

Lecture Notes in Computer Science 5596
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Darren Cofer Alessandro Fantechi (Eds.)

Formal Methods
for Industrial
Critical Systems

13th International Workshop, FMICS 2008
L’Aquila, Italy, September 15-16, 2008
Revised Selected Papers

13

Volume Editors

Darren Cofer
Rockwell Collins
7805 Telegraph Rd. 100, Bloomington, MN 55438, USA
E-mail: ddcofer@rockwellcollins.com

Alessandro Fantechi
Università di Firenze, Dipartimento di Sistemi e Informatica
Via S. Marta 3, 50139 Firenze, Italy
E-mail: fantechi@dsi.unifi.it

Library of Congress Control Number: 2009930950

CR Subject Classification (1998): D.2.4, D.2, D.3, C.3, F.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-03239-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-03239-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12711871 06/3180 5 4 3 2 1 0

Preface

The aim of the FMICS workshop series is to provide a forum for researchers
who are interested in the development and application of formal methods in
industry. In particular, these workshops are intended to bring together scientists
and practitioners who are active in the area of formal methods and interested
in exchanging their experiences in the industrial usage of these methods. These
workshops also strive to promote research and development for the improvement
of formal methods and tools for industrial applications.

The topics for which contributions to FMICS 2008 were solicited included,
but were not restricted to, the following:

– Design, specification, code generation and testing based on formal methods
– Verification and validation of complex, distributed, real-time systems and

embedded systems
– Verification and validation methods that address shortcomings of existing

methods with respect to their industrial applicability (e.g., scalability and
usability issues)

– Tools for the development of formal design descriptions
– Case studies and experience reports on industrial applications of formal

methods, focusing on lessons learned or identification of new research di-
rections

– Impact of the adoption of formal methods on the development process and
associated costs

– Application of formal methods in standardization and industrial forums

The workshop included six sessions of regular contributions in the areas of
model checking, testing, software verification, real-time performance, and indus-
trial case studies. There were also three invited presentations, given by Steven
Miller, Rance Cleaveland, and Werner Damm, covering the application of formal
methods in the avionics and automotive industries.

Moreover, a panel was organized on the topic “Formal Methods in Commer-
cial SW Development Tools.” The aim of this panel was to promote discussion
of current and foreseen applications of formal methods within model-based de-
velopment frameworks that include formal analysis and generation methods for
software design.

Out of the 36 submissions to FMICS 2008, 14 papers were accepted for pre-
sentation at the workshop, as well as two short presentations to serve as an intro-
duction to the panel. We wish to thank the members of the Program Committee
and the additional reviewers for their careful evaluation of the submitted papers.
We also acknowledge the effort of all the members of the Program Committee in
constructive discussions during the electronic program selection meeting. Special

VI Preface

thanks for the efforts devoted to the organization of the workshop go to the staff
of the ASE 2008 conference, with which this workshop was co-located.

September 2008 Darren Cofer
Alessandro Fantechi

The FMICS 2008 workshop was hosted by the warm people of L’Aquila, Italy,
and by the historic buildings of the city. Workshop participants had the occasion
to stroll in the peaceful narrow streets of the old center, and to visit the magnif-
icent monuments and churches that were built in the city several centuries ago.

On Monday, April 6, 2009, a severe earthquake hit the city, followed by more
aftershocks in the following days. Hundreds of lives were lost, thousands were in-
jured, and many houses and major historical buildings collapsed or were severely
damaged. The vivid images in the memories of the workshop participants have
been replaced by pictures of destruction from the media.

It is our hope that the proud, tireless and industrious people of the Abruzzo
region will one day be able to bring back the city and the region to what the
FMICS guests experienced.

April 2009 Darren Cofer
Alessandro Fantechi

Organization

FMICS 2008 was organized by the ERCIM Working Group on Formal Methods
for Industrial Critical Systems.

Program Chairs

Darren Cofer Rockwell Collins, USA
Alessandro Fantechi Università di Firenze and ISTI-CNR, Italy

Program Committee

Maria Alpuente Universidad Politècnica de Valencia, Spain
Alvaro Arenas STFC RAL, UK
Lubos Brim Masaryk University, Czech Republic
Wan Fokkink Vrije Universiteit Amsterdam, The Netherlands
Patrice Godefroid Microsoft Research, USA
Leszek Holenderski Philips Research, The Netherlands
Roope Kaivola Intel, USA
Stefan Kowalewski RWTH Aachen, Germany
Stefania Gnesi ISTI-CNR, Italy
Mark Lawford McMaster University, Canada
Stefan Leue University of Konstanz, Germany
Radu Mateescu INRIA Rhone-Alpes, France
Charles Pecheur Universitè Catholique de Louvain, Belgium
Francois Pilarski Airbus, France
Ralf Pinger Siemens, Germany
Murali Rangarajan Honeywell, USA
Marco Roveri IRST, Italy
Ina Schieferdecker Fraunhofer FOKUS, Germany
Wilfried Steiner TTTech, Austria

Additional Referees

Jiri Barnat Masaryk University, Czech Republic
Robert Beers Intel, USA
Dragan Bosnacki Eindhoven University of Technology,

The Netherlands
Goetz Botterweck Lero, Ireland
Marco Bozzano Fondazione Bruno Kessler, Italy
Calame Jens CWI, The Netherlands

VIII Organization

Alessio Ferrari Università di Firenze, Italy
Jan Friso Groote Eindhoven University of Technology,

The Netherlands
Jose Iborra Universidad Politècnica de Valencia, Spain
Christophe Joubert Universidad Politècnica de Valencia, Spain
Dmitry Korchemny Intel, USA
Alexandre Korobkine McMaster University, Canada
Frédéric Lang INRIA Rhone-Alpes, France)
Giovanni Lombardi ISTI-CNR, Italy
Franco Mazzanti ISTI-CNR, Italy
Stefan Milius Siemens, Germany
Francisco Javier Oliver Universidad Politècnica de Valencia, Spain
Lucian Patcas McMaster University, Canada
Bas Ploeger Eindhoven University of Technology,

The Netherlands
Erik Reeber Intel, USA
Viktor Schuppan Fondazione Bruno Kessler, Italy
Wendelin Serwe INRIA Rhone-Alpes, France
Andrey Tchaltsev Fondazione Bruno Kessler, Italy
Maurice H. ter Beek ISTI-CNR, Italy
Francesco Tiezzi Università di Firenze, Italy
Stefano Tonetta Fondazione Bruno Kessler, Italy
Alicia Villanueva Universidad Politècnica de Valencia, Spain
Michael Whalen Rockwell Collins, USA
Anton Wijs INRIA Rhone-Alpes, France

Table of Contents

Invited Presentations

Formal Methods for Critical Systems (Invited Speaker) 1
Steven P. Miller

Model-Based Verification of Automotive Control Software (Invited
Speaker) . 2

Rance Cleaveland

Contract-Based Analysis of Automotive and Avionics Applications:
The SPEEDS Approach (Invited Speaker) . 3

Werner Damm

Panel

Panel Discussion on Formal Methods in Commercial Software
Development Tools . 4

Alessandro Fantechi and Alessio Ferrari

Research Papers

LETO - A Lustre-Based Test Oracle for Airbus Critical Systems 7
Guy Durrieu, Hélène Waeselynck, and Virginie Wiels

Extending Structural Test Coverage Criteria for Lustre Programs
with Multi-clock Operators . 23

Virginia Papailiopoulou, Laya Madani, Lydie du Bousquet, and
Ioannis Parissis

Fighting State Space Explosion: Review and Evaluation 37
Radek Pelánek

Local Quantitative LTL Model Checking . 53
Jiří Barnat, Luboš Brim, Ivana Černá, Milan Češka, and
Jana Tůmová

Efficient Symbolic Model Checking for Process Algebras 69
José Vander Meulen and Charles Pecheur

Reentrant Readers-Writers: A Case Study Combining Model Checking
with Theorem Proving . 85

Bernard van Gastel, Leonard Lensink, Sjaak Smetsers, and
Marko van Eekelen

X Table of Contents

Using CSP||B Components: Application to a Platoon of Vehicles 103
Samuel Colin, Arnaud Lanoix, Olga Kouchnarenko, and
Jeanine Souquières

Formal Verification of the Implementability of Timing Requirements 119
Xiayong Hu, Mark Lawford, and Alan Wassyng

Dynamic Event-Based Runtime Monitoring of Real-Time and
Contextual Properties . 135

Christian Colombo, Gordon J. Pace, and Gerardo Schneider

Can Flash Memory Help in Model Checking? . 150
Jiří Barnat, Luboš Brim, Stefan Edelkamp, Damian Sulewski, and
Pavel Šimeček

From Informal Requirements to Property-Driven Formal Validation 166
Alessandro Cimatti, Marco Roveri, Angelo Susi, and Stefano Tonetta

Automated Certification of Non-Interference in Rewriting Logic 182
Mauricio Alba-Castro, María Alpuente, and Santiago Escobar

Formal Verification of Safety Functions by Reinterpretation of
Functional Block Based Specifications . 199

Erzsébet Németh and Tamás Bartha

Using Datalog and Boolean Equation Systems for Program Analysis . . . 215
María Alpuente, Marco A. Feliú, Christophe Joubert, and
Alicia Villanueva

Author Index . 233

Formal Methods for Critical Systems

Steven P. Miller

Rockwell Collins, USA

Abstract. Formal methods have traditionally been reserved for systems
with requirements for extremely high assurance. However, the growing
popularity of model-based development, in which models of system be-
havior are created early in the development process and used to auto-
generate code, are making precise, mathematical specifications much
more common in industry. At the same time, formal verification tools
such as model checkers continue to grow more powerful. The conver-
gence of these two trends opens the door for the practical application of
formal verification techniques early in the life cycle for many systems.
This talk will describe how Rockwell Collins has applied both theorem
proving and model checking to commercial avionics and security systems
to reduce costs and improve quality.

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, p. 1, 2009.

Model-Based Verification of Automotive
Control Software

Rance Cleaveland

Department of Computer Science and
Fraunhofer USA Center for Experimental Software Engineering,

University of Maryland, USA

Abstract. This talk will report on the use of an approach, called Instru-
mentation Based Verification, for checking the correctness of models of
control software given in Simulink R© and Stateflow R©. In IBV, engineers
formalize requirements as so-called monitor models, whose purpose is to
search executions of the main controller model for violations of required
behavior. Testing is then performed on the instrumented controller model
in order to check for the possibility of deviations between controller and
requirements. Tools such as Reactis R© provide automated support for
conducting these activities, and the technique has attracted interest in
automotive, aerospace and medical-device settings. The presentation will
first review model-based development and IBV and their industrial mo-
tivations. It will then report on a project between the Fraunhofer Center
for Experimental Software Engineering and a major automotive supplier
on using IBV to verify models of an exterior-lighting control system.

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, p. 2, 2009.

Contract-Based Analysis of Automotive and
Avionics Applications: The SPEEDS Approach

Werner Damm

OFFIS, Germany

Abstract. The Speeds project has developed a layered meta-model of
heterogeneous rich components and standardized approaches for the in-
tegration of commercial industry standard modeling tools to assemble
system-level design models with contract-baed interface specifications by
combining models expressed in any authoring tool compliant to the inte-
gration standard, including Matlab-Simulink/Stateflow, Rhapsody, and
Scade. It is currently integrating a range of analysis methods supporting
interface compliance testing and dominance analysis between contracts
expressed in extended automata model, subsuming timed automata. The
presentation focuses on real-time analysis methods, and demonstrates a
methodology for assessing realizability of end-to-end latencies at system
level, exploring the design space of possible system configurations meet-
ing vertical resource assumptions, and assessing compliance to such ver-
tical assumptions based on distributed real-time schedulability analysis
for FlexRay and CAN bus based target architectures.

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, p. 3, 2009.

Panel Discussion on Formal Methods in

Commercial Software Development Tools

Alessandro Fantechi and Alessio Ferrari

DSI - Università di Firenze, Italy

Research on formal methods for software verification currently has decades of
history within academia, and it is a central topic in software engineering. Nev-
ertheless, usage of formal methods in companies is still at its embryonic stage.
The reasons of this discrepancy have to be explored and solutions have to be
found in order to increase adoption of formalized verification within industry.

A panel discussion was held at the closing of the 13th FMICS Workshop in
order to investigate this topic with invited speakers from industry and academy.
The panel was introduced by two short presentations on the theme, namely:

Model-driven software development: needs and experiences in rail automation,
by Stefan Milius and Uwe Steinke, from Siemens AG.

Simulink Design Verifier vs. SPIN A Comparative Case Study, by Florian
Leitner and Stefan Leue from the University of Konstanz, Germany.

The participants to the panel were: Steven Miller of Rockwell Collins, Rance
Cleaveland of Reactive Systems Inc., Werner Damm of OFFIS, Mark Lawford
from McMaster University and Pedro Merino from the University of Malaga.

The first contribution comes from Mark Lawford. He states that the limited
penetration of formal methods within industry is related to the extensive use
of design tools which have no formal semantic. Tools like Matlab are able to
ease the specification part of the process, giving the developer a high level of
freedom and flexibility; in part because there are no strong formal constraints
inherent within these tools. While speeding up the specification and development
phase of the process, this approach creates problems in the verification phase: if
no formal specification is given, how can formal verification take place? Formal
methods are then “bolted onto the side” of existing software development pro-
cesses, effectively creating two models of the system - the informal one used by
the developers and the formal one used by the verifiers. Maintaining consistency
of these models becomes an additional burden. The way to achieve a higher rate
of adoption of formal methods in the industry is to create integrated methods
supported by integrated tools.

Rance Cleaveland has a different opinion: there is no need to disrupt the
specification phase, since this is currently well established in companies, and
it has a sufficient degree of formalization. The focus has to be raised to the
process level, and strategies have to be explored to allow adaptation of the
formal verification task into existing processes. A software process is built on
the concept of Who will press Which mouse button, When?. In industries people
live according to the tasks performed by other people, tasks that someone has
to undertake, and this chain has to be well defined and strongly consistent. Any

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 4–6, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Panel Discussion on Formal Methods 5

development tool, whether formally based or not, in order to achieve adoption
within a company needs to have the process implications explained: how the
process can be more efficient, which activities can be removed, which tasks have
to be added in order to accommodate the new tool. The problem is again Who
will press Which mouse button When?, and with the new tool new mouse buttons
come, and the path to reach the integration has to be explained. Concerning
modeling tools the solution to this issue is currently quite stable. Every year
there is a large number of publications on Model Based Development processes,
and therefore industries interested in MBD have templates for understanding
how to include the modeling tools into their development processes. In the case
of verification tools this is not so clear. The incorporation of verification into
the workflow is an issue that must be solved. In order to have a predictable
development flow the company has to understand when the model checking task
takes place, who has to be trained, and who will actually press the button verify.
Furthermore, the relationship with the existing V&V activities, such as unit
testing and integration testing, needs also to be fixed. Solutions to these problems
have to be given by the tool vendors, to enable companies understanding when
to use the verification tools, and which tool is more suitable for their needs.

