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Abstract

Recent years have seen a dramatic growth
in the popularity of word embeddings
mainly owing to their ability to capture se-
mantic information from massive amounts
of textual content. As a result, many
tasks in Natural Language Processing have
tried to take advantage of the potential of
these distributional models. In this work,
we study how word embeddings can be
used in Word Sense Disambiguation, one
of the oldest tasks in Natural Language
Processing and Artificial Intelligence. We
propose different methods through which
word embeddings can be leveraged in a
state-of-the-art supervised WSD system
architecture, and perform a deep analysis
of how different parameters affect perfor-
mance. We show how a WSD system that
makes use of word embeddings alone, if
designed properly, can provide significant
performance improvement over a state-of-
the-art WSD system that incorporates sev-
eral standard WSD features.

1 Introduction

Embeddings represent words, or concepts in a
low-dimensional continuous space. These vec-
tors capture useful syntactic and semantic infor-
mation, such as regularities in language, where re-
lationships are characterized by a relation-specific
vector offset. The ability of embeddings to cap-
ture knowledge has been exploited in several tasks,
such as Machine Translation (Mikolov et al., 2013,
MT), Sentiment Analysis (Socher et al., 2013),
Word Sense Disambiguation (Chen et al., 2014,
WSD) and Language Understanding (Mesnil et
al., 2013). Supervised WSD is based on the hy-
pothesis that contextual information provides a

good approximation to word meaning, as sug-
gested by Miller and Charles (1991): semantically
similar words tend to have similar contextual dis-
tributions.

Recently, there have been efforts on leverag-
ing embeddings for improving supervised WSD
systems. Taghipour and Ng (2015) showed that
the performance of conventional supervised WSD
systems can be increased by taking advantage of
embeddings as new features. In the same direc-
tion, Rothe and Schütze (2015) trained embed-
dings by mixing words, lexemes and synsets, and
introducing a set of features based on calculations
on the resulting representations. However, none
of these techniques takes full advantage of the se-
mantic information contained in embeddings. As
a result, they generally fail in providing substantial
improvements in WSD performance.

In this paper, we provide for the first time a
study of different techniques for taking advantage
of the combination of embeddings with standard
WSD features. We also propose an effective ap-
proach for leveraging embeddings in WSD, and
show that this can provide significant improve-
ment on multiple standard benchmarks.

2 Word Embeddings

An embedding is a representation of a topologi-
cal object, such as a manifold, graph, or field, in
a certain space in such a way that its connectiv-
ity or algebraic properties are preserved (Insall et
al., 2015). Presented originally by Bengio et al.
(2003), word embeddings aim at representing, i.e.,
embedding, the ideal semantic space of words in a
real-valued continuous vector space. In contrast to
traditional distributional techniques, such as La-
tent Semantic Analysis (Landauer and Dutnais,
1997, LSA) and Latent Dirichlet Allocation (Blei
et al., 2003, LDA), Bengio et al. (2003) designed a
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feed-forward neural network capable of predicting
a word given the words preceding (i.e., leading up
to) that word. Collobert and Weston (2008) pre-
sented a much deeper model consisting of several
layers for feature extraction, with the objective of
building a general architecture for NLP tasks. A
major breakthrough occurred when Mikolov et al.
(2013) put forward an efficient algorithm for train-
ing embeddings, known as Word2vec. A similar
model to Word2vec was presented by Pennington
et al. (2014, GloVe), but instead of using latent
features for representing words, it makes an ex-
plicit representation produced from statistical cal-
culation on word countings.

Numerous efforts have been made to improve
different aspects of word embeddings. One way
to enhance embeddings is to represent more fine-
grained semantic items, such as word senses
or concepts, given that conventional embeddings
conflate different meanings of a word into a sin-
gle representation. Several research studies have
investigated the representation of word senses,
instead of words (Reisinger and Mooney, 2010;
Huang et al., 2012; Camacho-Collados et al.,
2015b; Iacobacci et al., 2015; Rothe and Schütze,
2015). Another path of research is aimed at
refining word embeddings on the basis of ad-
ditional information from other knowledge re-
sources (Faruqui et al., 2015; Yu and Dredze,
2014). A good example of this latter approach is
that proposed by Faruqui et al. (2015), which im-
proves pre-trained word embeddings by exploit-
ing the semantic knowledge from resources such
as PPDB1 (Ganitkevitch et al., 2013), WordNet
(Miller, 1995) and FrameNet (Baker et al., 1998).
In the following section we discuss how embed-
dings can be integrated into an important lexical
semantic task, i.e., Word Sense Disambiguation.

