be compared to the range [0.18, 0.67]
of correlations obtained by different sets of random pseudowords.

4.1.3 Discussion. We leveraged Personalized PageRank and topic signatures as our
sense modeling components for the generation of semantically-aware pseudowords.
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Table 9
Percentage of similarity-based pseudosenses obtained from different types of WordNet relations.

minFreq 0 200 500 1000

R
el
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n
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pe

Synonyms 24.0 8.3 5.7 4.0
Hypernyms 30.6 17.9 14.2 11.4
Hyponyms 9.6 7.2 5.7 4.6
Meronyms 0.4 0.4 0.3 0.3

Siblings 9.7 17.9 17.2 16.2
Other indirect relations 25.7 48.3 56.9 63.5

Both approaches could solve the low coverage problem, however, the results presented
in this section suggest that the topic signature-based approach is not good at providing
suitable monosemous substitutes for senses of real ambiguous words. A closer look at
the similarity-based and TS-based pseudowords generated for some of the nouns in
the Senseval-3 dataset, shown in Table 8, provides a clear explanation for this short-
coming of topic signature-based pseudowords. In fact, topic signatures are based on co-
occurrence information from the Web snippets retrieved for each sense of an ambiguous
noun. As a result, many of the top-ranking words in each topic signature are syntagmat-
ically related to the given sense. For example, consider the paralysis pseudosense of arm,
european of plan, and moral or weekly pseudosenses of paper. Despite being semantically
related, these pseudosenses cannot be considered as good substitutes for their corre-
sponding senses. Our similarity-based approach, instead, tends to favor paradigmatic,
i.e., taxonomic, relations, which is, in fact, the reason behind its better ability at finding
suitable substitutes for senses of real words.

Given their significantly lower ability at modeling real words, the TS-based pseu-
doword generation approach cannot be considered as a candidate for the generation
of large-scale datasets for our experiments. Hence, we do not consider this type of
pseudoword in our further evaluations and focus on similarity-based pseudowords
only.

4.2 Representative Power of Pseudosenses

In order to maximize the possibility of preserving the meaning of the original synset,
a pseudosense should be selected from the set of words in the same synset, or in
the directly-related synsets (e.g., hypernym synsets). However, many of the WordNet
synsets do not contain monosemous terms and the similarity-based approach often
needs to look further into the other indirectly-related synsets so as to find a suitable
pseudosense. In order to assess how often this happens, we carried out an experiment
to get a clear idea of the exact statistics on the distances of the synsets from which
pseudosenses are selected from the synsets containing the original senses. To this end,
we went through all our similarity-based pseudowords and, for each pseudosense
wi, checked the relationship in WordNet between the synset containing wi and the
corresponding real sense.

We show in Table 9 how the pseudosenses are distributed across different types of
WordNet relations, including indirect ones. As can be seen in the table, when minFreq
is set to 1000, only about 20% of the pseudosenses are picked out from synonyms or
generalization/specialization relations (hypernym and hyponyms). This shows that a
considerable portion of our pseudosenses are selected from synsets that are indirectly
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related to the target synset that is being modeled. These indirectly-related synsets can
potentially result in pseudosenses that do not have very similar meanings to the original
synsets, and hence are not good representatives of them.

Having observed this, we carried out an experiment to evaluate the representative
power of similarity-based pseudosenses, i.e., to assess how well each pseudosense
models its corresponding real sense. For this purpose, we randomly sampled 10 pseu-
dowords for each degree of polysemy from 2 to 12 from the entire set of pseudowords6

generated with minimum frequency of 1000, totaling 110 pseudowords with 770 pseu-
dosenses. We then asked two annotators, neither of whom was an author of this paper,
to judge the representative power of each pseudosense according to the following scale:
1 (completely unrelated), 2 (somewhat related), 3 (good substitute), 4 (perfect substi-
tute). The annotators were provided with the WordNet definitions of the corresponding
synsets.

As an example, consider the pseudowords corresponding to the noun mosaic shown
in Table 10. We present in the table the representativeness scores given by each of our
annotators to the individual pseudosenses of this word. The overall representativeness
score is calculated as the average of the scores given by the two annotators. In the case
of our example, the overall score is 3.085. We also calculated the Spearman correlation
between the scores given by the two annotators for all the 770 cases to be 0.66. We show
in Table 11 (top) the overall representativeness scores averaged for the full set of 770
pseudosenses, classified by polysemy degree. As can be seen from the table, the overall
representative score remains around 3.0 for all polysemy degrees from 2 to 12, with the
overall score being 3.1. This shows that even though about 64% of the pseudosenses
are picked out from indirect relations (when minimum frequency is 1000, cf. Table 9),
they can still be considered as good representatives for their corresponding real senses.
We also present in Table 11 (bottom) the average representativeness scores only for
those pseudosenses that are picked from words in the same synset (synonyms) or in
the directly-related and sibling synsets. As can be seen, the synonymous pseudosenses
are always rated with the highest possible score of 4, whereas those obtained from
direct relations maintain a relatively higher score compared to the overall representative
score which includes many pseudosenses picked from indirect relations. In fact, the
similarity-based pseudoword generation approach improves the vicinity-based method
to full coverage and provides a significantly better level of flexibility for higher values
of minimum frequency, while maintaining a good degree of sense modeling ability.

4.3 Distinguishability between Pseudosenses

A fundamental property of an ambiguous word is that its different senses have distinct
meanings. We expect a semantically-aware pseudoword to inherit this property of its
real counterpart, i.e., to have pseudosenses that are semantically distinguishable from
each other while being semantically similar to their corresponding senses. As an exam-
ple, consider the similarity-based pseudoword philanthropist*benefactor7 corresponding
to the noun donor8. The two pseudosenses of the pseudoword can be considered as good

6 The set contained 15,935 pseudowords corresponding to all the polysemous nouns in WordNet 3.0 (see
also Section 6.2).

7 From WordNet: “Philanthropist: someone who makes charitable donations intended to increase human
well-being”; “Benefactor: a person who helps people or institutions (especially with financial help)”.

8 The term donor has 2 senses according to WordNet 3.0: (1) “person who makes a gift of property”; (2)
“(medicine) someone who gives blood or tissue or an organ to be used in another person (the host)”.
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Table 10
Examples for representativeness scores assigned by the two annotators to pseudosenses of the
term mosaic.

sense sense definition (in short) and synset pseudosense score (1) score (2)

1 art consisting of a design made of small pieces fine_art 3 3{mosaic}

2 viral disease in solanaceous plants disease 4 3{mosaic}

3 a freeware browser web_browser 4 4{mosaic}

4 a pattern resembling a mosaic knowledge 2 1{mosaic}

5 transducer on a television camera tube electronic_equipment 3 3{mosaic}

6 arrangement of aerial photographs photograph 3 4{mosaic, arial_mosaic, photomosaic}
average score 3.17 3.00

Table 11
Average representativeness scores for pseudosenses of different polysemy classes (scores range
from 1 to 4) and from different WordNet relations. We also show, in the last two rows, the
average scores for only those pseudosenses that are picked from synonyms or directly-related
and sibling synsets.

Polysemy 2 3 4 5 6 7 8 9 10 11 12 overall
Overall score 3.3 3.4 3.1 3.1 2.9 3.1 2.9 2.8 3.3 3.1 3.3 3.1
Direct relations and siblings only 3.4 3.6 3.4 3.3 3.4 3.3 2.8 3.0 3.4 3.2 3.8 3.3
Synonyms only 4.0 - - 4.0 - 4.0 4.0 4.0 4.0 4.0 4.0 4.0

representatives for their corresponding senses. However, the distinguishability of the
two real senses is not preserved in the corresponding pseudoword: while philanthropist
only applies to the first sense, benefactor can be equally good for both senses of donor.