Werner Damm enforces the point of view of Rance Cleaveland, stating that
technology is nothing from the industrial perspective, and what is required is
process integration. He also agrees on the fact that formal verification has to pro-
ductively deal with industry standard design tools, such as Matlab. But this
does not mean that one single modeling and analysis tool can be enough. The
categories of design situations which a company has to work on are so diverse,
ranging from system architecture design, requirement capturing, code genera-
tion, that there will never be a single formalism expressive enough, adaptable
enough, to fit with this many different categories of design situation. Therefore,
formal verification has to cope with commercial tools, but one tool will not be
enough. This need for diversity is also enforced by the issue of the maintainabil-
ity of the process chain in an industry. A solution to this, is to get to open-source
tools and create a community of researchers supporting them. In order to re-
alize this objective another step is required. The key resides in agreeing on a
common suite of standard meta-models, and ensure interoperability according
to the meta-models. Given this accepted standard, open-source solutions can be
created with the support of the research community. On the other hand it is es-
sential to create a market environment where companies are pushed to merge, in
order to build a critical mass and in so doing, create commercial alternatives to
monopoly situations. The point of arrival is an environment in which commercial
solutions are completed by open-source ones, no monopolist is dominating the
market and interoperability is guaranteed by the meta-models standard.

Rance Cleaveland agrees on the necessity of defining a standard meta-model,
but he completely disagree with Werner Damm on the role of the open source
community. His opinion is that, with open source, nobody’s leverage depends on
the selling of the software and therefore its quality tends to degrade. Therefore a
standard is needed in order to let companies comply this standard with their tool.

6 A. Fantechi and A. Ferrari

On the other side Werner Damm points out that the question of maintenance of
open source solutions is generally not so negative as described by Rance Cleave-
land, since there are companies providing services around open source tools and
therefore these companies would be in charge of providing maintenance. Though
Pedro Merino agrees on the part that open source tools can play in disrupting
monopoly, he is doubtful on the actual role that the meta-modeling standard can
play. Pedro Merino has been also working on proposals for such meta-languages,
however, according to the past experience with operating systems and network
standards, he believes that defining a common language or infrastructure does
not imply that software vendors will produce tools supporting it.

As a final argument for the discussion, Steven Miller shows how the inter-
operability pointed by Werner Damm can be achieved with the existing tools
and technologies, and who are the subjects involved. In the Rockwell Collins
Translation Framework, SCADE and Matlab models are translated into the
Lustre formal language, and then verified through different analysis tools, both
commercial and open source. In the future this approach could be extended, with
multiple modeling tools on one side, multiple analysis tools on the other side, but
just one standardized modeling language; it being Lustre, SAL, or AP233. The
subjects involved on the modeling tools side will probably be the commercial
software vendors, while the subjects developing analysis and verification tools
will more likely be academies and researchers.

LETO - A Lustre-Based Test Oracle

for Airbus Critical Systems

Guy Durrieu1, Hélène Waeselynck2, and Virginie Wiels1

1 ONERA, Centre de Toulouse,
2, Avenue E. Belin, BP 74025, 31077 Toulouse Cedex 4, France

{Guy.Durrieu,Virginie.Wiels}@cert.fr

http://www.cert.fr
2 LAAS-CNRS, Université de Toulouse

7, Av du Colonel Roche, 31077 Toulouse Cedex 4, France
Helene.Waeselynck@laas.fr

http://www.laas.fr

Abstract. This paper presents an approach and an associated tool that
have been proposed to automate the test oracle procedure of critical sys-
tems developed at Airbus. The target tests concern the early validation
of the SCADE design and are performed in a simulated environment.
The proposed approach and tool have been successfully applied to sev-
eral Airbus examples.

Keywords: Test oracle, automation, formal methods, avionics.

1 Introduction

This paper presents the results of an R&D study conducted for Airbus, that
aimed to increase their current level of test automation. The target tests con-
cern the early validation of critical systems and are performed in a simulated
environment.

The test oracle procedure was identified as a candidate for automation. A
test oracle is a mechanism for determining whether or not a program produced
correct outputs during testing. The availability of such a mechanism has been
recognized as problematic for a long time [1]. Considering the importance of
the problem, there has been comparatively little work in the testing literature
to investigate adequate solutions. Still, some approaches have been proposed
(see [2] for an overview), ranging from contract-based assertions to model-based
test approaches where a behavioral model is used in both the generation of test
cases and the determination of outputs. Such approaches are not widespread in
industry yet. In practice, the test result analysis is almost always done manually,
the tester playing the role of the oracle. Such is currently the case at Airbus.

We report here on the automated solution we have proposed to Airbus. It
has been implemented as prototype tool, LETO (LustrE-based Test Oracle) to
demonstrate the concept. Lustre [7] is a formal language for reactive systems. In
the spirit, LETO is close to other approaches using Lustre-based synchronous

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 7–22, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

8 G. Durrieu, H. Waeselynck, and V. Wiels

observers to check the test execution [3] [4]. However, the implementation is
different due to the constraints put by the Airbus test environment. In particular,
the test traces are analyzed off-line.

The paper starts by a presentation of the industrial context. Section 2 explains
which test phase of the Airbus development process is addressed by our work.
Section 3 summarizes the insights we gained from the analysis of current practice
for this test phase. We identified high-level requirements for an automated oracle.
Section 4 presents the oracle approach retained to fulfill these requirements. The
approach has been implemented in LETO (Section 5) and experimented on real
examples supplied by Airbus (Section 6). Concluding remarks are provided in
Section 7.

2 Development Process and Target Test Phase

Figure 1 gives an overview of the Airbus development process. Three levels are
distinguished: aircraft, system and equipment. The most critical systems, like
flight control systems [9], are designed using the formal language SCADE [10].
A qualified code generator automatically generates most of the embedded code.
Some validation activities are then shifted from the code to the SCADE design.
Overall, the main V&V activities at Airbus are the following:

– Model tests: the considered system is validated using a desktop simulation
environment called OCASIME. The environment provides a panel of com-
mands representing possible pilot actions. It links the SCADE design to
code simulating the aircraft movement and accounts for the redundancy lev-
els in the fault-tolerant architecture. It thus makes it possible to simulate
the complete system (computers, sensors, actuators, aircraft returns).

– Aircraft level simulation: several systems are validated in a simulated
environment.

– Formal verification at code level [11]: Airbus uses abstract-interpretation
based tools to verify non functional properties of programs (such as absence
of run-time errors) and uses proof based tools to verify functional properties
on the parts of the programs that are manually coded.

– Software integration tests.
– Lab tests: first tests with real equipments, on a single system or on several

systems.
– Ground tests and Flight tests.

This study is focused on the model tests performed in the OCASIME environ-
ment, for the validation of the SCADE design of one system (e.g., the flight
control system). Based on the detailed requirements, a test specification docu-
ment (PGE, for Programme Général des Essais in the Airbus terminology) gives
the functional test objectives to be covered. The testers then define concrete test
scenarios to address the objectives, with possibly several scenarios per objective.
The scenarios are implemented and run using OCASIME. The simulation API
offers much flexibility to inject stimuli on data, and to select the variables to be

LETO – A Lustre-Based Test Oracle for Airbus Critical Systems 9

Fig. 1. Airbus development process

monitored. The test trace is then manually analyzed to determine whether the
system passes or fails the test. To facilitate analysis, the tester can use the visual
support of time diagrams showing the evolution of the monitored variables.

During the life cycle of a system, several versions of the design are to be
tested. OCASIME offers facilities to automate the execution of regression tests.
However, the analysis of the regression test results remains manual for a large
part: as soon as the test trace is not strictly identical to the previously recorded
one, manual analysis has to determine whether or not the observed discrepan-
cies reveal a fault. In practice, it turns out that a number of discrepancies are
observed, and that most of them are unimportant. For example, the bits of a
floating point variable may not be identical from one execution to the other (dif-
ference in the value domain), but the corresponding values are actually very close
within some epsilon tolerance. Or it may be observed that a Boolean variable
changes from False to True at a slightly different simulation step (difference in
the time domain), but once again this falls within some time tolerance interval.
Hence, the analysis of results is time consuming not only for the first execution of
the test, but also for all executions with successive design versions. A significant
gain could be expected from the automation of the test oracle procedure.

3 Requirements for an Automated Test Oracle Procedure

Our analysis of the industrial context allowed us to identify some high-level
requirements for an automated oracle approach.

10 G. Durrieu, H. Waeselynck, and V. Wiels

In order to simplify the interfacing with the OCASIME environment, it was
decided that the oracle tool would perform off-line analysis of test traces. In this
way, the tool can be designed as an independent facility, with the only constraint
that it should accept the XML file format of OCASIME traces.

The oracle checks should be defined at a higher level than raw expected val-
ues. Rather, the tester should be given the possibility of expressing properties
relating the input and output values, in a declarative way. The properties are
expected to formalize statements from the documents that are currently used
as references for the manual analysis, namely the PGE and the detailed system
requirements. In order to gain deeper insights into such properties, we analyzed
examples extracted from three different functions of flight control systems: side-
sticks, autopilot, and ADIRS (Air Data and Inertial Reference System). Related
documentation was made available to us, including detailed functional require-
ments, PGE and concrete scenarios. We also had meetings and interviews with
testers.

Analysis showed that a rich specification language is needed for the formal-
ization of properties, with logical, arithmetic as well as temporal operators. An
example, to be developed later in this paper, concerns the acquisition of ADIRS
data. Some numerical input parameters are acquired from three independent
sources. One of the test objectives is to test whether a single faulty source is
correctly identified and locked out. The source is identified as faulty if the deliv-
ered value departs from the median of the three values for more than a prede-
fined threshold, and does so during a given period of time. Once declared faulty
(a Boolean alarm is set to true), the source is locked out (the alarm remains
true forever, and the acquired value is no longer considered). The consolidated
value of the acquired parameter is then the mean of the two remaining sources.
For this test, it can be seen that the oracle checks involve a mix of numerical
(calculation of difference from median, of a mean value), logical (determination
of the mode for calculating the consolidated value) and temporal (persistence
during a time interval, or forever) concerns.

The latter example is representative of a case where the output values are
completely determined: the specified properties are actually formulas to derive
outputs from the inputs. In other cases, the oracle checks may involve invari-
ant properties to be satisfied whatever the specific values produced during the
scenario. For example, in a test objective for sidesticks, a given output param-
eter has to remain within a safety range, and the calculation for the bounds of
the range has to account for both the current and past inputs (numerical and
temporal operators). We thus have two classes of oracle checks:

– Checks for equality. A sequence of expected outputs is computed by the
oracle according to a specified formula, and compared to actual outputs.
Such checks should explicitly accommodate a tolerance in both the value and
time domains, as explained in the discussion of regression testing (Section 2
last paragraph).

– Assertion checks. Rather than computing expected values, the oracle checks
for the validity of more general properties relating inputs and outputs.

LETO – A Lustre-Based Test Oracle for Airbus Critical Systems 11

The tester should have flexibility in using the logical, numerical and temporal
operators for the specification of both classes of checks.

Finally, an important outcome of our analysis was the observation that a
number of test objectives are repeatedly found with parameterization variants.
This is due to symmetries in the Flight Control system. An obvious example
of symmetry arises from redundancy in the fault-tolerant architecture: variants
of a same test objective are found for the three primary computers and their
COM/MON channels (see [9] for an overview of Airbus architectures). Also,
inside a given computer, similar treatments may be attached to different inputs.
For example, the test with a single faulty source is applicable to many ADIRS
parameters. Moreover, for a target parameter, each of the sources may play the
role of the faulty one. In all these examples, the same tests are repeated with
some specialization to the current context (e.g., target computer, target input
parameter). It would be convenient to define the corresponding oracle checks
once and for all, in a generic way, with some mechanism to instantiate the checks
with actual parameters.

The next section presents the approach proposed to fulfill these needs.

4 Proposed Approach

In order to automate the oracle procedure, it is necessary to formalize the test
objectives described in the PGE. For this, we need to choose an expressive lan-
guage and to allow for a form of genericity in the description of objectives.

4.1 Overview

We decided to have two kinds of components to describe test objectives, re-
spectively called generic test schemas and instantiation schemas. A generic test
schema is parameterized and describes a test objective in a generic way. An
instantiation schema contains a list of instantiation cases for a generic schema,
hence allowing its specialization to different concrete contexts.

In the approach we propose (see Figure 2), the tester writes the generic
schemas and instantiation schemas from the PGE. It is a supplementary task
but one that will allow the automation of the oracle and that will also facilitate
capitalization and reuse of test schemas. The library represented on the figure
contains functions that can be used for the definition of test schemas (examples
of such functions will be presented in the following), and existing test schemas
that can be reused.

The tester also defines the test scenarios that will be executed on the simu-
lator. The automated oracle will decide on the result of the test from the trace
file, the generic and instantiation schemas.

4.2 Test Schemas

In this subsection, we give the syntax of the generic and instantiation schemas.
The generic schema has the following form:

12 G. Durrieu, H. Waeselynck, and V. Wiels

Test scenario

trace fileSimulator

oracle OK/NOK

Generic test schema Instantiation schema

library

Fig. 2. Proposed approach

SCHEMA generic_schema
PARAMETERS : parameters
VARIABLES : internal variables
AUXILIARY : auxiliary computation
TEST : expected results of test
ENDSCHEMA

Parameters are the generic variables that will be instantiated in the instantiation
schemas. Variables and auxiliary represent internal variables and computation
that may be necessary for the expression of the test part. The test part describes
the expected results of the test (the oracle checks to be performed).

The instantiation schema has the following form:

SCHEMA inst_schema
FOR A in {a1,a2,a3}
FOR B in {b1,b2,b3}

generic_schema(A,B)
ENDFOR

ENDFOR ENDSCHEMA

For each generic parameter, a list of actual variables can be given.
The schema above means that the generic schema will be considered 9
times (generic schema(a1,b1), generic schema(a1,b2), generic schema(a1,b3),
generic schema(a2,b1), etc).

4.3 Language for the Test Section

The need. Concerning the “test” section, we observed that there was a need
for logical, arithmetic and temporal operators. Our first intent was to define a

LETO – A Lustre-Based Test Oracle for Airbus Critical Systems 13

specific language for the test part, but after analysing the test objectives, we
realised that existing languages could answer our needs, and proposed to use the
Lustre language [7].

Using Lustre as a test oracle language. Using Lustre brings many
advantages:

– it has a well defined semantics;
– it is well suited for the targeted type of systems, and widely used for designing

critical embedded systems, in particular at Airbus: the SCADE language is
actually a graphical language based on Lustre;

– there is an active working community around Lustre and the associated tools;
– it is able to handle all identified needs;
– it is a modular and hierarchical language, which could be useful to ease

reuse and composition of schemas, although this aspect was not developed
nor implemented in the current version of LETO;

– it is a formal declarative language, which is interesting for several reasons:
• it makes the automation of the oracle easier,
• from a more global perspective, it should be useful for establishing links

with formal verification of properties that is experimented also at Airbus.

One possible inconvenience of choosing Lustre is the use of the same language
for describing the system and for specifying the test objectives, this could hinder
the necessary independence between development and verification. This incon-
venience will have to be evaluated during experiments, it is however diminished
by the fact that we use the textual version of the language that feels more
declarative than the graphical one thanks to the the equational form.

Overview of Lustre – selected subset for the test oracle. As previously
said, Lustre is a functional declarative language, the application field of which is
the specification of control and signal processing systems. It belongs to the family
of synchronous languages for which, different tools oriented towards the design of
safety-critical embedded systems have been developed during the last decade [8],
the Scade suite among others [10]. Synchrony divides time into discrete instants,
and a synchronous program progresses according to successive atomic reactions,
which implies a notion of clock defining the instants where reactions occur. Data
are represented as infinite flows of typed values, each value corresponding to an
instant, and operations on data are specified as flow equations. A Lustre program
is thus a set of equations with neither a notion of control nor of sequentiality: the
equation set is reevaluated at each instant on a data flow control basis (maybe
concurrently). A specific function, called pre, allows us to get the value of a
flow at the previous instant; another specific function, ->, allows us to specify,
if necessary, the value of a flow at the first instant.