3 Word Sense Disambiguation

Natural language is inherently ambiguous. Most
commonly-used words have several meanings. In
order to identify the intended meaning of a word
one has to analyze the context in which it ap-
pears by directly exploiting information from raw
texts. The task of automatically assigning pre-
defined meanings to words in contexts, known
as Word Sense Disambiguation, is a fundamental
task in computational lexical semantics (Navigli,
2009). There are four conventional approaches to

1www.paraphrase.org/#/download

WSD which we briefly explain in the following.

3.1 Supervised methods
These methods make use of manually sense-
annotated data, which are curated by human ex-
perts. They are based on the assumption that a
word’s context can provide enough evidence for
its disambiguation. Since manual sense annotation
is a difficult and time-consuming process, some-
thing known as the ”knowledge acquisition bot-
tleneck” (Pilehvar and Navigli, 2014), supervised
methods are not scalable and they require repe-
tition of a comparable effort for each new lan-
guage. Currently, the best performing WSD sys-
tems are those based on supervised learning. It
Makes Sense (Zhong and Ng, 2010, IMS) and the
system of Shen et al. (2013) are good represen-
tatives for this category of systems. We provide
more information on IMS in Section 4.1.

3.2 Unsupervised methods
These methods create their own annotated corpus.
The underlying assumption is that similar senses
occur in similar contexts, therefore it is possible
to group word usages according to their shared
meaning and induce senses. These methods lead
to the difficulty of mapping their induced senses
into a sense inventory and they still require man-
ual intervention in order to perform such mapping.
Examples of this approach were studied by Agirre
et al. (2006), Brody and Lapata (2009), Manand-
har et al. (2010), Van de Cruys and Apidianaki
(2011) and Di Marco and Navigli (2013).

3.3 Semi-supervised methods
Other methods, called semi-supervised, take a
middle-ground approach. Here, a small manually-
annotated corpus is usually used as a seed for boot-
strapping a larger annotated corpus. Examples of
these approaches were presented by Mihalcea and
Faruque (2004). A second option is to use a word-
aligned bilingual corpus approach, based on the
assumption that an ambiguous word in one lan-
guage could be unambiguous in the context of a
second language, hence helping to annotate the
sense in the first language (Ng and Lee, 1996).

3.4 Knowledge-based methods
These methods are based on existing lexical re-
sources, such as knowledge bases, semantic net-
works, dictionaries and thesauri. Their main fea-
ture is their coverage, since they function indepen-
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dently of annotated data and can exploit the graph
structure of semantic networks to identify the most
suitable meanings. These methods are able to ob-
tain wide coverage and good performance using
structured knowledge, rivaling supervised meth-
ods (Patwardhan and Pedersen, 2006; Mohammad
and Hirst, 2006; Agirre et al., 2010; Guo and Diab,
2010; Ponzetto and Navigli, 2010; Miller et al.,
2012; Agirre et al., 2014; Moro et al., 2014; Chen
et al., 2014; Camacho-Collados et al., 2015a).

3.5 Standard WSD features
As was analyzed by Lee and Ng (2002), conven-
tional WSD systems usually make use of a fixed
set of features to model the context of a word. The
first feature is based on the words in the surround-
ings of the target word. The feature usually rep-
resents the local context as a binary array, where
each position represents the occurrence of a partic-
ular word. Part-of-speech (POS) tags of the neigh-
boring words have also been used extensively as
a WSD feature. Local collocations represent an-
other standard feature that captures the ordered se-
quences of words which tend to appear around the
target word (Firth, 1957). Though not very popu-
lar, syntactic relations have also been studied as a
possible feature (Stetina et al., 1998) in WSD.

More sophisticated features have also been
studied. Examples are distributional semantic
models, such as Latent Semantic Analysis (Van de
Cruys and Apidianaki, 2011) and Latent Dirichlet
Allocation (Cai et al., 2007). Inasmuch as they are
the dominant distributional semantic model, word
embeddings have also been applied as features to
WSD systems. In this paper we study different
methods through which word embeddings can be
used as WSD features.

