روح الله بخشنده چمازکتی

 




.......................

.......................

http://fds.duke.edu/photos/fac/1downarrow.gifMy Links

http://fds.duke.edu/photos/fac/b.gif
Publications
http://fds.duke.edu/photos/fac/b.gif
Research Interests
http://fds.duke.edu/photos/fac/b.gifCurriculum Vitae

 

 

http://fds.duke.edu/photos/fac/1downarrow.gifUsefule Links

http://fds.duke.edu/photos/fac/b.gifIran. Math. Society

http://fds.duke.edu/photos/fac/b.gifOpen math. MIT Uni.

                    

 

 

clip_image002روح الله بخشنده چمازکتی
دانشجوی دکترای ریاضی محض، هندسه دیفرانسیل

 

اطلاعات شخصی:

 

محل تحصیل: دانشکده ریاضی، دانشگاه علم و صنعت ایران، تهران.

 

آدرس ایمیل:    

r_bakhshandeh@iust.ac.ir

rohollahbakhshandeh@gmail.com

 

 

 

 

اطلاعات تحصیلی:

Education:

PHD Iran University of Science and Technology 2008-now (Supervisor: Mehdi Nadjafikhah)
    Doctoral Seminar
   
Sabbatical leave period (April – September 2011): Linkoping University, Sweden.
MSc Iran University of Science and Technology 2006-2008 (Supervisor: Mehdi Nadjafikhah)
BS University of Mazandaran, Babolsar 2002-2006

 

Typical Courses Taught:
 

Calculus
Elementary Differential Geometry
Hyperbolic Geometry
Foundation of Geometry
Differential Manifold 2

 

Research and interesting areas:

Geometry of the partial differential equations
Cartan equivalence problem and its applications
Exterior differential systems
Finsler and Riemannian geometry

 

 

My Publications (in ISI journals):

1.     A symmetry classification of (2+1)-nonlinear wave equation, Nonlinear Analysis 71 (2009) 5164-5169.      
(Top 25 Hottest Articles July to September 2009)

2.     Fuzzy differential invariant (FDI), Chaos, Solitons and Fractals 42 (2009) 1677–1683.

3.     Symmetry group classification for general Burgers’ equation, Commun Nonlinear Sci Numer Simulat 15 (2010) 2303–2310.

4.     Preliminarily group classification of a class of 2D nonlinear heat equation, Il Nuovo Cimento B - Basic Topics in physics, Vol. 125 B, N. 12, December 2010

 

Submitted papers

 

1.     Cartan equivalence problem for third order differential operators, submitted in Journal of Geometry and Physics, September 2010.  

2.     The equivariant moving frame method of third order differential operators, 2011, Uncompleted.