Besides the arithmetic, logic, conditional and temporal operations required
for writing equations Lustre includes:

– the notion of assertion, allowing us to specify a condition that must hold at
all instants of the execution of a Lustre program;

14 G. Durrieu, H. Waeselynck, and V. Wiels

– the notion of node, supporting modularity and hierarchy: this notion simply
generalizes the notion of operator;

– a set of operations allowing calculus on clocks.

For a first version of our test language, we only needed the basic equation spec-
ification part of Lustre, and some additional basic temporal operators, allowing
us to easily express temporal properties, such as during, the result of which
is true when a given condition holds for a given time interval. The syntax of
Lustre equations was embedded in the TEST part of the schemas. The notion
of assertion was also included in our test language. Finally, syntactic constructs
allowing the specification of value and time tolerances (see Section 5 “Oracle”)
were added to the basic equation syntax.

The semantics, however, is here slightly different from the semantics of stan-
dard Lustre, since we refer to the contents of a trace file instead of the execution
of a program; that is, an instant corresponds to a simulation step (associated to
a time value), and the value of a tested variable corresponds to the measured
value at this time (which must agree with the expected value defined by the
corresponding equation); the value returned by the pre function for a tested
variable is the value of the tested variable at the previous measure; an assertion
allows to verify that a given condition holds for all the measures recorded in the
considered trace file.

In a later version, the test language would include the Lustre notion of node,
which would be useful for reusing and composing schemas, or for extending the
set of basic operators.

4.4 Illustration

We illustrate here the concepts of generic and instantiation schemas on a case
study.

Case Study. We present here a case study extracted from the ADIRS PGE.
ADIRS deals with the acquisition of several parameters necessary for the flight
control system (such as altitude, speed, angle of attack). For each of these pa-
rameters, redundant sensors exist and a consolidated value is computed from
the set of input values available. The treatment is the same for a certain number
of parameters, we will consider the test objectives defined for the nominal case
and the case where one of the input is out of range. Thanks to our generic ap-
proach, we were able to define a generic schema that was applicable for several
parameters.

– Nominal case: the PGE says “Verify that the consolidated value is equal to
the median of the three input values”.

– Faulty case: the PGE says “Inject a divergence on each of the three input
values (one at a time). For each case, verify that the consolidated value is
equal to the average of the two remaining values”.

The case study presented is of course only part of the real treatment. We have
simplified it for the paper but our approach was able to handle the complete
treatment and other complex examples (see Section 5).

LETO – A Lustre-Based Test Oracle for Airbus Critical Systems 15

Generic schemas. The generic schema for the nominal case is the following.

SCHEMA Nominal

-- Test Schema for the nominal computation --

PARAMETERS :

input : real^3 ; -- the three inputs
consolidated : real ; -- the consolidated value

VARIABLES :
AUXILIARY :
TEST :

consolidated = median(input[0], input[1], input[2]) ;
ENDSCHEMA Nominal

The schema has two generic parameters input which is an array of three inputs
and consolidated the consolidated value. The consolidated value should be the
median of the three input values.

The generic schema for the faulty case is the following.

SCHEMA Faulty

-- In this schema, we suppose it is the first input that is faulty --

-- the functions:

-- - median

-- - half_sum

-- are defined in a standard library

PARAMETERS :

input : real^3 ; -- the 3 inputs

s, confirm : real ; -- threshold, confirmation delay

consolidated : real ; -- consolidated value

VARIABLES :

fault : bool ;

t : bool ;

m : real ;

hs : real ;

AUXILIARY :

m = median(input[0], input[1], input[2]) ;

t = abs(input[0] - m) > s ;

hs = half_sum(input[1], input[2]) ;

fault = false -> during(confirm, t) or pre fault;

TEST :

consolidated = if fault then hs else m ;

ENDSCHEMA Faulty

16 G. Durrieu, H. Waeselynck, and V. Wiels

For the faulty case, two generic parameters are added that represent the thresh-
old and the confirmation delay. A fault is defined as the fact that the difference
between the input value and the median is greater than the threshold during a
time that is greater or equal to the confirmation delay.

In this schema, we suppose that it is the first input that is faulty, we will see
in the instantiation schema how to apply this generic schema in order to handle
the fault for each of the three inputs.

Tolerances. If necessary, tolerances can be added on real values or time for the
change of boolean value, the syntax is the following:

fault = false -> during(confirm, t) or pre fault timetolerance 1;

consolidated = if fault then hs else m realtolerance 0.02;

Assertions. It is also possible to define assertions inside test schemas to verify
that a given expression is true. In the ADIRS PGE, the test objectives include
verification on the value of a certain number of booleans representing alarms in
case of faults. The schema above gives an example of an assertion that states
that the boolean should becomes true between time 4 and time 8 (between is an
operator encoded in the tool).

SCHEMA Alarm
PARAMETERS :

bool_alarm : bool ;
VARIABLES :
AUXILIARY :
TEST :

assert between(4.0, 8.0, bool_alarm) ;
ENDSCHEMA Alarm

Instantiation Schemas. An instantiation schema for the nominal case could
be the following.

SCHEMA InstantiatedNominal
FOR COMPUTER IN { "1", "2", "3" }

FOR UNIT IN { COM, MON }
FOR consolidated IN { ALPHA },

input IN { [ALPHA1, ALPHA1, ALPHA3] },
TRACEFILE IN

{"${AUT_ORACLE}/ALPHA_P123.ras"}
Nominal(input, consolidated)

ENDFOR
ENDFOR

ENDFOR ENDSCHEMA InstantiatedNominal

The instantiation schema states that the generic schema will be applied for the
parameter alpha (angle of attack), for three primary computers and two units
of each computer.

LETO – A Lustre-Based Test Oracle for Airbus Critical Systems 17

An instantiation schema for the faulty case could be the following.

SCHEMA InstantiatedFaulty

FOR TRACEFILE IN {"${AUT_ORACLE}/Faulty_ALPHA_P123.ras" }

FOR s IN { 3.6 }

FOR confirm IN { 100 }

FOR consolidated IN { ALPHA }

FOR COMPUTER IN { "1", "2", "3" }

FOR UNIT IN { COM, MON }

FOR input IN { [ALPHA1, ALPHA2, ALPHA3],

[ALPHA2, ALPHA1, ALPHA3],

[ALPHA3, ALPHA1, ALPHA2] },

Faulty(input, s, confirm, consolidated)

ENDFOR

ENDFOR

ENDFOR

ENDFOR

ENDFOR

ENDFOR

ENDFOR

ENDSCHEMA InstantiatedFaulty

In addition to the different computers and units as before, this instantiated
schema allows the application of the generic schema to handle the divergence of
each of the three inputs, as specified in the PGE.

5 Implementation of the Approach

An experimental oracle prototype, based on the principles described in the pre-
vious sections, was developed in Java. Figure 3 shows the main features of this
prototype, called LETO (LustrE-based Test Oracle). The main components are
briefly described below.

Schema Parsing. The oracle prototype requires as inputs:

– a file containing the generic test schema, which specifies the expected rela-
tions between the measured flows.

– a file containing the instantiation cases, which binds the formal names used
within the generic schema to the real names found in the trace files, and
allow to iterate the use of a generic schema on different measure sets.

JavaCC [5][6] has been used for the development of a parser accepting the syntax
of the generic test schemas and instantiation cases. JavaCC is a parser gener-
ator which takes as input a grammar at EBNF (Extended Backus Naur Form)
format with additional syntactic and semantic predicates, and produces a LL(k)
recursive descending parser implemented as a finite state automaton. JavaCC
also provides tools for automatic construction of abstract syntax trees (AST).

The schema parser is launched by the oracle, with the name of the schema
files to be parsed; the AST obtained after parsing are sent back for processing
to the oracle core.

18 G. Durrieu, H. Waeselynck, and V. Wiels

REPORT

ORACLE evaluator

trace file

GUI

generic schema

instantiation case

schema

parsing

XML

parsing

AST

result

measureslaunch

launch

AST

Fig. 3. The experimental oracle prototype

XML Parsing. In addition to test schema and instantiation cases, LETO ob-
viously accesses the trace files to be checked. These trace files adopt an XML
format, with a header specifying the registered signals and a sequence of records
containing the measured values at given instants.

The XML parser was developed using the SAX2 toolkit. The result is a set of
callback methods, activated when encountering the associated XML tags, which
in turn call the appropriate processing functions within the oracle. The XML
parser is launched by the oracle, with the name of the trace file to be analyzed.

Oracle. The oracle core performs three functions:

– it analyzes the generic test schema, the instantiation cases, and successively
carries out the specified instantiations for the set of generic flows used in
the generic test schema. The analysis of the generic test schema implies an
analysis of dependencies in order to get an evaluation order for the specified
equations.

– for each instantiation it launches the parsing of the specified trace file; for
each measure record, it performs the verification specified in the test schema
with help of the evaluator, that is, given the current set of measures, it
computes the expected value of the tested flows and compares the result
to their measured value with some specified tolerance (see below); it is also
able to check that a given condition (or assertion) is verified on the whole
trace file; if necessary, it issues warning messages. For each measure record,
it manages the current and previous values of each flow.

– at the end of each iteration, it produces a report summarizing the results
obtained while processing the trace file.

LETO – A Lustre-Based Test Oracle for Airbus Critical Systems 19

As suggested above, some differences between the expected and measured val-
ues may be meaningless from the test validity point of view; this can be taken
into account by associating tolerances to the relevant equation. Two kinds of
tolerance are considered:

– value tolerance: if the difference between the expected and measured values
is less than a given bound, no discrepancy message is issued; this kind of
tolerance is mainly used for floating point measures (e. g. a sensor measure).

– time tolerance: if the duration of the discrepancy between the expected and
measured values is less than a given number of clock ticks, no discrepancy
message is issued; this kind of tolerance is mainly used for boolean measures
(e. g. an alarm signal).

Evaluator. Given a set of value for the flows defined in the generic test schema,
the evaluator is able to compute, on request of the oracle core, the results of any
arithmetic and logical expression specified in the schema.

Graphical User Interface. In order to help in the design and experimentation
of generic test schemas and instantiation cases, a graphical user interface has

Fig. 4. Screen shot of the LETO graphical user interface

20 G. Durrieu, H. Waeselynck, and V. Wiels

synthesis

update of
the input flows

intermediate computations and
evaluation of the output flows

generic flows
instantiation of

parsing of a recordand of the instantiation cases

parsing of the generic test schema

dependency analysis

parsing of the trace file header

comparison of
computed and

report
observed values

I

R

R:

I :

record loop; for a given instantiation, the set of test records is processed.

instantiation loop; for each instantiation case the R loop is processed.

Fig. 5. General algorithm of the oracle prototype

been developed, allowing us to easily specify the names of the involved files,
global tolerance, to start the analysis process and to display the results. However,
the use of this graphical interface is not mandatory, and the normal mode for
exploiting the automated interface is the batch mode.

Figure 4 shows a screen shot of the graphic user interface of the oracle
prototype.

The upper part allows us to specify the generic schema and the instantiation
cases which are to be used. The middle part contains several buttons for starting
the analysis, enter debug modes and save the log pane contents located in the
lower part of the GUI. At the end of the analysis, the visual indicator located
at the left of the middle part is green if no discrepancy has been detected, and
red otherwise.

Figure 5 summarizes the general algorithm of the oracle prototype.

6 Experiments and Results

The approach described in this paper was successfully used on several industrial
cases coming from the avionic world, specifically from the AIRBUS A380. The
checked trace files, for example, were dealing with:

– the Air Data & Inertial Reference System: it was to be verified that in the
trace file the right value was correctly selected by the logic managing the
redundancy in each operational case (nominal, one or more faulty sources).

– the pilot environment (side sticks): it was to be verified that the electrical
signal generated by the command devices always evolved within the expected
domain.

LETO – A Lustre-Based Test Oracle for Airbus Critical Systems 21

The experiments carried out showed a good proximity between the values com-
puted by the oracle and the values found in the trace files. Few discrepancies
were detected by the oracle, which all were explained either by a too restrictive
tolerance or by a slight time shift between the oracle and the trace file; once these
discrepancies explained, it was possible to parameterize the oracle (tolerances
on value and on time) in order to avoid irrelevant alerts.

It was also important from the project point of view to evaluate the perception
of the tool, and more specifically of the test language, by Airbus people in
charge of carrying out the test campaigns. This was done through some “practical
exercises” which allowed several of these Airbus test experts to experiment the
Lustre specifying style as well as the whole test automation approach on the
above practical industrial cases, and to observe the potential effort savings.

7 Conclusion

We have proposed an approach to automate the test oracle procedure for a
given industrial context. The approach has been implemented in a tool, applied
to a set of representative case studies and has been successful in answering the
identified needs. In particular, it is very useful to handle non regression tests in
an efficient way: our approach verifies the simulation results against expected I/O
properties (which are quite stable) and not against the raw results of the previous
simulations. An industrial deployment of the approach would now necessitate
further methodological work: choice of the best granularity for the test schemas,
definition of the library of functions necessary for the test schemas definition.

The existing industrial context imposed some constraints on the solutions
that could be proposed. For example, the automated oracle checks had to be
done off-line. They could not be done during test execution, for technical rea-
sons regarding the implementation of the OCASIME simulator. However, the
approach and tool we proposed may be used in other industrial contexts. The
specific part is the format of the trace files, but given it is provided in an XML
format, the necessary changes to the LETO tool are not prohibitive. The princi-
ple of the test schemas and the chosen language for these schemas is intended to
be well adapted to critical embedded systems in general. The test schemas are
generic and can be instantiated for several concrete cases. They also establish
a formal traceability between the test specification document (e.g., PGE in the
Airbus context) and the corresponding tests. By essence, test schemas are less
ambiguous and more informative than informal test specification documents.
Their definition requires supplementary work but this work can be capitalized
and reused.

Several themes are interesting for future work. Composition operations could
be investigated to further facilitate the definition of test schemas from existing
ones. We are also studying a similar notion of schemas for the activation part
of the test: generic and instantiated schemas could be used to formalize, store
and reuse activation functions for test scenarios. Finally and in a more distant
perspective, existing lustre-based tools could allow automatic generation of test
scenarios.

22 G. Durrieu, H. Waeselynck, and V. Wiels

Acknowledgements. This work was supported by an Airbus contract. We would
like to thank Jean-Jacques Aubert and Pierre Virelizier for their constant sup-
port during the project and for their comments on this paper.