Hence, we performed another evaluation in order to determine the degree of the
distinguishability of pseudosenses of our pseudowords. For this evaluation, we used
the same set of 110 pseudowords as in the previous experiment (Section 4.2). For
each of these pseudowords, we presented its pseudosenses in random order to two
annotators. In addition, we provided these annotators with the WordNet definitions of
the senses of the corresponding noun and asked them to associate each pseudosense
with the most appropriate WordNet sense. The annotators were instructed to leave a
pseudosense unmapped if they found it to be equally mappable to multiple senses. We
then calculated the distinguishability score for each polysemy degree as the ratio of the
number of correct mappings to the total number of senses.

For instance, consider the noun mosaic that has six senses in WordNet 3.0. As we also
saw in the previous experiment, the corresponding similarity-based pseudoword for
this noun is fine_art*disease*web_browser*knowledge*electronic_equipment*photograph. As
illustrated in Figure 2, we provided the shuffled list of pseudosenses of this pseudoword
(left column) and the WordNet definitions of the senses of its corresponding noun, i.e.,
mosaic (right column), to each annotator and asked them to map each pseudosense to
its most suitable real sense. In this case, both annotators mapped all pseudosenses to

20



Pilehvar and Navigli A Large-scale Pseudoword-based Evaluation Framework for WSD

web browser 

 

fine art 
 

electronic equipment 
 

photograph 

 

disease 

 

knowledge 

art consisting of a design made of small pieces 
{mosaic} 
 

viral disease in solanaceous plants 
{mosaic} 
 

a freeware browser 
{mosaic} 
 

a pattern resembling a mosaic 
{mosaic} 

transducer on a television camera tube 
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{mosaic, arial_mosaic, photomosaic} 
 

Figure 2
Mappings provided by an annotator from pseudosenses of the similarity-based pseudoword for
the noun mosaic to its real senses (as defined in WordNet 3.0). In this case all mappings are
correct and hence the distinguishability score for this pseudoword will be 6/6=1.

Table 12
Average distinguishability scores for pseudosenses of different polysemy classes (scores range
from 0 to 1).

Polysemy 2 3 4 5 6 7 8 9 10 11 12 overall
Distinguishability score 0.90 0.83 0.83 0.82 0.81 0.77 0.75 0.73 0.80 0.71 0.70 0.79

their correct senses; hence, the distinguishability score given by each annotator for this
pseudoword was 6/6 = 1.

We show in Table 12 the average distinguishability scores for each degree of pol-
ysemy 2 to 12 as well as the overall score which is calculated as the average of per-
polysemy scores. As can be seen in the table, the distinguishability score is inversely
proportional to the polysemy degree (there is a high negative Pearson correlation of 0.9
between the two). However, the score remains above 0.70 even for the pseudowords
with higher polysemous degrees. The overall score of 0.79 shows that a large portion
of pseudosenses can be associated with their corresponding real senses only. Therefore
we can conclude that the similarity-based pseudowords effectively preserve the distin-
guishability of senses of their real counterparts.

4.4 Discussion

We performed three experiments to evaluate the reliability of our pseudowords. We
showed that the similarity-based pseudowords are fairly close to their real counterparts
in terms of disambiguation difficulty. Even though our similarity-based pseudowords
were slightly easier to disambiguate in comparison to real words, the high correlation
observed in the first evaluation (Section 4.1) serves as a guarantee that our pseudowords
can be reliable substitutes for real words in experiments concerning the analysis and
comparison of WSD systems.

Our further experiments provided manual evaluations of the representativeness of
individual pseudosenses of our similarity-based pseudowords as well as the distin-
guishability of their pseudosenses from one another. In the representativeness exper-
iment, we assessed, for each individual sense of each pseudoword in our sample set,
if the meaning of the corresponding real sense is preserved and if each pseudosense
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Table 13
Number of distinct nouns annotated in SemCor at least 1, 10 or 20 times. We also show the total
number of WordNet ambiguous nouns (last row) for different polysemy degrees.

Polysemy 2 3 4 5 6 7 8 9 10 11 12 >12 total
Frequency ≥ 1 2349 1315 703 453 241 183 81 91 57 45 23 49 5590
Frequency ≥ 10 301 242 196 180 122 97 61 60 43 35 20 43 1400
Frequency ≥ 20 122 97 112 111 70 63 47 42 29 24 15 35 767
WN amb. nouns 10257 2989 1178 620 306 212 96 94 60 48 25 50 15935

can be considered as a good representative of its corresponding real sense. Finally, in
the distinguishability experiment our aim was to investigate the ability of similarity-
based pseudowords at preserving the distinguishability among senses of real words.
Experimental results proved that the similarity-based approach is able to provide a good
modeling of individual senses of real words while preserving the distinguishability of
their senses.

5. Sampling Pseudosense-Tagged Corpora

As a result of our evaluations we know that the similarity-based pseudowords are
reliable substitutes for real ambiguous words in the disambiguation task. As described
in Section 3, a pseudosense-tagged corpus can be generated for each pseudoword
p = w1 ∗ w2 ∗ . . . ∗ wn by substituting individual occurrences of its pseudosenses wi

with the pseudoword p itself, while marking the pseudosense wi as its annotation. An
obvious question that arises here is how to sample and distribute the sentences for a
pseudoword across its pseudosenses. In the following two subsections we illustrate two
corpus sampling strategies used in our experiments.

5.1 Uniform Sense Distribution

A first, simple sampling strategy for pseudosense-tagged corpora is the uniform sense
distribution. In this setting, all senses of a pseudoword are assumed to be observed with
equal probability in the tagged corpus, i.e., we extract the same number of sentences
from the corpus for each pseudosense of a given pseudoword.

5.2 Natural Sense Distribution

While the uniform distribution can be useful in specific applications such as dictionary
disambiguation (Litkowski 2004; Flati and Navigli 2012), or knowledge resource map-
ping (Navigli and Ponzetto 2012a; Matuschek and Gurevych 2013), in natural text we
know that most of the occurrences of an ambiguous word correspond to a usually small
subset of predominant senses of that word (Zipf 1949; Sanderson and Van Rijsbergen
1999). In other words, occurrences of an ambiguous word in a real text are usually
distributed across its senses according to a highly skewed distribution. In order to
model this natural distribution, we adopt a distribution sampling strategy. To this end
we estimate sense distributions from SemCor (Miller et al. 1993), the largest sense-
tagged corpus of English. However, as we show in Table 13, SemCor provides reliable
distribution estimates for only some hundred words. The table shows for each degree
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Table 14
Average sense distribution for nouns in SemCor. We select only those nouns for which there exist
at least 10 sense-tagged occurrences in SemCor.

Poly. p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
2 87.8 12.2
3 78.1 17.9 4.0
4 72.9 19.6 6.4 1.1
5 71.0 18.8 7.4 2.3 0.4
6 65.4 21.5 8.5 3.1 1.2 0.3
7 61.2 23.0 9.5 4.1 1.8 0.4 0.1
8 62.7 20.9 9.3 4.4 1.8 0.6 0.2 0.1
9 56.0 22.4 10.4 5.6 3.4 1.6 0.6 0.0 0.0

10 51.1 24.4 11.7 7.0 3.6 1.4 0.6 0.2 0.0 0.0
11 50.7 23.5 12.0 6.8 3.6 1.7 1.0 0.4 0.2 0.1 0.0
12 54.3 18.2 9.1 7.2 4.4 2.7 2.1 1.4 0.5 0.1 0.0 0.0

of polysemy the number of distinct nouns in SemCor which are sense-annotated at least
once, 10 or 20 times, compared to the corresponding total number of ambiguous nouns
in WordNet (last column in the table). Since we could obtain from SemCor the sense
distribution of only some hundred low-polysemy nouns and a few dozens of high-
polysemy nouns, we decided to drop the requirement of estimating sense distributions
directly, i.e., to model the semantically-aware pseudoword pw on the sense distribution
of w. Instead, we first collected all the sense distributions of nouns with at least 10
occurrences in SemCor. Our choice of 10 as the minimum occurrence frequency was
to guarantee some hundreds of distributions for lower polysemy degrees and dozens
for the higher ones (see Table 13). In addition, given the highly skewed nature of sense
distributions in SemCor, 10 samples should usually be enough for a reliable estimation
of the corresponding sense distributions to be made, even for higher polysemy degrees.
Having at hand a large set of distributions estimated for each polysemy degree, every
time we needed a new pseudoword with m senses, we randomly picked out a sense
distribution of size m from our collection.