3.6 Word Embeddings as WSD features
Word embeddings have become a prominent tech-
nique in distributional semantics. These methods
leverage neural networks in order to model the
contexts in which a word is expected to appear.
Thanks to their ability in efficiently learning the
semantics of words, word embeddings have been
applied to a wide range of NLP applications. Sev-
eral studies have also investigated their integra-
tion into the Word Sense Disambiguation setting.
These include the works of Zhong and Ng (2010),
Taghipour and Ng (2015), Rothe and Schütze
(2015), and Chen et al. (2014), which leverage
embeddings for supervised (the former three) and

knowledge-based (the latter) WSD. However, to
our knowledge, no previous work has investigated
methods for integrating word embeddings in WSD
and the role that different training parameters can
play. In this paper, we put forward a framework for
a comprehensive evaluation of different methods
of leveraging word embeddings as WSD features
in a supervised WSD system. We provide an anal-
ysis of the impact of different parameters in the
training of embeddings on the WSD performance.
We consider four different strategies for integrat-
ing a pre-trained word embedding in a supervised
WSD system, discussed in what follows.

3.6.1 Concatenation
Concatenation is our first strategy, which is in-
spired by the model of Bengio et al. (2003). This
method consists of concatenating the vectors of
the words surrounding a target word into a larger
vector that has a size equal to the aggregated di-
mensions of all the individual embeddings. Let
wij be the weight associated with the ith dimen-
sion of the vector of the jth word in the sentence,
let D be the dimensionality of this vector, and W
be the window size which is defined as the num-
ber of words on a single side. We are interested
in representing the context of the Ith word in the
sentence. The ith dimension of the concatenation
feature vector, which has a size of 2WD, is com-
puted as follows:

ei =

{
wi mod D, I−W+b i

D
c if b i

Dc < W

wi mod D, I−W+1+b i
D
c otherwise

where mod is the modulo operation, i.e., the re-
mainder after division.

3.6.2 Average
As its name indicates, the average strategy com-
putes the centroid of the embeddings of all the sur-
rounding words. The formula divides each dimen-
sion by 2W since the number of context words is
twice the window size:

ei =
I+W∑

j=I−W
j 6=I

wij

2W

3.6.3 Fractional decay
Our third strategy for constructing a feature vector
on the basis of the context word embeddings is in-
spired by the way Word2vec combines the words
in the context. Here, the importance of a word
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for our representation is assumed to be inversely
proportional to its distance from the target word.
Hence, surrounding words are weighted based on
their distance from the target word:

ei =
I+W∑

j=I−W
j 6=I

wij
W − |I − j|

W

3.6.4 Exponential decay
Exponential decay functions similarly to the frac-
tional decay, which gives more importance to the
close context, but in this case the weighting in the
former is performed exponentially:

ei =
I+W∑

j=I−W
j 6=I

wij(1− α)|I−j|−1

where α = 1 − 0.1(W−1)−1
is the decay parame-

ter. We choose the parameter in such a way that the
immediate surrounding words contribute 10 times
more than the last words on both sides of the win-
dow.

4 Framework

Our goal was to experiment with a state-of-the-art
conventional supervised WSD system and a varied
set of word embedding techniques. In this section
we discuss the WSD system as well as the word
embeddings used in our experiments.

4.1 WSD System
We selected It Makes Sense (Zhong and Ng, 2010,
IMS) as our underlying framework for supervised
WSD. IMS provides an extensible and flexible
platform for supervised WSD by allowing the ver-
ification of different WSD features and classifica-
tion techniques. By default, IMS makes use of
three sets of features: (1) POS tags of the sur-
rounding words, with a window of three words on
each side, restricted by the sentence boundary, (2)
the set of words that appear in the context of the
target word after stopword removal, and (3) local
collocations which consist of 11 features around
the target word. IMS uses a linear support vector
machine (SVM) as its classifier.

4.2 Embedding Features
We take the real-valued word embeddings as new
features of IMS and introduce them into the sys-
tem without performing any further modifications.

We carried out experiments with three different
embeddings:

• Word2vec (Mikolov et al., 2013): We used
the Word2vec toolkit2 to learn 400 dimen-
sional vectors on the September-2014 dump
of the English Wikipedia which comprises
around three billion tokens. We chose
the Skip-gram architecture with the negative
sampling set to 10. The sub-sampling of fre-
quent words was set to 10−3 and the window
size to 10 words.