References

1. Weyuker, E.: On Testing Non-Testable Programs. The Computer Journal 25(4),
465–470 (1982)

2. Baresi, L., Young, M.: Test oracles. Technical Report CIS-TR01-02, Univ. of Ore-
gon (2001)

3. Raymond, P., Weber, D., Nicollin, X., Halbwachs, N.: Automatic Testing of Re-
active Systems. In: 19th IEEE Real-Time Systems Symposium (RTSS 1998), pp.
200–209. IEEE CS Press, Los Alamitos (1998)

4. Parissis, I., Vassy, J.: Strategies for Automated Specification-based Testing of Syn-
chronous Software. In: 16th IEEE Int. Conf. on Automated Software Engineering
(ASE 2001), pp. 364–367. IEEE CS Press, Los Alamitos (2001)

5. Copeland, T.: Generating Parsers with JavaCC. Centennial Books, Alexandria
(2007)

6. javacc Project home, http://javacc.dev.java.net/
7. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow

programming language LUSTRE. Proceedings of the IEEE 79(9), 1305–1320 (1991)
8. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., de Simone,

R.: The Synchronous Languages 12 Years Later. Proceedings of the IEEE 91(1)
(January 2003)

9. Traverse, P., Lacaze, I., Souyris, J.: Airbus Fly-By-Wire: A Total Approach to
Dependability. In: Building the Information Society, 18th IFIP World Computer
Congress (WCC 2004), pp. 191–212. Kluwer, Dordrecht (2004)

10. Esterel Scade Suite,
http://www.esterel-technologies.com/products/scade-suite

11. Duprat, S., Souyris, J., Favre-Flix, D.: Formal Verification Workbench for Airbus
Avionics Software. In: Embedded Real-Time Software (ERTS 2006). SIA (2006)

Extending Structural Test Coverage Criteria for
Lustre Programs with Multi-clock Operators

Virginia Papailiopoulou, Laya Madani, Lydie du Bousquet, and Ioannis Parissis

University of Grenoble - Laboratoire d’Informatique de Grenoble
BP 72 - 38402 Saint-Martin d’Hères Cedex France

{Virginia.Papailiopoulou,Laya.Madani,Lydie.du-Bousquet,
Ioannis.Parissis}@imag.fr

Abstract. Lustre is a formal synchronous declarative language widely
used for modeling and specifying safety-critical applications in the fields
of avionics, transportation or energy production. Testing this kind of ap-
plications is an important and demanding task during the development
process. It mainly consists in generating test data and measuring the
achieved coverage. A hierarchy of structural coverage criteria for Lus-
tre programs have been recently defined to assess the thoroughness of
a given test set. They are based on the operator network, which is the
graphical representation of a Lustre program and depicts the way that
input flows are transformed into output flows through their propagation
along the program paths. The above criteria definition aimed at demon-
strating the opportunity of such a coverage assessment approach but
doesn’t deal with all the language constructions. In particular, the use
of multiple clocks has not been taken into account. In this paper, we ex-
tend the criteria to programs that use multiple clocks. Such an extension
allows for the application of the existing coverage metrics to industrial
software components, which usually operate on multiple clocks, without
negatively affecting the complexity of the criteria.

1 Introduction

Synchronous software is normally part of safety-critical applications in such do-
mains as avionics, transportation and energy. Formal specification is usually re-
quired to model the system behavior along the different levels of the development
process. Such a specification not only describes the correct function of the system
but also it defines the conditions under which that correct function is reached.
That specification can be further used to automatically generate test data.

Several programming languages have been proposed to specify and imple-
ment synchronous applications, such as Esterel [2], Signal [8] or Lustre [5,1].
Lustre is a declarative, data-flow language, which is devoted to the specifica-
tion of real-time applications. It provides formal specification and verification
facilities and ensures efficient C code generation. It is based on the synchronous
approach which demands that the software reacts to its inputs instantaneously.
In practice, that means that the software reaction is sufficiently fast so that ev-
ery change in the external environment is taken into account. As soon as the

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 23–36, 2009.
© Springer-Verlag Berlin Heidelberg 2009

24 V. Papailiopoulou et al.

order of all the events occurring both inside and outside the program is specified,
time constraints describing the behavior of a synchronous program can be ex-
pressed [6]. These characteristics make it possible to efficiently design and model
synchronous systems.

A graphical tool dedicated to the development of critical embedded systems
and often used by industries and professionals is SCADE (Safety Critical Ap-
plication Development Environment). SCADE is a graphical environment used
in the development of safety-critical embedded software. It is based on the Lus-
tre language and it allows the hierarchical definition of the system components
and the automatic code generation. From the SCADE functional specifications,
C code is automatically generated, though this transformation (SCADE to C)
is not standardized. This graphical modeling environment is used mainly in the
aerospace field (Airbus, DO-178B); however its capabilities serve also transporta-
tion, automotive and energy.

In major industrial applications, the testing process usually consists in produc-
ing test cases based on the functional requirements of the system under test. Test
objectives and test data are constructed with regard to the system requirements
and the coverage evaluation is applied on the generated C code. For programs
written in sequential languages, several adequacy criteria have been presented in
the past, such as path/branch coverage criteria, LCSAJ (Linear Code Sequence
And Jump) [10] and MC/DC (Modified Decision Condition Coverage).

These criteria are not conformed with the synchronous paradigm and cannot
be applied on Lustre programs to assess how thoroughly the produced test
data have tested the corresponding specification. Furthermore, it is difficult to
formally relate the coverage measurement results with the system specification
and the test objective. To deal with this problem, especially designed structural
coverage criteria for LUSTRE programs have been proposed [7]. Although these
criteria are comparable to the existing data-flow based criteria [9,3], they are not
the same. They aim at defining intermediate coverage objectives and estimating
the required test effort towards the final one. These criteria are based on the
notion of the activation condition of a path, which informally represents the
propagation of the effect of the input edge through the output edge.

However, the above coverage criteria can be applied only on specifications
that are defined under a unique global clock. The global clock is a boolean
flow that always values true and defines the frequency of the program execu-
tion cycles. Other, slower, clocks can be defined through boolean-valued flows.
They are mainly used to prevent useless operations of the program and to save
computational resources by forcing some program expressions to be evaluated
strictly on specific execution cycles. Thus, nested clocks may be used to restrict
the operation of certain flows when this is necessary, without affecting at the
same time the rest of the program variables. In Lustre, using multiple clocks
is made through two specific operators, when and current. In this paper, we pro-
pose the extension of the existing coverage criteria taking into account the when
and current operators. In fact, we define the activation conditions for the paths
containing these operators in order that the coverage criteria are applicable on

Extending Structural Test Coverage Criteria 25

such paths. The complexity of the criteria, in terms of the cost of computing the
paths and their activation conditions, is not increased.

The paper is structured in three main sections. Section 2 provides a brief
overview of the essential concepts on Lustre language. Section 3 presents the
existing coverage criteria for Lustre programs while in section 4 we thoroughly
demonstrate their extension to the use of multiple clocks. Section 5 concludes
and shows some perspectives for future work.

2 Overview of Lustre

Lustre [5] is a data-flow language. Contrary to imperative languages which
describe the control flow of a program, Lustre describes the way that the inputs
are turned into the outputs. Any variable or expression is represented by an
infinite sequence of values and take the n-th value at the n-th cycle of the
program execution, as it is shown in Figure 1. At each tick of a global clock,
all inputs are read and processed simultaneously and all outputs are emitted,
according to the synchrony hypothesis.

A Lustre program is structured into nodes. A node is a set of equations which
define the node’s outputs as a function of its inputs. Each variable can be defined
only once within a node and the order of equations is of no matter. Specifically,
when an expression E is assigned to a variable X, X=E, that indicates that the
respective sequences of values are identical throughout the program execution;
at any cycle, X and E have the same value. Once a node is defined, it can be
used inside other nodes like any other operator.

The operators supported by Lustre are the common arithmetic and logical
operators (+, -, *, /, and, or, not) as well as two specific temporal operators:
the precedence (pre) and the initialization (->). The pre operator introduces
to the flow a delay of one time unit, while the -> operator -also called fol-
lowed by (fby)- allows the flow initialization. Let X = (x0, x1, x2, x3, . . .) and
(e0, e1, e2, e3, . . .) be two Lustre expressions. Then pre(X) denotes the sequence
(nil, x0, x1, x2, x3, . . .), where nil is an undefined value, while X ->E denotes the
sequence (x0, e1, e2, e3, . . .).

o2
External Environment System Under Test

Time

one cycle

i0 i1 i2

o0 o1

Fig. 1. Synchronous software operation

26 V. Papailiopoulou et al.

node Never(A: bool) returns (never_A: bool);
let

never_A = not(A) -> not(A) and pre(never_A);
tel;

c1 c2 c3 c4 ...
A false false true false ...

never_A true true false false ...

Fig. 2. Example of a Lustre node

Lustre does not support loops (operators such for and while) nor recursive
calls. Consequently, the execution time of a Lustre program can be statically
computed and the satisfaction of the synchrony hypothesis can be checked.

A simple Lustre program is given in Figure 2, followed by an instance of its
execution. This program has a single input boolean variable and a single boolean
output. The output is true if and only if the input has never been true since the
beginning of the program execution.

2.1 Operator Network

The transformation of the inputs into the outputs in a Lustre program is done via
a set of operators.Therefore, it can be representedby a directed graph, the so called
operator network. An operator network is a graph with a set of N operators which
are connected to each other by a set of E ⊆ N ×N directed edges. Each operator
represents a logical or a numerical computation. With regard to the correspond-
ing Lustre program, an operator network has as many input edges (respectively,
output edges) as the program input variables (respectively, output variables).

Figure 3 shows the corresponding operator network for the node of Figure 2.

L3
pre

A

never_A

L1

L2

Fig. 3. The operator network for the node Never

An operator represents a data transfer from an input edge into an output
edge. There are two kinds of operators:

a) the basic operators which correspond to a basic computation and
b) the compound operators which correspond to the case where in a program,

a node calls another node1.
1 For the time being, we only consider basic operators.

Extending Structural Test Coverage Criteria 27

A basic operator is denoted as 〈ei, s〉, where ei, i = 1, 2, 3, . . ., stands for its
inputs edges and s stands for the output edge.

2.2 Clocks in Lustre

In Lustre, any variable and expression denotes a flow, i.e. each infinite sequence
of values is defined on a clock, which represents a sequence of time. Thus, a flow
is the pair of a sequence of values and a clock.

The clock serves to indicate when a value is assigned to the flow. That means
that a flow takes the n-th value of its sequence of values at the n-th time of its
clock. Any program has a cyclic behavior and that cycle defines a sequence of
times, i.e. a clock, which is the basic clock of a program. A flow on the basic
clock takes its n-th value at the n-th execution cycle of the program. Slower
clocks can be defined through flows of boolean values. The clock defined by a
boolean flow is the sequence of times at which the flow takes the value true.

Two operators affect the clock of a flow: when and current.
when is used to sample an expression on a slower clock. Let E be an expres-

sion and B a boolean expression with the same clock. Then X=E when B is an
expression whose clock is defined by B and its values are the same as those of
E ’s only when B is true. That means that the resulting flow X has not the same
clock with E or, alternatively, when B is false, X is not defined at all.

current operates on expressions with different clocks and is used to project
an expression on the immediately faster clock. Let E be an expression with
the clock defined by the boolean flow B which is not the basic clock. Then
Y=current(E) has the same clock as B and its value is the value of E at the last
time that B was true. Note that until B is true for the first time, the value of Y
will be nil.

The sampling and the projection are two complementary operations: a pro-
jection changes the clock of a flow to the clock that the flow had before its last
sampling operation. Trying to project a flow that was not sampled produces an
error. Table 1 provides the use of the two temporal Lustre operators in more
details.

Table 1. The use of the operators when and current

e e e e e e e e e . . .

. . .

x0 = e2 x1 = e4 x2 = e7 x3 = e8 . . .

y0 = nil y1 = nil y2 = e2 y3 = e2 y4 = e4 y5 = e4 y6 = e4 y7 = e7 y8 = e8 . . .

An example [4] of the use of clocks in Lustre is given in Figure 4.
The Lustre node mux receives as input the signal m. Starting from this input

value when the clock c is true, the program counts backwards until zero; from
this moment, it restarts from the current input value and so on.

28 V. Papailiopoulou et al.

node mux(m:int) returns (c:bool; y:int);
var (x:int) when c;
let
y = if c then current(x) else pre(y)-1;
c = true -> (pre(y)=0);
x = m when c;

tel;

− ITE

=

pre

when current
x

M1

M51

y
M2

M3

0

true
M4 c

m

Fig. 4. The mux example and the corresponding operator network

3 Coverage Criteria for Lustre Programs

3.1 Activation Conditions

Given an operator network N, paths can be defined in the program. That is, the
possible directions of flows from the input through the output. More formally, a
path is a finite sequence of edges 〈e0, e1, . . . , en〉, such that for ∀iε [0, n − 1], ei+1

is a successor of ei in N. A unit path is a path with two successive edges. For
instance, in the operator network of Figure 3, there can be found the following
paths.

p1 = 〈A, L1, never_A〉
p2 = 〈A, L1, L3, never_A〉
p3 = 〈A, L1, never_A, L2, L3, never_A〉
p4 = 〈A, L1, L3, never_A, L2, L3, never_A〉

Obviously, one could discover infinitely many paths in an operator network de-
pending on the number of cycles repeated in the path (i.e. the number of pre
operators in the path). However, we only consider paths of finite length by limit-
ing the number of cycles. That is, a path of length n is obtained by concatenating
a path of length n-1 with a unit path (of length 2). Thus, beginning from unit
paths, longer paths could be built; a path is finite if it contains no cycles or if
the number of cycles is limited.

A boolean Lustre expression is associated with each pair 〈e, s〉, denoting the
condition on which the data flows from the input edge e through the output s.

Extending Structural Test Coverage Criteria 29

Table 2. Activation conditions for all Lustre operators

Operator Activation condition
s = NOT (e) AC (e, s) = true

s = AND (a, b) AC (a, s) = not (a) or b
AC (b, s) = not (b) or a

s = OR (a, b) AC (a, s) = a or not (b)
AC (b, s) = b or not (a)

s = ITE (c, a, b) AC (c, s) = true
AC (a, s) = c

AC (b, s) = not (c)

relational operator AC (e, s) = true

s = FBY (a, b) AC (a, s) = true -> false
AC (b, s) = false -> true

s = PRE (e) AC (e, s) = false -> pre (true)

This condition is called activation condition. The evaluation of the activation
condition depends on what kind of operators the paths is composed of. Infor-
mally, the notion of the activation of a path is strongly related to the propagation
of the effect of the input edge through the output edge. More precisely, a path ac-
tivation condition shows the dependencies between the path inputs and outputs.
Therefore, the selection of a test set satisfying the paths activation conditions in
an operator network leads to a notion for the program coverage. Since covering
all the paths in an operator network could be impossible, because of their po-
tentially infinite number and length, in our approach, coverage is defined with
regard to a given path length.

Table 2 summarizes the formal expressions of the activation conditions for all
Lustre operators (except for when and current for the moment). In this table,
each operator op, with the input e and the output s, is paired with the respective
activation condition AC (e, s) for the unit path 〈e, s〉. Noted that some operators
may define several paths through their output, so the activation conditions are
listed according to the path inputs.

Let us consider the path p2 = 〈A, L1, L3, never_A〉 in the corresponding oper-
ator network for the node Never (Figure 3). The condition under which that path
is activated is represented by a boolean expression showing the propagation of
the input A through the output never_A. To calculate its activation condition,
we progressively apply the rules for the activation conditions of the correspond-
ing operators according to Table 22. Starting from the end of the path, we reach

2 In the general case (path of length n), the path p containing the pre operator
is activated if its prefix p’ is activated at the previous cycle of execution, that is
AC (p) = false -> pre (AC (p′)). Similarly in the case of the initialization opera-
tor fby, the given activation conditions are respectively generalized in the forms:
AC (p) = AC (p′) -> false (i.e. the path p is activated if its prefix p’ is activated
at the initial cycle of execution) and AC (p) = false -> AC (p′) (i.e. the path p is
activated if its prefix p’ is always activated except for the initial cycle of execution).