We show the macro-averaged9 sense distribution for each polysemy degree from
2 to 12 in Table 14. As can be seen from the table, all average distributions, especially
those of low polysemy nouns, are skewed towards predominant senses.

6. Experimental Setup

In this paper up to this point we have provided the basis for creating large-scale
pseudosense-annotated datasets by proposing a flexible approach for generating
semantically-aware pseudowords which model arbitrary real words. We have also ex-
plained different sampling strategies for distributing pseudosense-annotated sentences
according to two different distributions. We are now ready to set up our experimental
framework for large-scale WSD.

9 There are some outliers in SemCor that would have negatively affected the average distributions if
micro-averaging was used. For instance, the 3-sense word person has over 6,000 instances, all of which are
tagged with the first sense. This would bias the micro-averaged sense distribution given that there exist
approximately an overall 17,000 instances for 3-sense nouns. For our sampling strategy, though, we do
not need distribution averaging.
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We first describe the text corpus used in our experiments (Section 6.1), then explain
how we selected a reliable subset of pseudowords for the experiments (Section 6.2),
followed by a description of the process of generating training and test datasets (Section
6.3). In Section 6.4 we introduce the two WSD systems used as representatives of the two
main WSD paradigms (i.e., supervised and knowledge-based) in our experiments. We
then provide, in Section 6.5, the details of the method through application of which our
knowledge-based system is able to benefit from the training data. Finally in Section 6.6
we describe the evaluation measures used in our experiments.

6.1 Corpus

We sampled all the sentences for pseudosense tagging from the English Gigaword
corpus (Graff and Cieri 2003), a comprehensive corpus of English newswire text. The
corpus comprises about 4.1 million documents each containing an average of 430 words,
totaling approximately 1.76 billion words. In a preprocessing phase, we removed sen-
tences whose length was either longer than 50 words or shorter than 10 words. The
corpus was then annotated with part-of-speech tags using the C&C tagger (Curran and
Clark 2003) trained on the Penn Treebank (Marcus et al. 1994). The resulting corpus
contained around 50 million sentences.

6.2 Pseudoword selection

As a result of our similarity-based approach, we could generate as many pseudowords
as polysemous nouns in WordNet 3.0 (i.e., 15,935 pseudowords). However, for two
reasons that will be explained shortly, we only considered a reliable subset of these
pseudowords for generating the datasets for our experiments.

Firstly, we did not consider nouns with polysemy degree higher than 12 in our
experiments, as it is not possible to perform a reliable analysis on such degrees given
that very few pseudowords can be generated for them (about 0.3% of ambiguous
nouns in WordNet have polysemy degree 13 or higher). Secondly, we observed that in
practice a large enough portion of pseudowords for each polysemy degree can provide
a reliable performance estimation on that polysemy degree. Therefore, we selected, for
each polysemy degree, the top 300 pseudowords according to the calculated averageRank
score (cf. Section 3.2). Given that the score denoted our confidence in the preservation
of meaning while modeling pseudosenses, this top-ranking subset of pseudowords
is the most reliable one. Table 15 (first row) shows the distribution of this subset of
pseudowords across different degrees of polysemy. Note that for polysemy degrees 6 to
12, where there exist less than 300 nouns in WordNet, we consider all the corresponding
pseudowords. In Appendix A, we show that this subset is large enough for an accurate
estimation of the performance of a WSD system. We also sampled a separate set of
199 pseudowords for tuning purposes (cf. Section 6.5.1 for tuning). Table 15 (second
row) shows the distribution of this tuning set of pseudowords across different polysemy
degrees.

6.3 Generating datasets

Dataset size. The first question that comes to mind before generating datasets is that
of the number of sentences to be pseudosense-tagged for each pseudoword. As we
showed in Section 3.2 (Table 5), the minimum occurrence frequency (minFreq, which
corresponds to the number of sentences to be tagged with a particular pseudosense)
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Table 15
Number of pseudowords per degree of polysemy (2 to 12) in our test and tuning sets.

Polysemy 2 3 4 5 6 7 8 9 10 11 12 Total
Test set 300 300 300 300 278 192 84 87 54 43 22 1960
Tuning set 30 30 30 30 28 19 9 9 6 5 3 199

Table 16
Statistics of the averageRank score of the subset of pseudowords selected for our experiments: we
show mean and mode statistics for six different values of minimum occurrence frequency
(minFreq) and for each polysemy degree (average value is presented in the case of multiple
modes).

minFreq 0 200 500 1000 2000 5000
poly. mean mode mean mode mean mode mean mode mean mode mean mode
2 1.0 1.0 1.0 1.0 1.1 1.0 1.2 1.0 1.5 1.0 1.9 2.0
3 1.0 1.0 1.6 2.0 2.3 2.7 2.8 3.2 3.5 4.0 5.4 7.7
4 1.0 1.0 2.4 3.0 3.8 5.3 5.2 7.1 6.8 7.4 11.6 14.8
5 1.4 1.0 3.8 5.0 6.2 5.6 8.8 13.6 12.5 14.4 20.8 18.2
6 2.1 2.0 6.4 4.0 10.2 3.8 14.8 12.2 20.8 17.2 35.8 26.0
7 2.0 2.0 6.4 6.0 10.1 8.4 14.0 7.7 20.3 18.9 33.7 27.3
8 1.9 2.0 6.5 4.0 10.1 9.8 15.9 13.5 23.9 21.9 37.9 42.6
9 2.0 2.0 6.3 4.0 10.7 12.4 15.4 17.6 22.6 30.2 36.0 37.9
10 2.0 2.0 5.7 5.0 9.2 7.9 13.3 15.0 20.9 19.2 31.9 31.9
11 2.1 2.0 6.8 8.0 10.8 13.6 13.9 11.5 20.0 7.5 32.0 35.7
12 2.2 2.0 5.6 4.0 10.5 10.5 14.3 23.3 21.7 21.7 37.0 32.5
overall 1.5 1.0 3.8 1.0 6.0 1.0 8.4 1.0 11.9 2.0 19.7 2.0

directly affects the averageRank score, a measure that we interpreted as our confidence in
the preservation of meaning of a real sense through its corresponding pseudosense. This
suggests a trade-off between the scale of our experiments and their overall accuracy. We
show in Table 16 the statistics of the averageRank score for the subset of pseudowords
selected for our experiment when six different values of minFreq were assumed while
generating pseudowords. Currently, the MASC corpus (Ide et al. 2010), even though
covering a small set of 20 nouns, provides the highest number of manually annotated
instances per word, i.e., 1000 sentences. In our experiments we followed MASC and
generated 1000 annotated instances for each of our 1960 pseudowords. As can be seen
from Table 16, when minFreq=1000, a pseudosense is on average selected from the 8.4th

position in the similarSynsets list (given by mean) with most of them being picked out
from the first position (given by mode).

Dataset configurations. In addition to being large-scale and accurate, we also wanted
our experiments to cover a wide range of possible real-world scenarios. In Section 5,
we identified two different sense distributions according to which we could produce
pseudosense-tagged corpora, namely the uniform distribution and the natural one. In
our experiments, we considered all the four possible ways of combining the sense distri-
butions of training-test data, i.e., Natural-Natural (Nat-Nat), Uniform-Uniform (Uni-Uni),
Uniform-Natural (Uni-Nat), and Natural-Uniform (Nat-Uni). We provide the following
rationale for each of them:
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Figure 3
Sense distribution in a naturally distributed text as well as the average of sense distributions
across different domains.