• C&W (Collobert and Weston, 2008): These
50 dimensional embeddings were learnt us-
ing a neural network model, consisting of
several layers for feature extraction. The vec-
tors were trained on a subset of the English
Wikipedia.3

• Retrofitting: Finally, we used the approach
of Faruqui et al. (2015) to retrofit our
Word2vec vectors. We used the Paraphrase
Database (Ganitkevitch et al., 2013, PPDB)
as external knowledge base for retrofitting
and set the number of iterations to 10.

5 Experiments

We evaluated the performance of our embedding-
based WSD system on two standard WSD tasks:
lexical sample and all-words. In all the experi-
ments in this section we used the exponential de-
cay strategy (cf. Section 3.6) and a window size of
ten words on each side of the target word.

5.1 Lexical Sample WSD Experiment
The lexical sample WSD tasks provide training
datasets in which different occurrences of a small
set of words are sense annotated. The goal is for
a WSD system to analyze the contexts of the indi-
vidual senses of these words and to capture clues
that can be used for distinguishing different senses
of a word from each other at the test phase.

Datasets. As our benchmark for the lexical sam-
ple WSD, we chose the Senseval-2 (Edmonds and
Cotton, 2001), Senseval-3 (Mihalcea et al., 2004),
and SemEval-2007 (Pradhan et al., 2007) English
Lexical Sample WSD tasks. The former two
cover nouns, verbs and adjectives in their datasets
whereas the latter task focuses on nouns and verbs

2code.google.com/archive/p/word2vec/
3http://ronan.collobert.com/senna/
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Task Training Test

noun verb adjective noun verb adjective

Senseval-2 (SE2) 4851 3566 755 1740 1806 375
Senseval-3 (SE3) 3593 3953 314 1807 1978 159
SemEval-07 (SE7) 13287 8987 − 2559 2292 −

Table 1: The number of sentences per part of speech in the datasets of the English lexical sample tasks
we considered for our experiments.

System SE2 SE3 SE7

IMS (2010) 65.3 72.9 87.9
Taghipour and Ng (2015) 66.2 73.4 −
AutoExtend (2015) 66.5 73.6 −
IMS + C&W 64.3 70.1 88.0
IMS + Word2vec 69.9 75.2 89.4
IMS + Retrofitting 65.9 72.8 88.3

C&W feature only 55.0 61.6 83.4
Word2vec feature only 65.6 69.4 87.0
Retrofitting feature only 67.2 72.7 88.0

Table 2: F1 performance on the three English lexical sam-
ple datasets. IMS + X denotes the improved IMS system
when the X set of word representations were used as addi-
tional features. We also show in the last three rows the results
for the IMS system when word representations were used as
the only features.

only. Table 1 shows the number of sentences per
part of speech for the training and test datasets of
each of these tasks.

Comparison systems. In addition to the vanilla
IMS system in its default setting we compared
our system against two recent approaches that also
modify the IMS system so that it can benefit from
the additional knowledge derived from word em-
beddings for improved WSD performance: (1) the
system of Taghipour and Ng (2015), which com-
bines word embeddings of Collobert and Weston
(2008) using the concatenation strategy (cf. Sec-
tion 3.6) and introduces the combined embeddings
as a new feature in addition to the standard WSD
features in IMS; and (2) AutoExtend (Rothe and
Schütze, 2015), which constructs a whole new set
of features based on vectors made from words,
senses and synsets of WordNet and incorporates
them in IMS.

5.1.1 Lexical sample WSD results
Table 2 shows the F1 performance of the different
systems on the three lexical sample datasets. As
can be seen, the IMS + Word2vec system improves

over all comparison systems including those that
combine standard WSD and embedding features
(i.e., the system of Taghipour and Ng (2015) and
AutoExtend) across all the datasets. This shows
that our proposed strategy for introducing word
embeddings into the IMS system on the basis of
exponential decay was beneficial. In the last three
rows of the table, we also report the performance
of the WSD systems that leverage only word em-
beddings as their features and do not incorporate
any standard WSD feature. It can be seen that
word embeddings, in isolation, provide compet-
itive performance, which proves their capability
in obtaining the information captured by standard
WSD features. Among different embeddings, the
retrofitted vectors provide the best performance
when used in isolation.

5.2 All-Words WSD Experiments

The goal in this task is to disambiguate all the
content words in a given text. In order to learn
models for disambiguating a large set of content
words, a high-coverage sense-annotated corpus is
required. Since all-words tasks do not usually
provide any training data, the challenge here is
not only to learn accurate disambiguation models
from the training data, as is the case in the lexi-
cal sample task, but also to gather high-coverage
training data and to learn disambiguation models
for as many words as possible.

