



# Inducing Embeddings for Rare and Unseen Words by Leveraging Lexical Resources

Mohammad Taher Pilehvar Nigel Collier



6 April 2017

### Representation of rare words





### Representation of rare words



Illustration by Eva-Lotta www.smashingmagazine.com



### Representation of rare words: past work

#### Recent work has mainly focused on morphologically complex rare words









### Representation of rare words

What about other (single morpheme) rare words? Infrequent or domain-specific words

> piquance bronchomegaly degust abouphalia hyperthreoninuria enthuse milphosis schmetterlingswirbel lieutenant



### Lexical resources to the rescue

Abundance of domain-specific lexical resources: ontologies, dictionaries, databases, etc.



Leverage knowledge encoded in external lexical resources for inducing embeddings





The proposed procedure:

- 1. View a lexical resource as a **semantic network**
- 2. Extract for an unseen word its set of **semantic** landmarks
- **3. Induce** the embedding for the unseen word using its landmarks



#### 1. View lexical resource as a semantic network





#### 2. Extract semantic landmarks



#### military\_vehicle

vehicle military\_machine caisson tank humvee troop\_carrier pickup warplane Lorry Warship picket personnel

Using Personalized PageRank





induced embedding for  $w_r$ 





for  $w_r$  which is to be improved





induced embedding for  $w_r$ 









#### General domain setting Rare Word similarity dataset

External lexical resource: WordNet

|          | Vanilla |      |      | +Induction |      |      |  |
|----------|---------|------|------|------------|------|------|--|
|          | OOV     | r    | ρ    | OOV        | r    | ρ    |  |
| GLOVE    | 11%     | 34.9 | 34.4 | 0%         | 38.6 | 39.7 |  |
| w2v-250к | 34%     | 31.0 | 25.9 | 0%         | 44.2 | 47.5 |  |
| w2v-gn   | 9%      | 43.8 | 45.3 | 0%         | 48.3 | 50.5 |  |





#### General domain setting Rare Word similarity dataset

| Approach                 | R    | W    | RG-65 |      |
|--------------------------|------|------|-------|------|
|                          | OOV  | ρ    | OOV   | ρ    |
| Botha and Blunsom (2014) | NA   | 30.0 | NA    | 41.0 |
| Luong et al. (2013)*     | 0%   | 34.4 | 0%    | 65.5 |
| Soricut and Och (2015)*  | 0%   | 41.8 | 0%    | 75.1 |
| Our approach*            | 0%   | 43.3 | 0%    | 75.1 |
| Number of pairs          | 2034 |      | 65    |      |

Systems marked with \* are trained on the same corpus.





### Specific domain setting (medical) Datasets: MayoSRS (101 pairs) and UMNSRS (566 pairs) External lexical resource: Medical Subject Headings (MeSH)

|      |          |     | Vanilla |      |     | +Induction |      |  |
|------|----------|-----|---------|------|-----|------------|------|--|
|      |          | OOV | r       | ρ    | OOV | r          | ρ    |  |
| Mayo | GLOVE    | 16% | 11.1    | 11.6 | 11% | 36.7       | 26.1 |  |
|      | w2v-250k | 41% | 1.2     | 2.9  | 21% | 27.8       | 20.1 |  |
|      | w2v-gn   | 12% | 15.5    | 14.0 | 10% | 18.4       | 10.9 |  |
| UMN  | GLOVE    | 17% | 31.6    | 24.4 | 6%  | 38.2       | 33.6 |  |
|      | w2v-250k | 38% | 11.8    | 3.2  | 13% | 27.8       | 20.1 |  |
|      | w2v-gn   | 17% | 25.8    | 21.5 | 7%  | 32.8       | 32.4 |  |



### Conclusions

• A novel approach to inducing embeddings for unseen words

Based on the knowledge encoded in external lexical resources

- Improved performance on multiple benchmarks in general and specific domains
- Extension to other domains and languages
- New evaluation benchmarks

## Thank you!