Nat-Nat. This is the traditional open-text WSD scenario (Kilgarriff and Rosenzweig
2000; McCarthy et al. 2004), in which senses are naturally distributed according to the
same distribution both in the training and the test datasets.

Nat-Uni. This configuration trains a WSD system with a natural distribution but applies
it to texts for which the distribution is unknown (e.g., in different domains). Given
that any choice of a different sense distribution for the test dataset would have been
arbitrary, we selected the uniform one as the approximate average of sense distribu-
tions across different domains. In other words, our assumption was that the uniform
distribution could be thought of as the fairest different distribution. To verify this, we
studied the variability of sense distribution across texts belonging to different domains.
We started from a dataset of sense-annotated documents from 30 different domains
provided by Faralli and Navigli (2012). We then estimated the average sense distribution
of all nouns across documents, shown in Figure 3 (light columns) for polysemy degrees
2 to 12 as sorted according to WordNet sense order. As can be seen, the average sense
distribution across domains is not skewed, in contrast to the natural sense distribution
(dark columns in the figure). In addition, this configuration models a setting in which
the system is not effectively provided with knowledge of all senses in the test set.

Uni-Uni. This configuration assumes a system with the same amount of knowledge for
all senses, tested on a task in which all senses are equally important. As is also the case
for the Nat-Uni configuration, the uniformly distributed test set in Uni-Uni also models
tasks such as dictionary disambiguation, in which sense-wise precision matters (Flati
and Navigli 2012).

Uni-Nat. Similarly to Uni-Uni, this configuration takes no stand on the training sense
distribution, but tests it on naturally-distributed data.

Dataset split. We created our training and test sets by sampling 1,000 sentences per
pseudoword from the Gigaword corpus for each of the two sense distributions, i.e.,
natural and uniform. Out of these sentences, we kept 200 (i.e., 20%) as test set and used
the remaining 800 (i.e., 80%) for training. In order to be able to analyze the impact of
the amount of knowledge on the disambiguation performance, the 800 sentences in the
training dataset were split into 10 different subsets of varying size (from 80 sentences,
i.e., 10% of training instances, to the full set of 800 sentences in 10 steps) while at
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the same time preserving the original sense distribution for all these sets. Overall, the
datasets comprised about 2 million10 pseudosense-tagged sentences for each of the four
configurations.

6.4 Systems

We chose state-of-the-art off-the-shelf representatives for the two mainstream WSD
paradigms, i.e., supervised and knowledge-based WSD.

6.4.1 Supervised: It Makes Sense (IMS). In our experiments we used It Makes Sense
((Zhong and Ng 2010), IMS) as the representative supervised WSD system. IMS is a
publicly available English all-words WSD system achieving state-of-the-art results on
several Senseval and SemEval tasks.11 The system classifies words in context using
linear support vector machines. The context (a sentence in our case) is represented as
a standard vector of features including parts of speech, surrounding words, and local
collocations (Lee and Ng 2002).

For each of the four configurations (see Section 6.3) and for each pseudoword IMS
was trained with the corresponding training set and the learned word expert model
was then applied to the test set. In our experiments, we used the default configuration
of IMS where the system adopts a linear SVM classifier with L2-loss function.

6.4.2 Knowledge-based: UKB. As the state-of-the-art knowledge-based WSD system,
we used UKB.12 UKB is a publicly-available graph-based WSD system which exploits
a pre-existing lexical knowledge base (Agirre, Lopez de Lacalle, and Soroa 2014). UKB
provides an implementation of the Personalized PageRank (PPR) algorithm (Haveli-
wala 2002), adapted to the task of WSD, as proposed by Agirre and Soroa (2009). PPR is
applied to a graph representation of a Lexical Knowledge Base (LKB), which is typically
WordNet or an extension of it with additional semantic edges. We used the w2w variant,
which has been shown to perform best (Agirre and Soroa 2009), where PPR is initialized
by concentrating the probability mass on the context words other than the target word
to be disambiguated. The most suitable sense of the latter is then chosen by selecting
the highest-ranking vertex (i.e., sense) of the word.

Similarly to IMS, we used for UKB the corresponding training set in each training-
test configuration. However, a typical knowledge-based WSD system (such as UKB)
cannot directly learn from the training data (which, instead, is naturally suited to
supervised WSD systems). In the following section we describe the method used in
our experiments to transfer these data into readily-available knowledge for UKB.

Hereafter, we will use IMS and UKB to mean supervised and knowledge-based
systems, respectively, since we consider these two systems as state-of-the-art represen-
tatives of their corresponding paradigms.

6.5 Enriching the LKB using training data

Whereas supervised WSD exploits a training set to perform sense classification,
knowledge-based approaches use lexical knowledge bases instead. Therefore, a simi-

10 1,000 sentences × (1960+199) pseudowords.
11 http://nlp.comp.nus.edu.sg/software/ims/
12 http://ixa2.si.ehu.es/ukb/
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Figure 4
Enriching the WordNet LKB by adding edges between airplane and its top-K most similar words
(as obtained from the corresponding training set). For brevity, we show only a small part of
nodes here (airplane is connected to 40 other synsets in WordNet). The dashed lines correspond
to existing edges in WordNet whereas solid lines represent the new additional edges. The
highlighted nodes are the new direct neighbours of airplane in the enriched LKB graph.

lar operation to that of providing an increasingly large training set is to enrich basic
knowledge bases such as WordNet with additional semantic edges, as has previously
been done, among others, by Navigli (2005), Cuadros and Rigau (2008) and Navigli and
Lapata (2010). The automatic knowledge injection step, however, is less immediate and
natural than the supervised one. In fact, pseudowords cannot be directly used to obtain
a ready-to-use set of relation edges. To cope with this issue, in each configuration, we
used the corresponding training set (on which IMS was trained) to extract knowledge
that could be used to enrich the WordNet LKB.13 To this end, given a pseudoword p and
for each pseudosense wi ∈ p, we identified the most semantically related words w′ to wi

using the Dice coefficient:
2c(wi, w

′)

c(wi) + c(w′)
(1)

where c(wi, w
′) is the number of sentences in which wi and w′ co-occur, and c(wi) and

c(w′) are the total number of sentences containing individual occurrences of wi and w′

respectively. We then connect, in the WordNet graph, wi to all the senses of each of
the top-K related words. Ideally, the corpus used for calculating these statistics should
be fully sense-tagged, i.e., each usage of an ambiguous co-occurring word tagged with
the intended sense. However, since our training data (as is customary for WSD lexical
sample datasets) does not provide sense annotations for context words, these edges are
semi-noisy in that we connect an unambiguous endpoint wi to all senses of w′.

As an example, consider the pseudosense wi = airplane which is directly linked to
40 other nodes (synsets) in WordNet: 15 hyponyms, 10 meronyms, 14 domain related
synsets, and a hypernym. We show 10 of these connections in Figure 4 (dashed lines).

13 We used the WordNet 3.0 LKB provided in UKB.
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By exploiting the sentences tagged with pseudosense airplane in the training set, we
obtain the list of K top-ranking semantically related words using the above-mentioned
procedure. We then connect in the WordNet graph airplane1n to every sense of these
words (we show 10 such new linkings in the figure). The highlighted nodes in the
figure are the new direct neighbours of airplane1n in the enriched graph. As can be
seen in the example, our enrichment approach provides many additional syntagmatic
relations to the initial mostly paradigmatic relations in WordNet. As a result of this
enrichment procedure, we are able to generate a LKB consisting of WordNet plus semi-
noisy semantic edges obtained from the co-occurrence statistics of each pseudosense of
our pseudowords.

6.5.1 Tuning. While we described the method used in our experiments to obtain new
semantic edges with the help of co-occurrence statistics, we did not show how we set the
value of K, i.e., the number of top-ranking related words we obtain from a given set of n
pseudosense-tagged sentences to be used for LKB enrichment. To calculate the optimal
value of K, we carried out a tuning experiment on a dataset built for our subset of 199
pseudowords dedicated for tuning (cf. Section 6.2). In order to consider the dataset size
factor in our tuning, we experimented on three different sizes of training data: 80, 400
and 800 sentences (first, middle and last size steps). For each of these training dataset
sizes, we generated LKBs for different values of K and carried out disambiguation on
the tuning test set.