Training corpus. As our training corpus we
opted for two available resources: SemCor and
OMSTI. SemCor (Miller et al., 1994) is a man-
ually sense-tagged corpus created by the WordNet
project team at Princeton University. The dataset
is a subset of the English Brown Corpus and com-
prises around 360,000 words, providing annota-
tions for more than 200K content words.4 OM-

4We used automatic mappings to WordNet 3.0 provided in
web.eecs.umich.edu/∼mihalcea/downloads.html.
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STI5 (One Million Sense-Tagged for Word Sense
Disambiguation and Induction) was constructed
based on the DSO corpus (Ng and Lee, 1996)
and provides annotations for around 42K different
nouns, verbs, adjectives, and adverbs.

Datasets. As benchmark for this experiment, we
considered the Senseval-2 (Edmonds and Cotton,
2001), Senseval-3 (Snyder and Palmer, 2004), and
SemEval-2007 (Pradhan et al., 2007) English all-
words tasks. There are 2474, 2041, and 465 words
for which at least one of the occurrences has been
sense annotated in the Senseval-2, Senseval-3 and
SemEval-2007 datasets, respectively.

Experimental setup. Similarly to the lexical
sample experiment, in the all-words setting we
used the exponential decay strategy (cf. Section.
4.2) in order to incorporate word embeddings as
new features in IMS. For this experiment, we only
report the results for the best-performing word em-
beddings in the lexical sample experiment, i.e.,
Word2vec (see Table 2).

Comparison systems. We benchmarked the
performance of our system against five other sys-
tems. Similarly to our lexical sample experiment,
we compared against the vanilla IMS system and
the work of Taghipour and Ng (2015). In addition,
we performed experiments on the nouns subsets
of the datasets in order to be able to provide com-
parisons against two other WSD approaches: Ba-
belfy (Moro et al., 2014) and Muffin (Camacho-
Collados et al., 2015a). Babelfy is a multilin-
gual knowledge-based WSD and Entity Linking
algorithm based on the semantic network of Ba-
belNet. Muffin is a multilingual sense repre-
sentation technique that combines the structural
knowledge derived from semantic networks with
the distributional statistics obtained from text cor-
pora. The system uses sense-based representations
for performing WSD. Camacho-Collados et al.
(2015a) also proposed a hybrid system that aver-
ages the disambiguation scores of IMS with theirs
(shown as “Muffin + IMS” in our tables). We
also report the results for UKB w2w (Agirre and
Soroa, 2009), another knowledge-based WSD ap-
proach based on Personalized PageRank (Haveli-
wala, 2002). Finally, we also carried out experi-
ments with the pre-trained models6 that are pro-

5www.comp.nus.edu.sg/˜nlp/corpora.html
6www.comp.nus.edu.sg/˜nlp/sw/models.

tar.gz

System SE2 SE3 SE7

MFS baseline 60.1 62.3 51.4

IMS (Zhong and Ng, 2010) 68.2 67.6 58.3
Taghipour and Ng (2015) − 68.2 −
IMS (pre-trained models) 67.7 67.5 58.0
IMS (SemCor) 62.5 65.0 56.5
IMS (OMSTI) 67.0 66.4 57.6

IMS + Word2vec (SemCor) 63.4 65.3 57.8
IMS + Word2vec (OMSTI) 68.3 68.2 59.1

Table 3: F1 performance on different English all-
words WSD datasets.

System SE2 SE3 SE7

MFS baseline 71.6 70.3 65.8

Babelfy − 68.3 62.7
Muffin − − 66.0
Muffin + IMS − − 68.5
UBK w2w − 65.3 56.0
IMS (pre-trained models) 77.5 74.0 66.5
IMS (SemCor) 73.0 70.8 64.2
IMS (OMSTI) 76.6 73.3 67.7

IMS + Word2vec (SemCor) 74.2 70.1 68.6
IMS + Word2vec (OMSTI) 77.7 74.1 71.5

Table 4: F1 performance in the nouns subsets of
different all-words WSD datasets.

vided with the IMS toolkit, as well as IMS trained
on our two training corpora, i.e., SemCor and OM-
STI.