30 V. Papailiopoulou et al.

the beginning, moving one step at a time along the unit paths. Therefore, the
necessary steps would be the following:

AC (p2) = false -> AC (p′), where p′ = 〈A, L1, L3〉
AC (p′) = not (L1) or L2 andAC (p′′) = Aor pre (never_A) andAC (p′′),

where p′′ = 〈A, L1〉
AC (p′′) = true

After backward substitutions, the boolean expression for the activation condition
of the selected path is:

AC (p4) = false -> Aor pre (never_A).

In practice, in order for the path output to be dependent on the input, either the
input has to be true at the current execution cycle or the output at the previous
cycle has to be true; for the first cycle of the execution, the input needs to be
false.

3.2 Coverage Criteria

A Lustre/SCADE program is compiled into an equivalent C program. Provided
that the format of the generated C code depends on the compiler, it is hard to
fix a formal relation between the original Lustre program and the final C one.
In addition, major industrial standards, such as DO-178B in the avionics field,
demand coverage to be measured on the generated C code. Therefore, three
coverage criteria specifically defined for Lustre programs have been proposed
[7]. They are specified on the operator network according to the length of the
paths and the input variable values.

Let T be the set of test sets (input vectors) and Pn = {p|length(p) ≤ n} the
set of all paths in the operator network whose length is inferior or equal to n.
Hence, the following families of criteria are defined for a given and finite order
n ≥ 2. The input of a path p is denoted as in (p) whereas a path edge is denoted
as e.

1. Basic Coverage Criterion (BC). This criterion is satisfied if there is a set
of test input sequences, T , that activates at least once the set Pn. Formally,
∀p ∈ Pn, ∃t ∈ T : AC (p) = true. The aim of this criterion is basically
to ensure that all the dependencies between inputs and outputs have been
exercised at least once. In case that a path is not activated, certain errors
such as a missing or misplaced operator could not be detected.

2. Elementary Conditions Criterion (ECC). In order that an input se-
quence satisfies this criterion, it is required that the path p is activated for
both input values, true and false (taking into account that only boolean
variables are considered). Formally, ∀p ∈ Pn, ∃t ∈ T : in (p) ∧AC (p) = true
and not (in (p)) ∧ AC (p) = true. This criterion is stronger than the previous
one in the sense that it also takes into account the impact that the input
value variations have on the path output.

Extending Structural Test Coverage Criteria 31

3. Multiple Conditions Criterion (MCC). In this criterion, the path out-
put depends on all the combinations of the path edges, also including the
internal ones. A test input sequence is satisfied if and only if the path ac-
tivation condition is satisfied for each edge value along the path. Formally,
∀p ∈ Pn, ∀e ∈ p, ∃t ∈ T : e ∧ AC (p) = true and not (e) ∧ AC (p) = true.

The above criteria form a hierarchical relation: MCC satisfies all the conditions
that ECC does, which also subsumes BC.

4 Extension of Coverage Criteria to when and current
Operators

The aim of this paper is to extend the above criteria in order to support the two
temporal Lustre operators when and current, which handle the use of multiple
clocks since this is the case for many industrial applications.

The use of multiple clocks implies the filtering of some program expressions.
It consists in changing their execution cycle, activating it only at certain cycles
of the basic clock. Consequently, the associated paths are activated only if the
respective clock is true. As a result, the tester must adjust this rarefied path
activation rate according to the global timing.

In this section, we present the definition for the path activation conditions for
when and current, followed by their formal verification. Then, we demonstrate
the application of the extended criteria as well as the coverage evaluation, using
the simple example of the inverse counter of Section 2.2.

4.1 Activation Conditions for when and current

Informally, the activation conditions associated with the when and current oper-
ators are based on their intrinsic definition. Since the output values are defined
according to a condition (i.e. the true value of the clock), these operators can
be represented by means of the conditional operator if-then-else. For the ex-
pression E and the boolean expression B with the same clock,

– X=E when B could be seen as X=if B then E else NON_DEFINED and similarly,
– Y=current(X) could be seen as Y=if B then X else pre(X).

Hence, the formal definitions of the activation conditions result as follows:

Definition 1. Let e and s be the input and output edges respectively of a when
operator and let b be its clock. The activation conditions for the paths p1 = 〈e, s〉
and p2 = 〈b, s〉 are:
AC(p1) = b
AC(p2) = true

32 V. Papailiopoulou et al.

Definition 2. Let e and s be the input and output edges respectively of a current
operator and let b be the clock on which it operates. The activation condition for
the path p = 〈e, s〉 is:
AC(p) = b

As a result, to compute the paths and the associated activation conditions of
a Lustre node involving several clocks, one has just to replace the when and
current operators by the corresponding conditional operator (see Figure 5). At
this point, two basic issues need to be farther clarified. The first one concerns the
when case. Actually, there is no way of defining the value of the expression X when
the clock B is not true (branch NON_DEF in Figure 5(a)). By default, at these
instants, X does not occur and such paths (beginning with a non defined value)
are infeasible3. In the current case, the operator implicitly refers to the clock
parameter B, without using a separate input variable (see Figure 5(b)). This
hints at the fact that current always operates on an already sampled expression,
so the clock that determines its output activation should be the one on which
the input is sampled.

(b)

current
X Y

~~

ITE
X Y

B

pre

~~

ITE

BE X

NON_DEF

when

B
E X

(a)

Fig. 5. Modeling the when and current operators using the ITE

Let us assume the path p = 〈m, x, M1, M2, M3, M4, c〉 in the example of
Section 2.2, displayed in bold in Figure 4. Following the same procedure for
the activation condition computation and starting from the last path edge, the
activation conditions for the intermediate unit paths are:

AC (p) = false -> AC (p1), where p1 = 〈m, x, M1, M2, M3, M4〉
AC (p1) = true and AC (p2), where p2 = 〈m, x, M1, M2, M3〉
AC (p2) = false -> pre (AC (p3)), where p3 = 〈m, x, M1, M2〉
AC (p3) = c and AC (p4), where p4 = 〈m, x, M1〉
AC (p4) = c and AC (p5), where p5 = 〈m, x〉
AC (p5) = c

3 An infeasible path is a path which is never executed by any test cases, hence it can
never be covered.

Extending Structural Test Coverage Criteria 33

After backward substitutions, the activation condition of the selected path is:

AC (p) = false -> pre (c) .

This condition corresponds to the expected result and is compliant with the
above definitions, according to which the clock must be true to activate the
paths with when and current operators.

In order to evaluate the impact of these temporal operators on the coverage
assessment, we consider the operator network of Figure 4 and the paths:

p1 = 〈m, x, M1, y〉
p2 = 〈m, x, M1, M2, M3, M4, c〉
p3 = 〈m, x, M1, M2, M3, M5, y〉

Intuitively, if the clock c holds true, any change of the path input is propagated
through the output, hence the above paths are activated. Formally, the associated
activation conditions to be satisfied by a test set are:

AC (p1) = c

AC (p2) = false -> pre (c)

AC (p3) = not (c) and false -> pre (c).

Eventually, the input test sequences satisfy the basic criterion. Indeed, as soon
as the input m causes the clock c to take the suitable values, the activation
conditions are satisfied, since the latter depend only on the clock. In particular,
in case that the value of m at the first cycle is an integer different to zero (for
sake of simplicity, let us consider m = 2), the BC is satisfied in two steps since
the corresponding values for c are c=true, c=false. On the contrary, if at the first
execution cycle m equals to zero, the basic criterion is satisfied after three steps
with the corresponding values for c: c=true, c=true, c=false. These two samples
of input test sequences and the corresponding outputs are shown in Table 3.

Table 3. Test cases samples for the input m

c1 c2 c3 c4 ...
m i1 (�= 0) i2 i3 i4 ...
c true false false true ...
y i1 i1 − 1 0 i4 ...

c1 c2 c3 c4

m i1 (= 0) i2 i3 ...
c true true false ...
y 0 i2 i2 − 1 ...

4.2 An Illustrative Example

Let us consider a Lustre node that receives at the input a boolean signal set
and returns at the output a boolean signal level. The latter must be true during
delay cycles after each reception of set. Now, suppose that we want the level
to be high during delay seconds, instead of delay cycles. Taking advantage of
the use of the when and current operators, we could call the above node on a

34 V. Papailiopoulou et al.

node TIME_STABLE(set, second: bool; delay: int) returns
(level: bool);
var ck: bool;
let
level = current(STABLE((set, delay) when ck));
ck = true -> set or second;

tel;

node STABLE(set: bool; delay: int) returns (level: bool);
var count: int;
let
level = (count>0);
count = if set then delay

else if false->pre(level) then pre(count)-1
else 0;

tel;

Fig. 6. The node TIME_STABLE: a simple example with the when and current operators

suitable clock by filtering its inputs. The second must be provided as a boolean
input second, which would be true whenever a second elapses. The node must be
activated only when either a set signal or a second signal occurs and in addition
at the initial cycle, for initialization purposes. The Lustre code is quite simple
and it is shown in Figure 6, followed by the associated operator network4.

Similarly to the previous example, the paths to be covered are:

p1 = 〈set, T2, T3, T9, level〉
p2 = 〈delay, T8, T3, T9, level〉
p3 = 〈set, T1, ck, T2, T3, T9, level〉
p4 = 〈second, T1, ck, T2, T3, T9, level〉
p5 = 〈set, T1, ck, T8, T3, T9, level〉
p6 = 〈second, T1, ck, T8, T3, T9, level〉

To cover all these paths, one has to select a test set satisfying the following
activation conditions, calculated as it is described above:

AC (p1) = ck, where ck = true -> set or second
AC (p2) = ck and set
AC (p3) = ck and false -> set or not (second)
AC (p4) = ck and false -> second or not (set)
AC (p5) = ck and set and false -> set or not (second)
AC (p6) = ck and set and false -> second or not (set)

Since the code ensures the correct initialization of the clock, hence its activation
at the first cycle, the above paths are always activated at the first execution
cycle. For the rest of the execution, the basic criterion is satisfied with the
4 The nested node STABLE is used unfolded, since with this criteria definition, the

dependencies between a called node inputs and outputs cannot be determined.

Extending Structural Test Coverage Criteria 35

STABLEwhen

when

ITE >

pre − ITE

pre

current

second
set

delay

true

0

1 0

false

level

T1

T2

T3

T4
T5 T6

T7

T9

ck

T8

Fig. 7. The operator network for the node TIME_STABLE

following test sequence for the inputs (set, second): (1, 0),(0, 1), (1, 1). This test
set, which contains almost every possible combination of the inputs, satisfies
also the elementary conditions criterion (ECC), since the activation of the paths
depends on both boolean inputs.

Admittedly, the difficulty to meet the criteria is strongly related to the com-
plexity of the system under test as well as to the test case generation effort.
Moreover, activation conditions covered with short input sequences are easy to
be satisfied, as opposed to long test sets that correspond to complex instance
executions of the system under test. Experimental evaluation on more complex
case studies, including industrial software components, is necessary and part of
our future work in order to address these problems. Nonetheless, the enhanced
definitions of the structural criteria presented in this paper complete the cov-
erage assessment issue for Lustre programs, as all the language operators are
supported. In addition, the complexity of the criteria is not further affected,
because, in substance, we use nothing but if-then-else operators.

5 Conclusion

We presented the extension of the Lustre structural coverage criteria to support
the use of multiple clocks. We defined the activation conditions for the temporal
operators when and current, which are used to affect the clock of a Lustre
expression. We applied the results on suitable examples and we described how
the criteria could be employed. Yet, the research work presented in this paper
needs to be implemented and incorporated in Lustructu, a tool which measures
the structural coverage of Lustre programs.

In SCADE, coverage is measured through the Model Test Coverage (MTC)
module, in which the user can define his own criteria by defining the conditions to
be activated during testing. Thus, our work could be easily integrated in SCADE

36 V. Papailiopoulou et al.

in the sense that activation conditions corresponding to the defined criteria (BC,
ECC, MCC) could be assessed once they are transformed into suitable MTC
expressions. These issues are currently investigated within the framework of a
collaborative research project5.

Future work includes the evaluation of the proposed criteria involving in-
dustrial case studies. Furthermore, it is necessary to analyze the test sets to
determine their ability to satisfy the criteria and observe what happens with the
paths that the tests cannot cover.

Integration testing issues are also under study. In case of long paths to be cov-
ered, the total path number highly increases causing the coverage measures to be
non applicable. As a result, integration testing requires extending the definition of
the activation conditions to internal nodes, that is to the operators that the user
can define. Such an extension should make it possible to apply the code coverage
criteria on Lustre nodes that call other nodes (compound operators) without
having to unfold the latter ones and reducing the overall complexity.

References

1. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., de Simone,
R.: The synchronous languages 12 years later. Proceedings of the IEEE 91(1), 64–83
(2003)

2. Boussinot, F., De Simone, R.: The Esterel language. Proceedings of the IEEE 79(9),
1293–1304 (1991)

3. Clarke, L.A., Podgurski, A., Richardson, D.J., Zeil, S.J.: A formal evaluation of
data flow path selection criteria. IEEE Trans. Software Eng. 15(11), 1318–1332
(1989)

4. Girault, A., Nicollin, X.: Clock-driven automatic distribution of lustre programs.
In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 206–222. Springer,
Heidelberg (2003)

5. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language lustre. Proceedings of the IEEE 79(9), 1305–1320 (1991)

6. Halbwachs, N., Lagnier, F., Ratel, C.: Programming and verifying real-time systems
by means of the synchronous data-flow language lustre. IEEE Trans. Software
Eng. 18(9), 785–793 (1992)

7. Lakehal, A., Parissis, I.: Structural test coverage criteria for lustre programs. In:
The 10th International Workshop on Formal Methods for Industrial Critical Sys-
tems (FMICS), a joint event of ESEC/FSE 2005, Lisbon, Portugal, September
2005, pp. 35–43 (2005)

8. Le Guernic, P., Gautier, T., Le Borgne, M., Le Maire, C.: Programming Real-Time
Applications with SIGNAL. Proceedings of the IEEE 79(9), 1321–1336 (1991)

9. Rapps, S., Weyuker, E.J.: Selecting software test data using data flow information.
IEEE Trans. Software Eng. 11(4), 367–375 (1985)

10. Woodward, M.R., Hedley, D., Hennell, M.A.: Experience with path analysis and
testing of programs. IEEE Trans. Softw. Eng. 6(3), 278–286 (1980)

5 SIESTA project (www.siesta-project.com), funded by the French National Research
Agency.

Fighting State Space Explosion:

Review and Evaluation

Radek Pelánek�

Department of Information Technology, Faculty of Informatics
Masaryk University Brno, Czech Republic

xpelanek@fi.muni.cz

Abstract. In order to apply formal methods in practice, the practitioner
has to comprehend a vast amount of research literature and realistically
evaluate practical merits of different approaches. In this paper we focus
on explicit finite state model checking and study this area from practi-
tioner’s point of view. We provide a systematic overview of techniques
for fighting state space explosion and we analyse trends in the research.
We also report on our own experience with practical performance of tech-
niques. Our main conclusion and recommendation for practitioner is the
following: be critical to claims of dramatic improvement brought by a sin-
gle sophisticated technique, rather use many different simple techniques
and combine them.

1 Introduction

If you are a practitioner who wants to apply formal methods in industrial critical
systems, you have to address following problems: Which of the many approaches
should I use? If I want to improve the performance of my tool, which of the
techniques described by researchers should I use? Which techniques are worth
the implementation effort? These are important questions which are not easy to
answer, nevertheless they are seldom addressed in research papers.