Figure 5 shows how the UKB recall performance (for more details on our evalu-
ations measure see Section 6.6) varies when the value of K is varied from 25 to 800
(in increasing steps of 25). We show in the figure the average performance value for
the three training sizes (i.e., 80, 400, and 800). As can be observed from the figure,
recall is not always directly proportional to the number of additional edges. In fact,
after a certain point recall starts to decay as the number of additional edges increases.
We present in Table 17 the corresponding values for a part of Figure 5 (i.e., K in the
range [25, 300]) where the optimal recall value seems to occur for all four dataset
configurations. As can be seen in the table, the best performance occurs at K = 125 for
Uni-Uni and Nat-Nat configurations. However, the best performance is seen at K = 75
and K = 150 for Uni-Nat and Nat-Uni configurations, respectively.

Given that for the supervised system we did not perform any tuning based on the
sense distribution of the test dataset, in order to enable a fair comparison we chose
the same optimal K value irrespective of the test data. The last two rows in the table
show the average performance for the two distributions of training data (for instance
“Uni-*” stands for the average performance over Uni-Uni and Uni-Nat configurations).
It can be seen that the maximum average performance occurs at K = 125 for the Uni
training data and at K = 150 for the Nat training data. Therefore, depending on the
sense-distribution of training data, we used two different cutting thresholds (K) on the
number of related words considered for enriching the corresponding LKB.

6.6 Evaluation measures

It is customary in the WSD literature to evaluate the performance of a disambiguation
system based on precision, recall and F1 measure (Navigli 2009). Precision calculates
the portion of items that are correctly disambiguated from among the total output by
the system, whereas recall measures the portion of the total items in the dataset that
are correctly disambiguated by the system. F1 is the harmonic mean of precision and
recall. Since in our setting all the pseudowords to be disambiguated in the test set are
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Figure 5
UKB recall performance when varying the number of top-ranking related words used for the
LKB enrichment (K) from 25 to 800 (in 32 steps). We show the average performance over three
sizes of training data: 80, 400 and 800 sentences.

Table 17
Recall performance of UKB when varying K for all the four dataset configurations. The last two
rows show the average performance for each training data distribution. The maximum values
for each configuration are shown in bold.

edges (K) 25 50 75 100 125 150 175 200 225 250 275 300
Uni-Uni 57.65 58.54 59.27 59.53 59.71 59.54 59.35 59.06 58.90 58.63 58.50 58.48
Nat-Nat 64.32 65.42 65.86 65.93 66.09 66.07 66.07 66.07 65.87 65.78 65.58 65.42
Uni-Nat 59.28 59.87 60.36 60.33 60.26 60.28 60.04 60.02 59.90 59.86 59.68 59.65
Nat-Uni 55.01 56.08 56.52 56.84 57.05 57.14 57.11 57.11 57.00 56.93 56.67 56.46
Uni-* 58.47 59.20 59.82 59.93 59.99 59.91 59.69 59.54 59.40 59.24 59.09 59.06
Nat-* 59.66 60.75 61.19 61.38 61.57 61.61 61.59 61.59 61.43 61.35 61.13 60.94

covered in the training data and also included as a node in the LKB, IMS and UKB
always provide an answer for each item in the test set. For such a full-coverage case, the
values of precision, recall and F1 will be equal. Hence, in our experiments, we report the
recall performance of the systems only. In addition, throughout this paper, we present
the results in terms of recall percentage, i.e., the value of recall multiplied by 100.

7. Experiments and Results

As discussed in the experimental setup, WSD experiments were carried out with IMS
and UKB when injected an increasingly higher amount of supervision and knowledge
respectively, i.e., from 0 to 800 training sentences (cf. Section 6.3). We show the overall
recall performance of both systems on natural and uniform test sets in Tables 18 and
19 respectively.14 Note that in each table the training set can also be either uniformly
or naturally distributed, resulting in an overall 4 training-test configurations for each
system in the two tables. For each configuration, we show the recall performance

14 Symbols in the tables are for easier referencing.
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Table 18
Performance of IMS and UKB on the naturally distributed test set when varying the size of the
training set per pseudoword (MFS for Nat-Nat = 70.5%). Note that we do not report an MFS
baseline for Uni-Nat configuration as there is no most frequent sense in the training data.

Config. Train System Size of training data
0 80 160 240 320 400 480 560 640 720 800

Nat-Nat Nat IMS - 81.9∗ 84.4 86.4 87.4 88.2 88.7 89.3 89.7 90.0 90.3?

UKB 38.8 56.5� 59.2 61.1 62.1 62.8 63.4 63.8 64.2 64.4 64.6♦

Uni-Nat Uni IMS - 59.8 66.3 69.8 72.2 74.0 75.2 76.3 77.2 77.9 78.6
UKB 38.8 53.6 55.2 56.4 57.5 58.4 59.1 59.7 60.1 60.5 60.8

Table 19
Performance of IMS and UKB on the uniformly distributed test set when varying the size of the
training set per pseudoword (MFS = 25.0%). Note that, for Uni-Uni, the MFS baseline is not
affected by the choice of the most frequent sense in the training data.

Config. Train System Size of training data
0 80 160 240 320 400 480 560 640 720 800

Nat-Uni Nat IMS - 35.7∗ 39.0 41.1 42.5 43.8 44.6 45.4 46.0 46.6 47.1?

UKB 38.8 52.3� 54.4 55.7 56.5 57.1 57.4 57.8 58.1 58.4 58.6♦

Uni-Uni Uni IMS - 59.8 66.4 70.0 72.5 74.3 75.5 76.6 77.5 78.2 78.9
UKB 38.8 53.9 55.4 56.5 57.6 58.6 59.3 59.9 60.3 60.7 61.0

values as we vary the size of the corresponding training set from 0 to 800 sentences
per pseudoword (whereas the size of the test set, which comprises 200 sentences per
pseudoword, is the same across different training sizes, cf. Section 6.3). For 0 training
size, we only show the results of UKB, which is merely based on the vanilla WordNet
LKB.

The Most Frequent Sense (MFS) baseline values for the naturally and uniformly
distributed test sets are 70.5% and 25.0% respectively. The best recall performance
(among the two systems) in each training-test configuration and for each size of the
training dataset is shown in bold.

7.1 General overview of the results

We observe that IMS has a considerably larger performance variation across different
configurations (ranging from 35.7%∗ to 81.9%∗ with 80 training sentences, and from
47.1%? to 90.3%? with 800), whereas UKB is less sensitive to training and test distri-
butions (52.3%�-56.5%� with 80 training sentences, and 58.6%♦-64.6%♦ with 800). The
performance of IMS (Nat-Nat) with 160 training sentences is in line with competitive
results on the Senseval-3 lexical sample dataset (Mihalcea, Chklovski, and Kilgarriff
2004) in which there exist around 180 training sentences for each noun on average. In
fact the latter are in the 73% ballpark against an MFS recall of 55.2% (Zhong and Ng
2010), whereas IMS obtains 84.4% against 70.5% MFS in our setting. The 15% shift in
MFS is due to the sense distribution of our Nat dataset which is more skewed towards
frequent senses compared to that of the Senseval-3 lexical sample dataset. In addition,
the average polysemy degree of our pseudowords is slightly lower than that of the
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Senseval-3 nouns (average polysemy 5.1 of pseudowords vs. 5.8 of Senseval-3 nouns)
which also contributes to higher recall in our experiments.