5.2.1 All-words WSD results
Tables 3 and 4 list the performance of different
systems on, respectively, the whole and the noun-
subset datasets of the three all-words WSD tasks.
Similarly to our lexical sample experiment, the
IMS + Word2vec system provided the best per-
formance across datasets and benchmarks. The
coupling of Word2vec embeddings to the IMS sys-
tem proved to be consistently helpful. Among the
two training corpora, as expected, OMSTI pro-
vided a better performance owing to its consid-
erably larger size and higher coverage. Another
point to be noted here is the difference between
results of the IMS with the pre-trained models and
those trained on the OMSTI corpus. Since we used
the same system configuration across the two runs,
we conclude that the OMSTI corpus is either sub-
stantially smaller or less representative than the
corpus used by Zhong and Ng (2010) for building
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the pre-trained models of IMS. Despite this fact,
the IMS + Word2vec system can consistently im-
prove the performance of IMS (pre-trained mod-
els) across the three datasets. This shows that a
proper introduction of word embeddings into a su-
pervised WSD system can compensate the nega-
tive effect of using lower quality training data.

6 Analysis

We carried out a series of experiments in order to
check the impact of different system parameters
on the final WSD performance. We were partic-
ularly interested in observing the role that vari-
ous training parameters of embeddings as well as
WSD features have in the WSD performance. We
used the Senseval-2 English Lexical Sample task
as our benchmark for this analysis.

6.1 The effect of different parameters

Table 5 shows F1 performance of different config-
urations of our system on the task’s dataset. We
studied five different parameters: the type (i.e.,
w2v or Retrofitting) and dimensionality (200, 400,
or 800) of the embeddings, combination strategy
(concatenation, average, fractional or exponential
decay), window size (5, 10, 20 and words), and
WSD features (collocations, POS tags, surround-
ing words, all of these or none). All the embed-
dings in this experiment were trained on the same
training data and, unless specified, with the same
configuration as described in Section 4.2. As base-
line we show in the table the performance of the
vanilla WSD system, i.e., IMS. For better read-
ability, we report the differences between the per-
formances of our system and the baseline.

We observe that the addition of Word2vec word
embeddings to IMS (+w2v in the table) was
beneficial in all settings. Among combination
strategies, concatenation and average produced the
smallest gain and did not benefit from embeddings
of higher dimensionality. However, the other two
strategies, i.e., fractional and exponential decay,
showed improved performance with the increase
in the size of the employed embeddings, irre-
spective of the WSD features. The window size
showed a peak of performance when 10 words
were taken in the case of standard word embed-
dings. For retrofitting, a larger window seems
to have been beneficial, except when no standard
WSD features were taken. Another point to note
here is that, among the three WSD features, POS

proved to be the most effective one while due to
the nature of the embeddings, the exclusion of the
Surroundings features in addition to the inclusion
of the embeddings was largely beneficial in all the
configurations. Furthermore, we found that the
best configurations for this task were the ones that
excluded Surroundings, and included w2v embed-
dings with a window of 10 and 800 dimensions
with exponential decay strategy (70.2% of F1 per-
formance) as well as the configuration used in our
experiments, with all the standard features, and
w2v embeddings with 400 dimensions, a window
of 10 and exponential decay strategy (69.9% of F1
performance).

The retrofitted embeddings provided lower per-
formance improvement when added on top of
standard WSD features. However, when they were
used in isolation (shown in the right-most col-
umn), the retrofitted embeddings interestingly pro-
vided the best performance, improving the vanilla
WSD system with standard features by 2.8 per-
centage points (window size 5, dimensionality
800). In fact, the standard features had a destruc-
tive role in this setting as the overall performance
was reduced when they were combined with the
retrofitted embeddings. Finally, we point out the
missing values in the configuration with 800 di-
mensions and a window size of 20. Due to the na-
ture of the concatenation strategy, this configura-
tion greatly increased the number of features from
embeddings only, reaching 32000 (800 x 2 x 20)
features. Not only was the concatenation strategy
unable to take advantage of the increased dimen-
sionality, but also it was not able to scale.

These results show that a state-of-the-art su-
pervised WSD system can be constructed without
incorporating any of the conventional WSD fea-
tures, which in turn demonstrates the potential of
retrofitted word embeddings for WSD. This find-
ing is interesting, because it provides the basis for
further studies on how synonymy-based semantic
knowledge introduced by retrofitting might play a
role in effective WSD, and how retrofitting might
be optimized for improved WSD. Indeed, such
studies may provide the basis for re-designing the
standard WSD features.