Research papers rather propose a steady flow of novel techniques, improve-
ments, and optimizations. However, the experimental work reported in research
papers has often poor quality [59] and it is difficult to judge the practical merit of
proposed techniques. The goal of this paper is to provide an overview of research
and realistic assessment of practical merits of techniques. The paper should serve
as a guide for a practitioner who is trying to answer the above given questions.

It is not feasible to realize this goal for the whole field of formal verification
at once. Therefore, we focus on one particular area (explicit model checking)
and give an overview of research in this area and report on practical experience.
Even though our discussion is focused on one specific area, we believe that our
main recommendation — that it is better to combine several simple techniques
rather than to focus on one sophisticated one — is applicable to many other
areas of formal methods.
� Partially supported by GA ČR grant no. 201/07/P035.

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 37–52, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

38 R. Pelánek

Explicit model checking is principally very simple — a brute force traversal
of all possible model states. Despite the simplicity of the basic idea, explicit
model checking is still the best approach for many practically important areas
of application, e.g., verification of communication protocols and software. The
popularity of the approach is illustrated by large number of available tools (e.g.,
Spin, CADP, mCRL2, Uppaal, Divine, Java PathFinder, Helena) and widespread
availability of courses and textbooks on the topic (e.g., [10]).

The main obstacle in applying explicit model checking in practice is the state
space explosion problem. Hence, the research focuses mainly on techniques for
fighting state space explosions — during the last 15 years more than 100 papers
have been published on the topic, proposing various techniques for fighting state
space explosion. What are these techniques and how can we classify them? What
is the real improvement brought by these techniques? Which techniques are
practically useful? Which techniques should a practitioner study and use?

We try to answer these questions, particularly we provide the following:

– We overview techniques for fighting state space explosion in explicit model
checking and divide them into four main areas (Section 2).

– We review and analyse research on fighting state space explosion, and discuss
main trends in this research (Section 3).

– We report on our own practical experience with application and evaluation
of techniques for fighting state space explosion (Section 4).

– Based on the review of literature and our experience, we provide specific
recommendation for practitioner in industry (Section 5).

The main aim of this paper is to present and support the following message:
Rather than optimizing the performance of a single sophisticated technique, we
should use many different simple techniques, study how to combine them, and
how to run them effectively in parallel.

2 Overview of Techniques for Fighting State Space
Explosion

Fig. 1. gives an algorithm Explore which explores the reachable part of the
state space. This basic algorithm can be directly used for verification of simple
safety properties; for more complex properties, we have to use more sophis-
ticated algorithms (e.g., cycle detection [72]). Nevertheless, the basic ideas of
techniques for fighting state space explosion are similar. For clarity, we discuss
these techniques mainly with respect to the basic Explore algorithm.

The main problem of explicit state space exploration is state space explo-
sion problem and consequently memory and time requirements of the algorithm
Explore. Techniques for fighting state space explosion can be divided into four
main groups:

Fighting State Space Explosion: Review and Evaluation 39

proc Explore(M)
Wait = {s0}; Visited = ∅
while Wait �= ∅ do

get s from Wait
explore state s

foreach s
′ ∈ successors of s do

if s
′ �∈ Visited then

add s
′ to Wait

add s to Visited fi od
od

end

Fig. 1. The basic algorithm which explores all reachable states. Data structure Wait
(also called open list) holds states to be visited, data structure Visited (also called
visited list, closed list, transposition table, or just hash table) stores already explored
states.

1. Reduce the number of states that need to be explored.
2. Reduce the memory requirements needed for storing explored states.
3. Use parallelism or distributed environment.
4. Give up the requirement on completeness and explore only part of the state

space.

In the following we discuss these four types of approaches and for each of them
we list examples of specific techniques.

2.1 State Space Reductions

When we inspect some simple models and their state spaces, we quickly notice
significant redundancy in these state spaces. So the straightforward idea is to
try to exploit this redundancy and reduce the number of states visited during
the search. In order to exploit this idea in practice, we have to specify which
states are omitted from the search and we have to show the correctness of the
approach, i.e., prove that the visited part of the state space is equivalent to the
whole state space with respect to some equivalence (typically bisimulation or
stutter equivalence).

State based reductions. State based reductions exploit observation that if two
states are bisimilar then it is sufficient to explore successors of only one of them.
The reduction can be performed either on-the-fly during the exploration or by a
static modification of the model before the exploration. Examples of such reduc-
tions are symmetry reduction [12,20,43,44,70,74], live variable reduction [21,69],
cone of influence reductions, and slicing [19,35].

Path based reductions. Path based reductions exploit observation that some-
times it is sufficient to explore only one of two sequences of actions because they
are just different linearizations of “independent” actions and therefore have the

40 R. Pelánek

same effect. These reductions try to reduce the number of equivalent interleav-
ings. Examples of such reductions are transition merging [18,48], partial or-
der reduction [27,33,40,63,64], τ -confluence [11], and simultaneous reachability
analysis [55].

Compositional methods. Systems are often specified as a composition of sev-
eral components. This structure can be exploited in two ways: compositional
generation of the state space [46] and assume-guarantee approach [22,32,66].

2.2 Storage Size Reductions

The main bottleneck of model checking are usually memory requirements. There-
fore, we can save some memory at the cost of using more time, i.e., by employing
some kind of time-memory trade-off. The main source of memory requirements
of the algorithm Explore is the structure Visited which stores previously vis-
ited states. Hence, techniques, which try to lower memory requirements, focus
mainly on this structure.

State compression. During the search, each state is represented as a byte
vector which can be quite large (e.g., 100 bytes). In order to save space, this
vector can be compressed [25,26,30,39,49,56,73] or common components can be
shared [38]. Instead of compressing individual states, we can also represent the
whole structure Visited implicitly as a minimized deterministic automaton [41].

Caching and selective storing. Instead of storing all states in the structure
Visited , we can store only some of these states — this approach can lead to
revisits of some states and hence can increase runtime, but it saves memory.
Techniques of this type are for example:

– caching [24,28,65], which deletes some currently stored states when the mem-
ory is full,

– selective storing [9,49], which stores only some states according to given
heuristics,

– sweep line method [15,54,68], which uses so called progress function; this
function guarantees that some states will not be revisited in the future and
hence these states can be deleted from the memory.

Use of magnetic disk. Simple use of magnetic disk leads to an extensive
swapping and slows down the computation extremely. So the magnetic disk have
to be used in a sophisticated way [7,8,71] in order to minimize disk operations.

2.3 Parallel and Distributed Computation

Another approach to manage a large number of states is to use even more brute
force — more processors.

Networks of workstations. Distributed computation can be realized most
easily by network of workstations connected by fast communication medium

Fighting State Space Explosion: Review and Evaluation 41

(i.e., workstations communicate by message passing). In this setting the state
space is partitioned among workstations (i.e., each workstation stores part of the
data structure Visited) and workstations exchange messages about states to be
visited (Wait structure), see e.g., [23,50,51]. The application of distributed envi-
ronment for verification of liveness properties is more complicated, because clas-
sical algorithms are based on depth-first search, which cannot be easily adapted
for distributed environment. Hence, for verification of liveness properties we have
to use more sophisticated algorithms, see e.g., [1,2,3,5,13,14].

Multi-core processors. Recently, multi-core processors become widely avail-
able. Multi-core processors provide parallelism with shared memory, i.e., the
possibility to reduce run-time of the verification by parallel exploration of sev-
eral states, see e.g., [4,42].

2.4 Randomized Techniques and Heuristics

If the memory requirements of the search are too large even after the application
of above given techniques, we can use randomized techniques and heuristics.
These techniques explore only part of the state space. Therefore, they can help
only in the detection of an error; they cannot assist us in proving correctness.

Heuristic search (also called directed or guided search). States are visited
in an order given by some heuristics, i.e., Wait list is implemented as priority
queue [31,47,67]. Different heuristic approach is to use genetic algorithm which
tries to ‘evolve’ a path to a goal state [29].

Random walk and partial search. Random walk does not store any infor-
mation and always visits just one successor of a current state [34,60]. This basic
strategy can be extended in several ways, e.g., by visiting a subset of all succes-
sors (instead of just one state), storing some states in the Visited structure, or
combining random walk with local breadth-first search, see e.g., [36,45,52,53,60].

Bitstate hashing. The algorithm does not store whole states but only one bit
per state in a large hash table [37]. In a case of collision some states are omitted
by the search. A more involved version of this technique is based on Bloom
filters [16,17].

3 Research Analysis

What are the trends in the research literature about techniques for fighting state
space explosion? Is the quality of experimental evidence improving? How signif-
icant is the improvement reported in research papers? How is this improvement
changing over time?

3.1 Research Papers

In order to answer the above given questions, we have collected and analyzed
large set of research papers. More specifically, we collected research papers that

42 R. Pelánek

 0

 2

 4

 6

 8

 10

 12

 1994 1996 1998 2000 2002 2004 2006

total
state space reduction
storage size reduction
parallel and distributed

randomized and heuristic

Fig. 2. Numbers of publications; note that some papers can be counted in two
categories

describe techniques for fighting state space explosion in explicit model checking
of finite state systems1.

The collection contains more than 100 papers – these papers were obtained
by systematically collecting papers from the most relevant conferences and by
citation tracking. The full list of reviewed papers, which includes all papers
referenced above, is freely available2. The collection is certainly not complete,
but we believe that it is a good sample of research in the area.

Fig. 2. shows the number of publications in each year during the last 13 years.
Although there are rises and downfalls, the overall flow of publications on the
topic is rather steady. The figure also shows that all four areas described in the
previous section are pursued concurrently.

3.2 Quality of Experiments

Although some of the considered research is rather theoretically oriented (e.g.,
partial order reduction), all considered techniques are in fact heuristics which
aim at improving performance of model checking tools. So what really matters is
the practical improvement brought by each technique. To assess the improvement

1 In few cases we also include techniques which are not purely explicit, but target the
similar application domain (i.e., the experiments are done on same models as for
other included papers).

2 http://www.fi.muni.cz/~xpelanek/amase/reductions.bib

Fighting State Space Explosion: Review and Evaluation 43

1994 1996 1998 2000 2002 2004 2006 2008

1
2

3
4

qu
al

ity
 o

f e
xp

er
im

en
ts

1 2 3 4

1
2

3

quality of experiments

ci
ta

tio
n

im
pa

ct

Fig. 3. The first graph shows the quality of experiments reported in model checking
papers during time. The size of a box corresponds to a number of published papers
in a given year and quality category. The second graph shows the relation between
experiment quality and citation impact; citation impact is divided into three categories:
less than 10 citations, 10–30 citations, more than 30 citations; only publication before
2004 are used.

it is necessary to perform experimental evaluation. Only good experiments can
provide realistic evaluation of practical merits of proposed techniques.

In order to study the quality of experiments, we classify experiments in each
paper into one of four classes, depending on the number and type of used
models3:

1. Random inputs or few toy models.
2. Several toy models (possibly parametrized) or few simple models.
3. Several simple models (possibly parametrized) or one large case study.
4. Exhaustive study of parametrized simple models or several case studies.

Fig 3. presents the quality of experiments in papers from our sample. The figure
shows that the quality on average is not very good and, what is even more
disappointing, that there is slow progress in time, although many realistic case
studies are available (see [59] for more detailed discussion of these issues).

Since there is a large number of techniques, it is important to compare per-
formance of novel techniques with previously studied one. However, analysis of
our research sample shows that only about 40% papers contain some compari-
son with similar techniques; this ratio is improving with time, but only slowly.
Moreover, the comparison is usually only shallow.

Our analysis also shows one encouraging trend. Fig. 3. shows that there is
a relation between quality of experiments and citation impact of a paper —
research with better experiments is more cited.

3.3 Reported Improvement

Before the discussion of improvements reported in research papers, we clarify
the terminology that we use to measure this improvement. We use the notion
3 The classification is clearly slightly subjective. Nevertheless, we believe that the main

conclusions of our analysis do not depend on the subjective factor.

44 R. Pelánek

1994 1996 1998 2000 2002 2004 2006 2008

1
2

3
4

re
po

rt
ed

 r
es

ul
ts

1 2 3 4

1
2

3
4

quality of experiments

re
po

rt
ed

 r
es

ul
ts

Fig. 4. Reported improvement with respect to time and quality of experiments

‘reduction ratio’ to denote the ratio between the memory consumption of the
technique for fighting state space explosion and the memory consumption of the
standard reachability (exploration of full reachable state space). Some authors
report ‘reduced by’ factor, i.e., if we report ‘reduction ratio’ 80%, it means that
the memory consumption was ‘reduced by’ 20%. Note that in this section we
analyze reduction ratios as reported by authors, not what we consider realistic
reduction ratios of techniques.

For clarity of presentation, we again divide the reported reduction ratios into
four classes:

1. Reported reduction ratio is 50% or worse (or sometimes good but sometimes
worse than 100%).

2. Reported reduction ratio is in most cases 10%-50%.
3. Reported reduction ratio is in most cases 1%-10%.
4. Reported reduction ratio is better than 1% (or exponential improvement is

reported or only out-of memory for full search is reported, i.e., reduction
ratio is impossible to assess).

Fig. 4. shows that in most cases the reported reduction is in the second category
(reduction between 10% and 50%). The relation with the quality of experiments
clearly demonstrates that this is also the most realistic evaluation — better re-
sults are often caused by poor experiments, not by special features of techniques.

There is no clear trend with respect to time, i.e., it seems that novel techniques
do not significantly improve on performance of previous techniques. This does
not automatically mean that the recent research is misguided. In some cases
novel technique provides principally different way how to obtain the reduction
and can be combined with previously proposed techniques in orthogonal way.
Novel technique can also extend the application domain of previously studied
techniques.

As we already mentioned, the research in this domain is purely practically mo-
tivated. However, the amount of research into certain topic is not really related
to its practical merit. For example, our experience (described in next section)
shows that the dead variable reduction brings similar improvement as partial or-
der reduction. Nevertheless, there are significantly more research papers about

Fighting State Space Explosion: Review and Evaluation 45

partial order reduction than about dead variable reduction. This is probably
not due to the practical merits of partial order reduction, but because it can be
extensively studied theoretically.

4 Practical Experience

In this section we report on our experience with techniques for fighting state
space explosion. Our experience is based on large-scale research studies, which
are described in stand-alone publications. Here we provide only a brief descrip-
tion of these studies and present their main conclusions. Technical details can
be found in cited papers.

Our experience report obviously does not cover all techniques for fighting state
space explosion. However, we cover all four areas described in Section 2 and the
main conclusions are in all cases similar, so we believe that it is reasonable to
generalize our experience.

4.1 On-the-fly State Space Reductions

We evaluated several techniques for on-the-fly state space reductions. Setting of
this study (see [57] for details):

– Implementation: publicly available implementations of explicit model check-
ers (Spin, Murphy, DiVinE).

– Models: models included in tool distributions plus few more publicly avail-
able case studies.

– Techniques: dead variable reduction, partial order reduction, transition
merging, symmetry reduction.

When we measured the performance of techniques over realistic models, we found
that the reduction ratio is usually worse than what is reported in research pa-
pers — research papers often use simple models with artificially high values of
model parameters. More specifically, the main results of our evaluation are the
following: dead variable reduction works on nearly all models, reduction ratio is
usually between 10% and 90%; partial order reduction works only in some cases,
reduction ratio is between 5% and 90%; transition merging works in similar cases
as partial order reduction, it is weaker but easier to realize, reduction ratio is
usually between 50% and 95%; symmetry reduction works only for few models
(symmetric ones), reduction ratio is usually between 8% and 50%.

Our main conclusion from this study are the following:

– Each technique is applicable only to some types of models. No technique
works really universally; more specialized techniques yield better reduction.