7.2 Corroboration of previous findings on a large scale

Before moving to a detailed analysis and discussion of our results, we briefly report
here on the results of the experiments which were conducted in order to confirm some
of the previous findings in the literature on a large scale. We provide the details of these
experiments in Appendix B. In summary, we were interested in verifying:r The relation between system’s performance and polysemy degree: our

results confirm previous findings by Palmer, Dang, and Fellbaum (2007)
that the two are inversely proportional. We also found IMS to be
particularly robust on highly polysemous words in the Nat-Nat
configuration. The inverse proportionality was approximately logarithmic
in all system configurations except for IMS in the Nat-Nat configuration in
which the proportionality was linear (Appendix B.1).r The relation between connectivity of a node in the LKB and
disambiguation accuracy: we found that the higher the connectivity of a
node, the more accurate will be its disambiguation. This corroborates the
preliminary findings of Navigli and Lapata (2010) on a much larger scale
(Appendix B.2).

Previous work has made claims only on significantly smaller amounts of annotated
data (e.g., in (Navigli and Lapata 2010)), whereas we show for the first time that these
hold in large-scale experiments with several orders of magnitudes more annotated data.

7.3 UKB largely benefits from semi-noisy edges

Thanks to our framework, we can go in considerably greater details on the second point
that we verified in Section 7.2. As can be seen in Tables 18 and 19, the enrichment of the
WordNet LKB proves to be highly beneficial. The performance of UKB increases signif-
icantly, even when the edges are harvested from a low number of training sentences,
which is particularly impressive because the added edges are semi-noisy. In fact, recall
grows, with Nat test, from 38.8% to 56.5% (Nat-Nat) and 53.6% (Uni-Nat), and, with Uni
test, from 38.8% to 52.3% (Nat-Uni) and 53.9% (Uni-Uni), when using just 80 training
sentences per pseudoword. The impact of semi-noisy edges is even higher with more
training data, ranging between +19.8% and +25.8% improvement when the full set of
800 training sentences is used.

7.4 Performance of the systems in different configurations: IMS leads

Except in the Nat-Uni, IMS outperforms UKB in all other configurations. The gap is
particularly evident in the Nat-Nat configuration which is the typical setting for lexical
sample WSD tasks. The performance of UKB is closer to that of IMS for smaller sizes
of training data irrespective of the configuration. The gap, however, expands with the
growth in the number of sentences in the training set. This shows that the learning rate
of IMS is faster than that for UKB.
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Table 20
Performance of UKB on Nat-Nat configuration when injected with the pseudoword-specific
(specific) and average sense distribution (average) information as well as the original
performance values for UKB and IMS (as reported earlier in Table 18). All the improvements of
the UKB (specific) and UKB (average) systems over the UKB (original) system are statistically
significant at the p < 0.001 level.

Size of training data 0 80 160 240 320 400 480 560 640 720 800
IMS - 81.9∗ 84.4 86.4 87.4 88.2 88.7 89.3 89.7 90.0 90.3
UKB (original) 38.8 56.5 59.2 61.1 62.1 62.8 63.4 63.8 64.2 64.4 64.6
UKB (specific) 65.6 78.0∗ 78.8 79.2 79.5 79.7 79.9 80.1 80.3 80.4 80.4
UKB (average) 58.7 75.2 75.8 76.3 76.7 76.8 76.9 77.0 77.1 77.2 77.2

Nat-Uni is the only configuration in which UKB surpasses IMS. The low perfor-
mance of IMS shows that providing enough training instances for all senses is always
beneficial for IMS, and this happens in the Nat-Nat, Uni-Uni and Uni-Nat configura-
tions.

IMS benefits from two advantages in the Nat-Nat configuration: (1) It is aware of
the sense distribution in the test set; (2) Due to the skewed sense distribution in this
configuration, often some of the senses of a word are not covered in the training data
(and in the test set as well). This reduces the number of classes in the classification
task, making it a potentially easier task to carry out. We will talk more about the first
point in Section 7.6. The second point, i.e., the partial coverage of senses, even though
making the disambiguation an easier task in the Nat-Nat configuration, is responsible
for the very low performance of IMS on the uniformly-distributed test set (i.e., Nat-Uni
configuration). UKB, on the other hand, is not as sensitive as its supervised counterpart
to the sense distribution, making it robust across different configurations, with generally
lower performance, however.

7.5 UKB is more robust with respect to sense skewness

To investigate if our WSD systems are biased in favor of more frequent senses, we
calculated the recall performance by sense predominance in the Nat test setting (in
the Uni test setting we assume no sense predominance). In other words, we separately
calculated the recall performance of IMS and UKB on items tagged in the test set with
the first (i.e., most frequent) sense of each pseudoword, the second (i.e., second most fre-
quent) sense, and so on. We show in Figure 6 the overall recall by sense predominance,
averaged over the 10 training sizes for each of the two possible configurations with Nat
test set. As can be seen UKB tends to be more robust across sense ranking, irrespective
of the distribution of the training data. In contrast, IMS is not equally robust across
configurations: while its recall is relatively stable in the Uni-Nat configuration, it is not
when the training set is naturally distributed (Nat-Nat). In fact, this shows that IMS,
when trained on naturally-distributed data, is biased towards classifying most of the
instances as more frequent senses. This lack of robustness is shown in the figure from
the rapid performance drop of IMS in the Nat-Nat configuration (from 97.1% recall on
the most predominant sense to about 11.3% on the tenth pseudosense of a pseudoword),
indicating that the system tends to perform considerably better on more frequent senses
when a natural distribution is assumed.
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Figure 6
Recall by sense predominance in the naturally distributed test set (we show up to 10th order,
since higher orders do not have many instances to provide reliable results).

7.6 Impact of the knowledge of sense distribution

Previous work (Escudero, Màrquez, and Rigau 2000; Agirre and Martínez 2004; Chan
and Ng 2005b) has highlighted the impact of the underlying sense distribution for a
supervised disambiguation task. However, we do not know much, especially on a large
scale, on the effect of integrating sense distribution information into knowledge-based
systems. In order to gain more insight into this, we carried out a pilot study to see how
much improvement UKB can gain if explicitly provided with domain knowledge in the
form of sense distribution, so as to give the same advantage to both knowledge-based
and supervised systems. UKB provides, for each disambiguation instance, a probability
distribution over the senses of the target word where each probability value can be
regarded as the chance of the corresponding sense to be selected in the given context. A
possible way to inject the sense distribution knowledge into UKB is to scale the scores
assigned to each sense by the corresponding probability values in the sense distribution.
According to this procedure, the scaled score Pi for the ith sense of a target word w (with
|S| senses) is obtained by:

Pi =
pidi∑

s∈S psds
(2)

where di is the probability of the ith sense according to the corresponding sense dis-
tribution and pi is the probability score assigned to the ith sense of w by UKB in
the given context. In this way we provide UKB with additional information that can
increase the selection chance of more frequent senses in situations wherein the system
is not confident in its choice of the winning sense (i.e., instances where UKB considers
comparable chances for multiple senses to be selected). We used two different ways of
calculating sense probability values di:

r Pseudoword-specific sense distribution, where the probability values are
directly calculated from the corresponding pseudoword that is being
disambiguated.
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r Average distribution, where values of di are the average per polysemy
probabilities estimated using SemCor (cf. Table 14).

We show in Table 20 the overall UKB performance in the Nat-Nat configuration when
injected the pseudoword-specific and average sense probabilities. We can see from
the table that, when using only the WordNet LKB (training size = 0), the provided
pseudoword-specific information can boost the performance of UKB by over 26% (from
38.9% to 65.6%). For other sizes of the training data an improvement of 15% to 21%
is achieved. When provided with this additional sense distribution information, UKB
yields performance comparable to that of IMS (especially for smaller sizes of the training
data, e.g., 78.0∗ of UKB vs. 81.9∗ of IMS for training size 80). Note that, being a super-
vised system, IMS already benefits from this pseudoword-specific sense distribution
information. Similarly, when provided with the average sense distribution information,
UKB exhibits a considerable improvement ranging from 20% for WordNet LKB only
(training size = 0) to 12% for the training size of 800 sentences.