6.2 Comparison of embedding types

We were also interested in comparing different
types of embeddings in our WSD framework.
We tested for seven sets of embeddings with dif-
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Collocations X X X
POS X X X
Surroundings X X X

Dimensionality 200 400 800 200 400 800 200 400 800 200 400 800 200 400 800

Sys
tem

Stra
teg

y

W
ind

ow

IMS 62.4 63.7 62.0 65.2 −

+ w2v Con
5 +0.1 +0.4 +0.1 -0.1 +0.3 +0.2 +0.1 +0.5 +0.1 -0.2 +0.1 +0.1 46.9 48.7 44.2

10 -0.1 +0.5 +0.3 -0.1 +0.5 0.0 +0.6 +1.0 +0.5 -0.1 +0.1 -0.1 48.6 51.1 49.7
20 -0.2 +0.4 — -0.3 +0.3 — +0.7 +1.5 — -0.5 +0.4 — 52.5 54.1 —

+ w2v Avg
5 +0.8 +1.0 +1.0 +1.3 +1.3 +1.4 +3.9 +4.2 +4.1 +1.7 +1.4 +1.6 58.3 59.9 61.3

10 +0.8 +0.9 +0.9 +0.6 +0.7 +0.8 +3.6 +3.7 +3.9 +0.6 +0.6 +0.7 63.7 64.1 64.7
20 +0.3 +0.3 +0.3 +0.5 +0.3 +0.4 +2.4 +2.3 +2.3 +0.2 +0.2 +0.2 62.7 63.1 63.5

+ w2v Frac
5 +3.9 +4.9 +5.2 +4.2 +4.6 +5.3 +6.3 +6.6 +6.8 +3.0 +3.6 +3.8 61.2 63.1 64.8

10 +4.9 +5.8 +5.7 +4.6 +5.2 +5.1 +5.9 +7.0 +7.4 +3.6 +4.3 +4.0 61.3 63.8 65.2
20 +4.4 +4.5 +4.7 +3.7 +4.0 +4.3 +4.8 +6.1 +5.4 +3.2 +3.3 +3.4 61.2 63.4 63.9

+ w2v Exp
5 +4.1 +5.0 +5.2 +4.1 +4.7 +5.0 +6.1 +6.1 +6.4 +2.9 +3.5 +3.7 62.3 64.7 64.9

10 +5.4 +6.6 +6.4 +4.9 +5.8 +6.0 +7.2 +7.7 +8.2 +4.1 +4.7 +4.6 63.2 65.6 66.9
20 +5.2 +5.6 +5.9 +4.4 +5.1 +4.9 +6.1 +7.0 +6.8 +3.9 +4.3 +4.2 61.9 64.4 65.2

+ Ret Con
5 -0.1 -0.1 -0.1 -0.1 -0.1 0.0 +0.1 +0.1 -0.1 -0.1 +0.1 +0.1 50.7 53.5 50.9

10 +0.1 0.0 0.0 -0.3 0.0 0.0 +0.1 +0.2 +0.1 0.0 0.0 0.0 52.1 54.2 53.4
20 0.0 0.0 — -0.2 0.0 — +0.7 +0.3 — 0.0 -0.1 — 53.7 54.8 —

+ Ret Avg
5 +0.1 0.0 -0.1 +0.1 0.0 -0.1 +0.8 +0.8 +0.7 +0.1 0.0 +0.1 60.7 60.3 60.5

10 -0.2 -0.1 0.0 -0.2 -0.3 0.0 +0.7 +0.7 +0.5 0.0 +0.1 +0.1 58.9 58.4 58.2
20 -0.1 +0.1 +0.1 -0.2 -0.2 -0.2 +0.5 +0.4 +0.4 0.0 0.0 0.0 56.5 56.0 55.5

+ Ret Frac
5 +1.4 +1.3 +1.2 +1.2 +1.0 +0.9 +3.3 +3.1 +2.9 +0.5 +0.3 +0.3 66.5 67.3 67.7

10 +1.7 +1.4 +1.2 +1.5 +1.4 +1.2 +5.2 +4.7 +4.5 +0.7 +0.8 +0.6 64.4 66.2 66.1
20 +2.2 +2.2 +1.8 +2.2 +1.8 +2.0 +6.7 +6.4 +5.9 +1.3 +1.2 +1.0 64.0 64.2 64.7

+ Ret Exp
5 +1.1 +1.1 +1.1 +0.8 +0.8 +0.7 +2.7 +2.6 +2.2 +0.3 +0.3 +0.3 66.8 67.7 68.0