– On real models, no single technique is able to achieve reduction ratio sig-
nificantly under 5%. Claims about drastic reduction, which occur in some
papers, are not really appropriate.

– Since there are many techniques and many of them are orthogonal, most
models can be reduced quite significantly.

46 R. Pelánek

4.2 Caching and Compression

From the area of ‘storage size reduction’ techniques we evaluated two techniques
for reducing memory consumption of the data structure Visited . Setting of this
study (see [62] for details):

– Implementation: all techniques are implemented in uniform way using the
DiVinE environment [6] (source codes are publicly available).

– Models: 120 models from BEEM (BEnchmarks for Explicit Model check-
ers) [59].

– Techniques: state caching with 7 different caching strategies, state compres-
sion with Huffman coding (two variants: static code and code computed by
training runs).

In the study we also reviewed previous research on storage size reduction tech-
niques. We found that using proper parameter values with our simple and easy-
to-implement techniques, we were able to achieve very similar results to those
reported in other works which use far more sophisticated approaches. Concrete
results of the evaluation are the following:

– Caching strategies are to a certain degree complementary. Using an appro-
priate state caching strategy, the reduction ratio is in most cases 10% to
30%.

– Using state compression, the reduction ratio is usually around 60%.
– The two techniques combine well.

4.3 Distributed Exploration

From the area of parallel and distributed techniques we report on the basic
distributed approach to explicit model checking: we have a network of worksta-
tions connected by fast Ethernet, workstations communicate via message passing
(MPI library), state space is partitioned among workstations. In this setting the
reduction ratio is clearly bounded by 1/n, where n is the number of workstations.
In practice the reduction ratio is worse because of communication overhead. Here
we report on results of our evaluation, however the results are rather typical in
this area.

Setting of this study (see [58] for details):

– Implementation: the DiVinE tool (public version).
– Models: 120 models from BEEM (BEnchmarks for Explicit Model check-

ers) [59].
– Techniques: distributed reachability on 20 workstations.

In this study the speedup varies from 2 to 12, typical value of the speedup is
between 4 and 6 (i.e., reduction ratio around 20%). We also found that the
speedup is negatively correlated with the speed of successor generation by the
tool.

Fighting State Space Explosion: Review and Evaluation 47

4.4 Error Detection Techniques

From the area of ‘randomized techniques and heuristics’ we have chosen 9 tech-
niques and evaluated their performance. In this case we do not study the reduc-
tion ratio, because it is not known — the experiments are done on models for
which the standard reachability is not feasible. Therefore, we focus on relative
performance of techniques and on the issue of complementarity.

Setting of this study (see [61] for details):

– Implementation: all techniques are implemented in uniform way using the
DiVinE environment [6] (source codes are publicly available),

– Models: 54 models (with very large state space) from BEEM [59].
– Techniques: breadth-first search, depth-first search, randomized DFS, two

variants of random walk, bitstate hashing with repetition, two variants of
directed search, and under-approximation refinement based on partial order
reduction.

For the evaluation we used several performance measures: number of steps
needed to find an error, length of reported counterexample, and coverage metrics.
The main results of this study are the following:

– There is no single best technique. Results depend on used performance met-
rics, even for a given metric, the most successful technique is the best one
only over 25% of models.

– It is important to focus on complementarity of techniques, not just on their
overall (average) performance. For example, in our study the random walk
technique had rather poor overall performance, but it was successful on
models where other techniques fall, i.e., it is a useful technique which we
should not discard.

5 Conclusions

This paper is concerned with techniques for fighting state space explosion prob-
lem in explicit model checking. We review the research in the area during the
last 15 years (more than 100 research papers) and report on our practical experi-
ence. As a result of our review we identify four main groups of techniques: state
space reductions, storage size reductions, parallel and distributed computation,
randomization and heuristics. These four groups are rather orthogonal and can
be combined; within each group techniques are often based on similar ideas and
their combination can be difficult.

The review of research shows that despite a steady flow of publications on the
topic, the progress is not very significant — in fact the reduction ratio reported
in research papers stays practically the same over the last 15 years. This analysis
stresses the need for good practical evaluation. However, realistic evaluation of
research progress is complicated by rather poor experimental standards and by
unjustified claims by researchers.

48 R. Pelánek

Results reported in research papers often make an impression of dramatic
improvements. Our practical experience suggests that it is not realistic to get
better reduction ratio than 5% with a single technique, in fact in most cases the
obtained reduction ratio is between 20% and 80%. Nevertheless, this does not
mean that techniques for fighting state space explosion are not useful. Techniques
of different types can be combined, and together they might be able to bring a
significant improvement.

Our experience also suggest that simple techniques are often sufficient. The
performance obtained by sophisticated techniques is often similar to performance
of basic techniques from each area. Complicated techniques often achieve better
results only for specialized application domains. This observation can be also
supported by analysis of techniques implemented in model checking tools. Tools
usually implement basic versions of many techniques, sophisticated techniques
are often implemented only in a tool used by authors of the technique.

To summarise, we propose following recommendations for those who want to
apply model checking in practice:

– Use large number of simple techniques of different types.
– Do not try to find ‘the best’ technique of a specific type. Try to find a

set of simple complementary techniques and run all of them (preferably in
parallel).

– Be critical to claims in research papers, particularly if the experimental ev-
idence is poor.

– Use sophisticated techniques only if they are specifically targeted at your
domain of application.

– Focus on combination of orthogonal techniques.

Researchers, we believe, should focus not just on the development of novel tech-
niques, but also on issues of techniques combination, selection, and efficient
scheduling: How to select right technique for a given model? In what order we
should try available techniques? Can information gathered by one technique be
used by another techniques?

Acknowledgment

I thank Václav Rosecký, Pavel Moravec, and Jaroslav Šeděnka for cooperation
on practical evaluation of techniques.

References

1. Barnat, J., Brim, L., Černá, I.: Property driven distribution of nested DFS. In:
Proc. of Workshop on Verification and Computational Logic, number DSSE-TR-
2002-5 in DSSE Technical Report, pp. 1–10. University of Southampton, UK (2002)

2. Barnat, J., Brim, L., Chaloupka, J.: Parallel breadth-first search LTL model-
checking. In: Proc. of Automated Software Engineering (ASE 2003), pp. 106–115.
IEEE Computer Society, Los Alamitos (2003)

Fighting State Space Explosion: Review and Evaluation 49

3. Barnat, J., Brim, L., Chaloupka, J.: From distributed memory cycle detection to
parallel LTL model checking. ENTCS 133(1), 21–39 (2005)

4. Barnat, J., Brim, L., Rockai, P.: Scalable multi-core LTL model-checking. In:
Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 187–203.
Springer, Heidelberg (2007)

5. Barnat, J., Brim, L., Stř́ıbrná, J.: Distributed LTL model-checking in SPIN. In:
Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 200–216. Springer, Heidelberg
(2001)

6. Barnat, J., Brim, L., Černá, I., Moravec, P., Rockai, P., Šimeček, P.: Di-
VinE - a tool for distributed verification. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 278–281. Springer, Heidelberg (2006),
http://anna.fi.muni.cz/divine

7. Barnat, J., Brim, L., Šimeček, P.: I/o efficient accepting cycle detection i/o efficient
accepting cycle detection. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 281–293. Springer, Heidelberg (2007)

8. Barnat, J., Brim, L., Šimeček, P., Weber, M.: Revisiting resistance speeds up i/o-
efficient ltl model checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 48–62. Springer, Heidelberg (2008)

9. Behrmann, G., Larsen, K.G., Pelánek, R.: To store or not to store. In: Hunt Jr.,
W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 433–445. Springer, Hei-
delberg (2003)

10. Ben-Ari, M.: Principles of the SPIN Model Checker. Springer, Heidelberg (2008)
11. Blom, S., van de Pol, J.: State space reduction by proving confluence. In: Brinksma,

E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 596–609. Springer, Hei-
delberg (2002)

12. Bosnacki, D.: A light-weight algorithm for model checking with symmetry reduction
and weak fairness. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648,
pp. 89–103. Springer, Heidelberg (2003)

13. Brim, L., Černá, I., Krčál, P., Pelánek, R.: Distributed LTL model checking based
on negative cycle detection. In: Hariharan, R., Mukund, M., Vinay, V. (eds.)
FSTTCS 2001. LNCS, vol. 2245, pp. 96–107. Springer, Heidelberg (2001)

14. Černá, I., Pelánek, R.: Distributed explicit fair cycle detection. In: Ball, T., Ra-
jamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 49–73. Springer, Heidelberg
(2003)

15. Christensen, S., Kristensen, L.M., Mailund, T.: A sweep-line method for state space
exploration. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
450–464. Springer, Heidelberg (2001)

16. Dillinger, P.C., Manolios, P.: Bloom filters in probabilistic verification. In: Hu,
A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 367–381. Springer,
Heidelberg (2004)

17. Dillinger, P.C., Manolios, P.: Fast and accurate bitstate verification for SPIN. In:
Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 57–75. Springer,
Heidelberg (2004)

18. Dong, Y., Ramakrishnan, C.R.: An optimizing compiler for efficient model check-
ing. In: Proc. of Formal Description Techniques for Distributed Systems and Com-
munication Protocols (FORTE XII) and Protocol Specification, Testing and Veri-
fication (PSTV XIX), pp. 241–256. Kluwer, Dordrecht (1999)

19. Dwyer, M.B., Hatcliff, J., Hoosier, M., Ranganath, V.P.: Evaluating the effective-
ness of slicing for model reduction of concurrent object-oriented programs. In: Her-
manns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 73–89. Springer,
Heidelberg (2006)

50 R. Pelánek

20. Emerson, E.A., Wahl, T.: Dynamic symmetry reduction. In: Halbwachs, N., Zuck,
L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 382–396. Springer, Heidelberg
(2005)

21. Fernandez, J.C., Bozga, M., Ghirvu, L.: State space reduction based on live vari-
ables analysis. Journal of Science of Computer Programming (SCP) 47(2-3), 203–
220 (2003)

22. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)

23. Garavel, H., Mateescu, R., Smarandache, I.: Parallel state space construction for
model-checking. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 217–234.
Springer, Heidelberg (2001)

24. Geldenhuys, J.: State caching reconsidered. In: Graf, S., Mounier, L. (eds.) SPIN
2004. LNCS, vol. 2989, pp. 23–38. Springer, Heidelberg (2004)

25. Geldenhuys, J., de Villiers, P.J.A.: Runtime efficient state compaction in SPIN. In:
Dams, D.R., Gerth, R., Leue, S., Massink, M. (eds.) SPIN 1999. LNCS, vol. 1680,
pp. 12–21. Springer, Heidelberg (1999)

26. Geldenhuys, J., Valmari, A.: A nearly memory-optimal data structure for sets and
mappings. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp.
136–150. Springer, Heidelberg (2003)

27. Godefroid, P.: Partial-order methods for the verification of concurrent systems:
an approach to the state-explosion problem. In: Godefroid, P. (ed.) Partial-Order
Methods for the Verification of Concurrent Systems. LNCS, vol. 1032, p. 142.
Springer, Heidelberg (1996)

28. Godefroid, P., Holzmann, G.J., Pirottin, D.: State space caching revisited. In:
Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 178–191.
Springer, Heidelberg (1993)

29. Godefroid, P., Khurshid, S.: Exploring very large state spaces using genetic algo-
rithms. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp.
266–280. Springer, Heidelberg (2002)

30. Gregoire, J.: State space compression in spin with GETSs. In: Proc. Second SPIN
Workshop, Rutgers University, New Brunswick, New Jersey (1996)

31. Groce, A., Visser, W.: Heuristics for model checking java programs. Software Tools
for Technology Transfer (STTT) 6(4), 260–276 (2004)

32. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems 16(3), 843–871 (1994)

33. Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian partial-order reduction.
In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 95–112.
Springer, Heidelberg (2007)

34. Haslum, P.: Model checking by random walk. In: Proc. of ECSEL Workshop (1999)
35. Hatcliff, J., Dwyer, M.B., Zheng, H.: Slicing software for model construction. Higher

Order Symbol. Comput. 13(4), 315–353 (2000)
36. Holzmann, G.J.: Algorithms for automated protocol verification. AT&T Technical

Journal 69(2), 32–44 (1990)
37. Holzmann, G.J.: An analysis of bitstate hashing. In: Proc. of Protocol Specification,

Testing, and Verification, pp. 301–314. Chapman & Hall, Boca Raton (1995)
38. Holzmann, G.J.: State compression in SPIN: Recursive indexing and compression

training runs. In: Proc. of SPIN Workshop (1997)
39. Holzmann, G.J., Godefroid, P., Pirottin, D.: Coverage preserving reduction strate-

gies for reachability analysis. In: Proc. of Protocol Specification, Testing, and Ver-
ification (1992)

Fighting State Space Explosion: Review and Evaluation 51

40. Holzmann, G.J., Peled, D.: An improvement in formal verification. In: Proc. of
Formal Description Techniques VII, pp. 197–211. Chapman & Hall, Ltd., Boca
Raton (1995)

41. Holzmann, G.J., Puri, A.: A minimized automaton representation of reachable
states. Software Tools for Technology Transfer (STTT) 3(1), 270–278 (1998)

42. Holzmann, G.J., Bosnacki, D.: The design of a multicore extension of the spin model
checker. IEEE Transactions on Software Engineering 33(10), 659–674 (2007)

43. Iosif, R.: Symmetry reduction criteria for software model checking. In: Bošnački,
D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 22–41. Springer, Heidelberg
(2002)

44. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in
System Design 9(1–2), 41–75 (1996)

45. Jones, M.D., Sorber, J.: Parallel search for LTL violations. Software Tools for
Technology Transfer (STTT) 7(1), 31–42 (2005)

46. Krimm, J.P., Mounier, L.: Compositional state space generation from Lotos pro-
grams. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 239–258.
Springer, Heidelberg (1997)

47. Kuehlmann, A., McMillan, K.L., Brayton, R.K.: Probabilistic state space search.
In: Proc. of Computer-Aided Design (CAD 1999), pp. 574–579. IEEE Press, Los
Alamitos (1999)

48. Kurshan, R.P., Levin, V., Yenigün, H.: Compressing transitions for model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 569–581.
Springer, Heidelberg (2002)

49. Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Efficient verification of real-time
systems: Compact data structure and state-space reduction. In: Proc. of Real-Time
Systems Symposium (RTSS 1997), pp. 14–24. IEEE Computer Society Press, Los
Alamitos (1997)

50. Lerda, F., Sisto, R.: Distributed-memory model checking with SPIN. In: Dams,
D.R., Gerth, R., Leue, S., Massink, M. (eds.) SPIN 1999. LNCS, vol. 1680, p. 22.
Springer, Heidelberg (1999)

51. Lerda, F., Visser, W.: Addressing dynamic issues of program model checking. In:
Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 80–102. Springer, Heidelberg
(2001)

52. Lin, F., Chu, P., Liu, M.: Protocol verification using reachability analysis: the
state space explosion problem and relief strategies. Computer Communication Re-
view 17(5), 126–134 (1987)

53. Mihail, M., Papadimitriou, C.H.: On the random walk method for protocol testing.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 132–141. Springer, Heidelberg
(1994)

54. Mailund, T., Westergaard, W.: Obtaining memory-efficient reachability graph
representations using the sweep-line method. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 177–191. Springer, Heidelberg (2004)

55. Ozdemir, K., Ural, H.: Protocol validation by simultaneous reachability analysis.
Computer Communications 20, 772–788 (1997)