7.7 Performance upperbound of the systems

A possible way to examine how well a system fits the training data is to carry out
training and test on the same dataset. This is precisely the setting we explore in this ex-
periment. Our aim was to have an estimate on the performance upperbound of each of
our two WSD systems. We observed that IMS attains an optimal recall value of 100.0 for
all dataset sizes and for both sense distributions (i.e., uniform and natural distributions)
showing that its models perfectly fit the training data. However, as mentioned earlier
in Section 6.5, in our setting the automatic enrichment of the LKB is less immediate and
natural than the training of the supervised system. In fact, the annotated data cannot
be directly utilized by UKB. Instead, co-occurrence statistics obtained from this data
were used to enrich the LKB of UKB. We estimated the performance upperbound of
UKB (and therefore the capability of our LKB enrichment approach) by performing an
experiment where additional edges were obtained by exploiting the sentences in the test
dataset. The enrichment procedure was, however, the same as the one used in our main
experiments (see Section 6.5). The experiment was carried out on both our test datasets,
i.e., naturally and uniformly distributed. In addition, we did not use the values of K
(i.e., maximum number of related words per pseudosense used for enriching the LKB)
tuned for our main experiments (cf. Section 6.5.1) as we expected the test sentences to be
able to provide more beneficial additional edges; instead we used five different values
of K, from 200 to 1000.

Table 21 shows the UKB performance when additional edges are obtained from test
datasets. We present the overall as well as polysemy-specific performance values for 5
different values of K. As expected, a higher performance was shown by UKB in this
setting in comparison to the normal setting where sentences in the training data were
exploited for enriching the LKB. An interesting finding here is that even when the test
dataset is used for obtaining the additional edges, UKB can hardly cross into 90%. In
other words, there is a gap of about 10% resulting from the semi-noisy enrichment of
UKB. This shows that our LKB enrichment approach is not optimal. We defer the task
of improving the current enrichment technique to future work. In fact, our framework
enables other knowledge enrichment approaches to be effectively tested and compared.
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Table 21
Performance of UKB when additional edges are obtained by exploiting the sentences in the test
dataset. We show results for both uniformly- and naturally-distributed test data and for different
values of K (maximum number of related words per pseudosense used for enriching LKB).

Uniformly-distributed dataset Naturally-distributed dataset
K 200 400 600 800 1000 200 400 600 800 1000

overall 78.6 83.8 86.4 87.9 88.4 78.0 82.4 85.5 86.6 88.4

By
po

ly
se

m
y

2 87.9 91.7 93.2 94.2 94.9 89.4 92.1 93.9 93.7 95.1
3 83.6 87.5 89.6 91.3 92.0 83.0 87.1 89.5 90.4 92.2
4 79.8 84.5 87.3 88.9 89.5 79.1 83.6 86.8 87.7 89.5
5 78.1 82.9 85.7 87.3 87.7 76.9 81.8 84.9 85.6 87.9
6 75.1 81.1 84.2 85.8 86.9 74.3 79.3 83.0 84.7 86.4
7 73.4 80.3 83.4 84.7 85.0 72.2 77.1 80.8 81.6 84.2
8 71.0 78.1 80.5 81.8 82.1 69.6 74.2 78.0 82.4 82.5
9 70.5 77.3 80.8 82.6 82.5 68.0 73.0 77.3 78.5 80.9
10 68.0 75.1 77.8 79.2 79.7 67.0 72.5 76.8 78.2 80.2
11 70.3 77.8 80.5 81.4 81.5 69.2 75.3 79.7 83.1 82.4
12 64.6 73.3 77.0 78.8 79.4 68.2 73.5 77.5 80.3 81.9

7.8 Summary of the Results

Here, we summarize our experiments aimed at analyzing the behavior of state-of-the-
art supervised and knowledge-based systems in different settings, also to verify their
dependence on various factors:

r IMS has a considerably larger performance variation across different
dataset configurations whereas UKB is less sensitive to the underlying
sense distribution (Section 7.1).r The semi-noisy enrichment of LKB results in a huge improvement in the
performance of UKB even when the edges are harvested from a low
number of training sentences (Section 7.3).r IMS outperforms UKB in all configurations but the Nat-Uni which models
a WSD setting across different domains where some senses in the test set
might not be covered in the training dataset. The gap between IMS and
UKB is especially noticeable in the Nat-Nat configuration (Section 7.4).r UKB is more robust with respect to sense skewness whereas IMS is highly
biased towards classifying most of the instances as more frequent senses
(Section 7.5).r Injecting sense distribution information to UKB highly boosts its
performance, providing an interesting mixture of knowledge and
supervision (Section 7.6).r The upperbound performance of IMS when trained on the test dataset is
1.0 whereas that of UKB lags 0.1 behind (Section 7.7).

In addition, we performed a set of experiments in order to verify some existing
findings in the literature at a large scale. We briefly reported these results in Section 7.2.
See Appendix B for the details.
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8. Conclusion

In this paper we proposed a novel framework for the experimental comparison of
state-of-the-art supervised and knowledge-based WSD systems on a large scale. At
the core of our approach lies the usage of a new type of realistic pseudowords which
makes it possible to model virtually all ambiguous nouns in a lexicon. As a result, we
could generate pseudowords modeling each polysemous noun in WordNet, whose high
quality we assessed from different perspectives.

We selected a reliable subset of pseudowords for each of which we sampled 1,000
tagged instances from a large corpus, resulting in a 2-million pseudosense-tagged cor-
pus. This corpus was then used for training a state-of-the-art supervised WSD system,
i.e. IMS, as well as for automatically injecting large quantities of (semi-noisy) semantic
relations into the WordNet graph for use by an off-the-shelf knowledge-based WSD sys-
tem, i.e. UKB. Our pseudoword-based framework enabled the analysis of the conditions
and factors which impact the performance of these state-of-the-art WSD systems on a
large scale, a study which has never heretofore been possible.

We hope our work will pave the way for new research on the generation and
exploitation of large-scale sense-annotated corpora. Furthermore, our new type of
pseudoword might also be employed for a realistic, wide-coverage evaluation of other
difficult tasks such as Word Sense Induction (Bordag 2006; Di Marco and Navigli 2013;
Navigli and Vannella 2013), Entity Linking (Moro, Raganato, and Navigli 2014) and
selectional preference acquisition (Chambers and Jurafsky 2010; Erk, Padó, and Padó
2010), among others.

We are releasing to the research community the entire set of 15,935 pseu-
dowords of WordNet 3.0 polysemous nouns, including those selected for our
WSD experiments (http://lcl.uniroma1.it/pseudowords/). Together with the
pseudosense-annotated corpus, this will allow for future experimental comparisons and
studies with other WSD systems, also in other languages. In fact, our pseudowords and
our WSD framework are not language-dependent and can readily be applied to other
languages with the help of multilingual semantic networks such as BabelNet (Navigli
and Ponzetto 2012a) and the use of multilingual WSD algorithms (Moro, Raganato, and
Navigli 2014). Finally, along the lines of Cuadros and Rigau (2007), our framework could
be used in the future to test and compare various LKB enrichment techniques.
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Appendix A: Reliability of our findings

In order to verify if the selected subset of pseudowords (cf. Section 6.3) was large
enough to provide a reliable estimation of per-polysemy performance, we calculated,
for both our systems, confidence intervals of performance values. Table A.1 shows, for
the training set consisting of 400 sentences, the 95% confidence interval values for the
obtained per-polysemy performance (Table B.1) as well as for the overall performance
(Tables 18 and 19). As could have been expected, the confidence interval is smaller for
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Table A.1
Two-sided 95% confidence interval for the performance values when the training set contains
400 sentences for both the systems and for all our four configurations.