10 +1.5 +1.3 +1.0 +1.2 +1.1 +1.0 +4.4 +4.2 +3.8 +0.7 +0.7 +0.3 65.9 67.2 67.5
20 +1.8 +1.7 +1.5 +1.7 +1.5 +1.5 +6.3 +5.9 +5.4 +1.1 +0.8 +0.7 65.1 65.8 66.5

Table 5: F1 performance of different models on the Senseval-2 English Lexical Sample task. We show
results for varied dimensionality (200, 400, and 800), window size (5, 10 and 20 words) and combination
strategy, i.e., Concatenation (Con), Averaging (Avg), Fractional decay (Frac), and Exponential decay
(Exp). To make the table easier to read, we highlight each cell according to the relative performance gain
in comparison to the IMS baseline (top row in the table).

ferent dimensionalities and learning techniques:
Word2vec embeddings trained on Wikipedia, with
the Skip-gram model for dimensionalities 50, 300
and 500 (for comparison reasons) and CBOW with
300 dimensions, Word2vec trained on the Google
News corpus with 300 dimensions and the Skip-
gram model, the 300 dimensional embeddings of
GloVe, and the 50 dimensional C&W embed-

dings. Additionally we include experiments on a
non-embedding model, a PMI-SVD vector space
model trained by Baroni et al. (2014).

Table 6 lists the performance of our system
with different word representations in vector space
on the Senseval-2 English Lexical Sample task.
The results corroborate the findings of Levy et al.
(2015) that Skip-gram is more efficient in captur-
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Word representations Dim. Combination strategy
Concatenation Average Fractional Exponential

Skip-gram - GoogleNews 300 65.5 65.5 69.4 69.6
GloVe 300 61.7 66.3 66.7 68.3
CBOW - Wiki 300 65.1 65.4 68.9 68.8
Skip-gram - Wiki 300 65.2 65.6 68.9 69.7
PMI - SVD - Wiki 500 65.5 65.3 67.3 66.8
Skip-gram - Wiki 500 65.1 65.6 69.1 69.9
Collobert & Weston 50 58.6 67.3 62.9 64.3
Skip-gram - Wiki 50 65.0 65.7 68.3 68.6

Table 6: F1 percentage performance on the Senseval-2 English Lexical Sample dataset with different
word representations models, vector dimensionalities (Dim.) and combination strategies.

ing the semantics than CBOW and GloVe. Ad-
ditionally, the use of embeddings with decay fares
well, independently of the type of embedding. The
only exception is the C&W embeddings, for which
the average strategy works best. We attribute this
behavior to the nature of these embeddings, rather
than to their dimensionality. This is shown in our
comparison against the 50-dimensional Skip-gram
embeddings trained on the Wikipedia corpus (bot-
tom of Table 6), which performs well with both de-
cay strategies, outperforming C&W embeddings.

7 Conclusions

In this paper we studied different ways of inte-
grating the semantic knowledge of word embed-
dings in the framework of WSD. We carried out a
deep analysis of different parameters and strate-
gies across several WSD tasks. We draw three
main findings. First, word embeddings can be
used as new features to improve a state-of-the-art
supervised WSD that only uses standard features.
Second, integrating embeddings on the basis of
an exponential decay strategy proves to be more
consistent in producing high performance than the
other conventional strategies, such as vector con-
catenation and centroid. Third, the retrofitted em-
beddings that take advantage of the knowledge de-
rived from semi-structured resources, when used
as the only feature for WSD can outperform state-
of-the-art supervised models which use standard
WSD features. However, the best performance
is obtained when standard WSD features are
augmented with the additional knowledge from
Word2vec vectors on the basis of a decay func-
tion strategy. Our hope is that this work will serve
as the first step for further studies on re-designing

standard WSD features. We release at https://
github.com/iiacobac/ims_wsd_emb all
the codes and resources used in our experiments
in order to provide a framework for research on
the evaluation of new VSM models in the WSD
framework. As future work, we plan to investigate
the possibility of designing word representations
that best suit the WSD framework.
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and Aitor Soroa. 2006. Two graph-based algorithms
for state-of-the-art wsd. In Proceedings of the 2006
EMNLP, pages 585–593, Sydney, Australia.

Eneko Agirre, Aitor Soroa, and Mark Stevenson. 2010.
Graph-based word sense disambiguation of biomed-
ical documents. Bioinformatics, 26(22):2889–2896.
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