Polysemy 2 3 4 5 6 7 8 9 10 11 12 overall
# of pseudowords 300 300 300 300 278 192 84 87 54 43 22 1960

Nat-Nat IMS 0.82 0.89 0.94 0.94 0.97 1.21 1.87 1.92 2.45 2.20 5.48 0.41
UKB 2.00 2.17 2.21 2.18 2.25 2.60 3.74 3.74 4.87 4.11 7.67 0.96

Uni-Uni IMS 0.74 0.92 0.85 0.85 0.91 1.06 1.42 1.42 1.80 2.06 2.81 0.51
UKB 1.30 1.29 1.40 1.35 1.37 1.77 2.55 2.65 2.86 3.04 4.68 0.69

Uni-Nat IMS 0.80 1.15 1.08 1.21 1.19 1.51 2.21 2.51 2.73 2.90 6.20 0.59
UKB 2.26 2.47 2.41 2.33 2.34 2.76 4.01 4.00 4.76 4.13 7.95 1.00

Nat-Uni IMS 1.87 1.86 1.62 1.53 1.38 1.58 2.28 2.06 2.44 2.34 3.97 0.79
UKB 1.47 1.41 1.32 1.31 1.35 1.73 2.30 2.49 2.60 2.81 4.42 0.68

lower polysemy degrees where there exist more pseudowords. We can see from the
table that the confidence interval always remains below 2.0 and 3.0 respectively for IMS
and UKB for polysemy degrees up to 5 for which we set an upperbound of 300 pseu-
dowords. This shows that the subset of 300 pseudowords we picked for those polysemy
degrees is large enough to provide an accurate polysemy-specific performance.

In addition, the overall confidence interval is always ≤ 1.0 in all system configura-
tions. This shows that the overall recall performance values we reported in Tables 18
and 19 are quite accurate. These results also hold for other sizes of the training data.

Appendix B: Corroboration of previous findings

In the next two subsections, we provide the details of the experiments carried out in
order to verify some existing findings in the literature on a large scale.

B.1 Performance by polysemy

Previous work (Palmer, Dang, and Fellbaum 2007) has shown that both manual and
automatic disambiguation can be affected by polysemy. In this section, we verify with
our large-scale framework the relation between disambiguation performance and pol-
ysemy degree. Table B.1 presents the performance values (averaged over all 10 sizes
of training data) as classified by polysemy degree for each system and for all the
four configurations. As a general trend, irrespective of the configuration and system,
the performance is inversely proportional to polysemy degree. The type of inverse
proportionality is approximately logarithmic in all system configurations except for IMS
in the Nat-Nat configuration where it is approximately linear.

Another interesting observation is in the variation of the polysemy-wise perfor-
mance difference between the two systems across different configurations. By average,
the absolute polysemy-wise difference between the two systems is 14.1 in the Uni-Uni,
Uni-Nat, and Nat-Uni configurations with the minimum difference being 8.7 (Uni-Nat,
polysemy 2) and the maximum being 17.4 (Uni-Nat again, polysemy 6). However, in
the Nat-Nat configuration the difference between the two systems increases rapidly
with polysemy. Starting with a value of 13 at polysemy 2, the difference value rapidly
increases with polysemy to a maximum of 35.9 at polysemy 10 (the absolute difference
is by average 28.2 in this configuration). This divergence in the polysemy-wise perfor-
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Table B.1
Average per polysemy performance of IMS and UKB in all the four configurations (averaged
over all the 10 size steps which is also very close to the results with 400 sentences).

polysemy Nat-Nat Uni-Uni Uni-Nat Nat-Uni MFS baseline
IMS UKB IMS UKB IMS UKB IMS UKB Nat-Nat * - Uni

2 94.7 81.7 87.5 76.5 87.5 78.8 64.4 74.0 87.7 50.0
3 91.0 70.8 80.0 66.6 79.5 66.1 51.8 64.5 78.2 33.3
4 88.9 63.5 75.6 59.5 75.9 59.0 44.7 57.6 72.0 25.0
5 87.6 60.7 71.8 55.4 71.7 56.1 38.5 53.6 71.3 20.0
6 85.9 55.3 68.1 52.6 68.7 51.3 35.6 51.7 64.2 16.7
7 83.4 52.5 65.0 49.1 65.2 48.0 33.9 47.7 58.8 14.3
8 82.2 49.3 62.2 46.2 60.7 46.0 30.6 45.2 59.0 12.5
9 81.2 47.1 60.3 44.9 58.9 42.9 28.8 44.1 58.7 11.1

10 78.5 42.6 58.1 42.0 55.1 39.2 27.9 41.4 52.4 10.0
11 76.1 46.3 53.5 43.8 53.7 43.2 27.0 42.2 49.6 9.1
12 75.2 44.6 52.5 39.7 51.9 42.4 26.2 38.8 54.9 8.3

mance of our two systems in the Nat-Nat configuration shows that IMS, in addition to
being particularly good at this configuration, is able to further extend its lead over UKB
at higher polysemy degrees.

B.2 Performance by pseudosense node degree

As discussed in Section 6.4, UKB adopts the Personalized PageRank algorithm, a variant
of eigenvector centrality, whose behavior highly depends on the structure of the graph
it is applied to. Previous research (Cuadros and Rigau 2006; Navigli 2008; Navigli and
Lapata 2010) has shown that a denser graph with a large number of semantic relations
benefits the eigenvector centrality-based approaches enabling them to provide more
accurate disambiguation judgments. These evaluations, however, were carried out on
the WordNet graph leveraged for the disambiguation of instances from the SemCor
dataset. In this section, we perform a similar analysis but on a very larger scale, i.e., in
a setting with hundreds of thousands of disambiguation instances and using a much
denser graph. Essentially, the graphs used in our experiments consist of the same nodes
(i.e., synsets) as the WordNet graph but enriched with thousands of additional semantic
edges obtained from co-occurrence statistics (cf. Section 6.5).

We follow Navigli and Lapata (2010) and take as our measure of graph connectivity
the degree centrality which is calculated based on the number of edges incident to a
particular node in a graph. We show in Figure B.1 how the nodes are distributed in
the graph according to their degree. We present the distributions for the two LKBs en-
riched with full naturally- and uniformly-distributed training data (i.e., 800 sentences)
as well as for the original WordNet graph. The slightly higher degree of the nodes
in the LKB enriched using naturally-distributed dataset is due to the availability of a
higher number of additional edges per pseudosense in this setting (obtained from 150
related words per pseudosense for naturally-distributed dataset vs. 125 for uniformly-
distributed dataset, cf. Section 6.5.1).

In Figure B.2, we show the average node degree for different ranges of UKB recall
performance (20 intervals from 0.0 to 1.0). Each point in the graph shows the average
degree of the set of nodes (i.e., pseudosenses) on which UKB obtains a recall that
falls within the corresponding range. As can be seen in the figure, irrespective of the
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Figure B.1
Distribution of nodes by incident edges in three different LKBs: WordNet 3.0 (WN30), the
enriched LKB with 800 sentences of uniformly- (Uni) and naturally- (Nat) distributed datasets.
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Figure B.2
Average number of incident edges on a pseudosense node in LKB vs. recall performance of UKB
on the instances tagged with that specific pseudosense. We present the results for all
configurations and for two sizes of the training data: 80 and 800 sentences.

configuration and training size, the higher the connectivity of a node, the more accurate
will be its disambiguation. This is in line with earlier research (Navigli and Lapata 2010),
in which it is hypothesized that WSD performance increases when the target sense in
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the graph tends to have a higher number of incident edges. On the other hand, this
trend is almost identical for the two training data sizes, i.e., 80 and 800. This shows that
the direct proportionality of node degree and disambiguation performance holds for
different sizes of training data. Recall that the value of K, i.e., the maximum number
of top-ranking related words used for LKB enrichment, was fixed (cf. Section 6.5.1).
This explains the fact why the average node degree values belonging to the two highly
different sizes of the training data (i.e., 80 and 800 sentences) are comparable in Figure
B.2. In fact, as the number of training sentences increases, more reliable sets of related
words get selected which are likely to provide semantic edges that are more beneficial.
However, the value of K and hence the number of additional edges remains almost
constant across different sizes of the training data.
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