56. Parreaux, B.: Difference compression in SPIN. In: Proc. of Workshop on automata
theoric verification with the SPIN model checker (SPIN 1998) (1998)

57. Pelánek, R.: Evaluation of on-the-fly state space reductions. In: Proc. of Mathemat-
ical and Engineering Methods in Computer Science (MEMICS 2005), pp. 121–127
(2005)

58. Pelánek, R.: Web portal for benchmarking explicit model checkers. Technical Re-
port FIMU-RS-2006-03, Masaryk University Brno (2006)

52 R. Pelánek

59. Pelánek, R.: BEEM: Benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

60. Pelánek, R., Hanžl, T., Černá, I., Brim, L.: Enhancing random walk state space
exploration. In: Proc. of Formal Methods for Industrial Critical Systems (FMICS
2005), pp. 98–105. ACM Press, New York (2005)

61. Pelánek, R., Rosecký, V., Moravec, P.: Complementarity of error detection tech-
niques. In: Proc. of Parallel and Distributed Methods in verifiCation (PDMC)
(2008)

62. Pelánek, R., Rosecký, V., Šeděnka, J.: Evaluation of state caching and state com-
pression techniques. Technical Report FIMU-RS-2008-02, Masaryk University Brno
(2008)

63. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994)

64. Penczek, W., Szreter, M., Gerth, R., Kuiper, R.: Improving partial order reductions
for universal branching time properties. Fundamenta Informaticae 43(1-4), 245–267
(2000)

65. Penna, G.D., Intrigila, B., Melatti, I., Tronci, E., Zilli, M.V.: Exploiting transition
locality in automatic verification of finite state concurrent systems. Software Tools
for Technology Transfer (STTT) 6(4), 320–341 (2004)

66. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. Logics and models of concurrent systems, 123–144 (1985)

67. Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction
and symbolic pattern databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004.
LNCS, vol. 2988, pp. 497–511. Springer, Heidelberg (2004)

68. Schmidt, K.: Automated generation of a progress measure for the sweep-line
method. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
192–204. Springer, Heidelberg (2004)

69. Self, J.P., Mercer, E.G.: On-the-fly dynamic dead variable analysis. In: Bošnački,
D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 113–130. Springer, Hei-
delberg (2007)

70. Sistla, A.P., Godefroid, P.: Symmetry and reduced symmetry in model checking.
In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 91–103.
Springer, Heidelberg (2001)

71. Stern, U., Dill, D.L.: Using magnetic disk instead of main memory in the murphi
verifier. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 172–183. Springer,
Heidelberg (1998)

72. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Kozen, D. (ed.) Proceedings of the First Annual IEEE Symposium
on Logic in Computer Science (LICS 1986), pp. 332–344. IEEE Computer Society
Press, Los Alamitos (1986)

73. Visser, W.: Memory efficient state storage in SPIN. In: Proc. of SPIN Workshop,
pp. 21–35 (1996)

74. Wahl, T.: Adaptive symmetry reduction. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 393–405. Springer, Heidelberg (2007)

Local Quantitative LTL Model Checking�

Jǐŕı Barnat, Luboš Brim, Ivana Černá, Milan Češka, and Jana Tůmová

Faculty of Informatics, Masaryk University
Brno, Czech Republic

{barnat,brim,cerna,xceska,xtumova}@fi.muni.cz

Abstract. Quantitative analysis of probabilistic systems has been stu-
died mainly from the global model checking point of view. In the global
model-checking, the goal of verification is to decide the probability of
satisfaction of a given property for all reachable states in the state space
of the system under investigation. On the other hand, in local model
checking approach the probability of satisfaction is computed only for
the set of initial states. In theory, it is possible to solve the local model
checking problem using the global model checking approach. However,
the global model checking procedure can be significantly outperformed
by a dedicated local model checking one. In this paper we present several
particular local model checking techniques that if applied to global model
checking procedure reduce the runtime needed from days to minutes.

1 Introduction

System design techniques employing probability are becoming widely used. They
provide designers with reasonably efficient means to break symmetry in the sys-
tem or to implement randomized algorithms. Probabilistic actions are also used
for modeling various nondeterministic aspects such as human unpredictable de-
cisions, occurrence of external stimuli, or simply the presence of hardware errors.
As the interest in the probabilistic systems is growing, supported mainly by their
potential practical use, there is also increased interest in formal techniques for
their analysis and verification, model checking in particular.

There are two different tasks related to model checking over probabilistic sys-
tems. Given a formula and probabilistic system, the so called qualitative analysis
refers to the problem of deciding whether the probabilistic system satisfies the
formula with the probability one. On the other hand, the so called quantita-
tive model checking refers to the problem of deciding the maximal and minimal
probability the given formula is satisfied for the probabilistic system. For model
checking linear time properties, the qualitative problem can be solved similarly
to the nondeterministic case, i.e. using automata-based approach. The problem
reduces to the problem of the detection of an Accepting End Component (AEC)
in the graph of the underlying product of the probabilistic system and the ω-
regular automaton expressing the (negation of) the verified property [22,11].
� This work has been partially supported by the Grant Agency of Czech Republic

grant No. 201/06/1338 and the Academy of Sciences grant No. 1ET408050503.

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 53–68, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

54 J. Barnat et al.

For the quantitative case the model checking procedure is a little bit more com-
plex [3,12]. Similarly to the qualitative case, the probabilistic system is multiplied
with the semi-deterministic ω-regular property automaton and all the AECs are
identified in its underlying graph. After that, the graph is transformed into a
linear programming problem (set of inequalities over states of the probabilistic
system and an objective function to be maximized). Every variable in the linear
programming instance corresponds to a state in the system in the sense that the
value computed for the variable is exactly the maximal probability of satisfac-
tion of the examined property, if the property is evaluated from the particular
state. States in an AEC satisfy the examined property with the probability one.

Both qualitative and quantitative analysis of probabilistic systems has been
studied mainly from the global model checking point of view. In the global model-
checking, the goal of verification is to decide the probability of satisfaction of
a given property for all reachable states in the state space of the system under
investigation. On the other hand, in local model checking approach the proba-
bility of satisfaction is computed only for the set of initial states. In theory, it is
possible to solve the local model checking problem using the global model check-
ing approach. However, the global model checking procedure can be significantly
outperformed by a dedicated local model checking one. It is a well-known fact
that from practical point of view, the system designers are often interested in the
probability of satisfaction of the property for some particular states only (initial
state most typically). This is not taken into account in the general global model
checking scheme as suggested in [3,12].

There are several software tools performing qualitative and/or quantitative
probabilistic model checking. Probably the most established probabilistic model
checker is the symbolic model checker PRISM [16]. It provides support for auto-
mated analysis of a wide range of quantitative properties for three types of prob-
abilistic models: discrete-time Markov chains, continuous-time Markov chains
and Markov decision processes (MDPs). The property specification language of
PRISM incorporates the temporal logics PCTL [15] and CSL [1] as well as ex-
tensions for quantitative specifications and costs/rewards. As for enumerative
approach to model checking, the model checker to be mentioned is LiQuor [10].
LiQuor is capable of verifying probabilistic systems modeled as ProbMeLa pro-
grams. ProbMeLa is a probabilistic guarded command language with an op-
erational semantics based on finite MDPs. LiQuor allows qualitative and/or
quantitative analysis for ω-regular linear time properties. The tool follows the
standard automata-based model checking approach and involves partial order
reduction technique for MDPs [4] to fight the state explosion problem. Recently,
a parallel enumerative probabilistic model checker – ProbDiVinE, has been
released [5]. Likewise LiQuor, ProbDiVinE provides means for verification of
quantitative and qualitative linear time properties of MDPs. The unique feature
of ProbDiVinE is its capability of employing combined power of multiple CPU
cores available on latest hardware systems to solve large verification problems.
All the techniques presented in this paper have been implemented and experi-
mentally evaluated using the ProbDiVinE model checker. Yet another tool for

Local Quantitative LTL Model Checking 55

verification of MDPs is the model-checker RAPTURE [8]. It employs an auto-
matic abstraction refinement and essential state reduction techniques to fight
the state explosion problem [8].

As the main contribution of this paper we introduce several techniques that
allow to improve the general quantitative verification procedure using the local-
ity of the model checking goal. These local model checking techniques can be
applied to the global model checking procedure resulting in a significant speed-
up as indicated by our experimental evaluation. In addition, the locality of the
techniques supports their natural integration into a parallel tool, giving thus
further advantages in terms of speed and scalability.

The rest of the paper is organized as follows. Section 2 states the necessary
definitions and recalls the general scheme of quantitative model checking proce-
dure. Section 3 introduces our new techniques to improve the general verification
scheme, Section 4 reports on experimental evaluation of these techniques, and
Section 5 concludes the paper.

2 Preliminaries

In this subsection, we briefly review fundamentals of LTL model checking over
finite state probabilistic systems and fix some notation.

2.1 Probabilistic Model Checking

Markov decision processes (MDPs) are used as the standard modeling formalism
for asynchronous probabilistic systems, supporting both nondeterminism and
probability. A Markov decision process [13,21,22], is a tuple M = (S,Act, P, init,
AP, L), where S is a finite set of states, Act is a finite set of actions, P : (S ×
Act × S) → [0, 1] is a probability matrix, init ∈ S is the initial state, AP is a
finite set of atomic propositions, and L : S → 2AP is a labeling function. Act(s)
denotes the set of actions that are enabled in the state s, i.e. the set of actions
α ∈ Act such that P (s, α, t) > 0 for some state t ∈ S. For any state s ∈ S, we
require that Act(s) �= ∅ and ∀α ∈ Act(s).

∑
s′∈S P (s, α, s′) = 1.

An infinite run of an MDP is a sequence τ = s0, α1, s1, α2, . . . ∈ (S × Act)ω

such that αi ∈ Act(si−1). A trajectory of τ is the word L(s0), L(s1), L(s2), . . .
over the alphabet 2AP obtained by the projection of τ to the state labels.

The intuitive operational semantics of an MDP is as follows. If s is the current
state then an action α ∈ Act(s) is chosen nondeterministically and is executed
leading to a state t with probability P (s, α, t). We refer to t as an α-successor of
s if P (s, α, t) > 0. State s is called deterministic if exactly one action is enabled
in s. If all states of an MDP are deterministic, the MDP is called Markov chain.
To resolve the nondeterminism of an MDP a scheduler function is used. We
consider deterministic history dependent schedulers which are given by a function
D assigning an action D(σ) ∈ Act(sn) to every finite run σ = s0, α1, . . . , αn, sn.
Given a scheduler D, the behavior of M under D can be formalized as a Markov
chain.

56 J. Barnat et al.

Let M be a Markov Chain, s ∈ S be a state of M , and X be a set of runs of
M originating at s. We define the probability of the set X as a measure of the
set X in the set of all runs of M originating at s. A set X of runs of a Markov
Chain M is called basic cylinder set if there is a prefix s0, α1, . . . αn, sn such that
X contains exactly all runs of M with that prefix. The probability meassure of
a basic cylinder set with prefix s0, α1, . . . αn, sn is then

n−1∏

i=0

P (si, αi+1, si+1).

If the setX of runs ofM is not a basic cylinder set, its measure is determined as a
sum of measures of maximal (w.r.t. inclusion) basic cylinder sets fully contained
in X [11].

In this paper we focus on the quantitative model checking of MDPs against
properties specified in Linear temporal logic (LTL). Formulas of LTL are built
over a set AP of atomic propositions and are closed under the application of
Boolean connectives, the unary temporal connective X (next), and the binary
temporal connective U (until). LTL is interpreted over computations. A com-
putation is a function π : ω → 2AP , which assigns truth values to the elements
of AP at each time instant and as such it can be viewed as an infinite word
over the alphabet 2AP . For an LTL formula ϕ, we denote by L(ϕ) the set of all
computations satisfying ϕ.

A run of a Markov chain satisfies the formula ϕ, if the trajectory of the run
is in L(ϕ). A Markov Chain M satisfies the formula ϕ with probability p, if
the set of runs of M satisfying the formula has the probability p. An MDP M
satisfies the formula ϕ with the probability at least p (at most p) if for every
scheduler D, M under D satisfies the formula with the probability at least p
(at most p). The problem of quantitative model checking is to determine the
minimal and/or maximal probability that an MDP satisfies a given property.
Note that for the computation of the minimal and/or maximal probability that
an MDP satisfies an ω-regular property, it is sufficient to consider only history
independent schedulers [12].

The goal of the global quantitative model checking is to calculate the minimal
and/or maximal probability of the satisfaction of the property for every state s
of an MDP. The goal of the local quantitative model checking is, however, to de-
termine the minimal and/or maximal probability of satisfaction of the property
for the initial state only.

A Büchi automaton is a tuple A = (Σ,Q, qinit, δ, F), where Σ is a finite
alphabet, Q is a finite set of states, qinit ∈ Q is an initial state, δ ⊆ Q×Σ ×Q
is a transition relation, and F ⊆ Q is a set of accepting states. A run of A over
an infinite word w = a1a2 . . . ∈ Σω is a sequence q0, q1, . . . , where q0 = qinit and
(qi−1, ai, qi) ∈ δ for all i ≥ 1. Let inf(ρ) denote the set of states that appear in
the run ρ infinitely often. A run ρ is accepting iff inf(ρ)∩F �= ∅. A state s ∈ Q of
a Büchi automaton A is called deterministic if and only if for all a ∈ Σ there is
at most one s′ ∈ A such that (s, a, s′) ∈ δ. A Büchi automaton is deterministic

Local Quantitative LTL Model Checking 57

in the limit if and only if all the accepting states and their descendants are
deterministic [11].

We use the automata based approach to probabilistic LTL model checking.
Given an LTL formula ϕ, it is possible to build a Büchi automaton A with
2O(|ϕ|) states such that L(A) = L(ϕ) [23]. Moreover, for any Büchi automaton
A with n states a Büchi automaton B with 2O(n) state such that B is deter-
ministic in the limit and L(A) = L(B) can be built [11]. Similarly to model
checking non-probabilistic systems, the model is synchronized with the automa-
ton corresponding to the negation of the formula in the case we are interested
in the minimal probability or with the automaton corresponding to the formula
in the case we are interested in the maximal probability. However, unlike the
non-probabilistic case, automata which are deterministic in the limit have to be
used instead of non-deterministic Büchi automata.

Let M = (S,Act, P, s0, AP, L) be an MDP and let A = (Q, 2AP , q0, Δ, F) be
a Büchi automaton. The synchronized product of M and A is an extended MDP
M×A = (S×Q,ActM×A, PM×A, init, AP, LM×A, Acc), where ActM×A((s, p)) =
Act(s), PM×A((s, p), α, (t, q)) = P (s, α, t) if (p, L(s), q) ∈ δ or 0 otherwise, init =
(s0, q0), LM×A((s, t)) = L(s), and Acc = S × F is the set of accepting states.
Note that the synchronized product is not a regular MDP as it distinguishes
between accepting and non-accepting states and may contain states without
enabled actions.

In order to describe the algorithmic solution to the quantitative LTL model
checking we often view an MDP or MDP synchronized with a Büchi automaton
as a graph. Therefore, we recall some basic notions from the graph theory. A
state s′ is reachable from a state s in a set of states R ⊆ S, denoted as s �+

R s′

iff there is a sequence of states s0, s1, . . . , sk ∈ R such that s = s0, s
′ = sk and

for all 0 ≤ i < k there is an action α ∈ Act(si) such that P (si, α, si+1) > 0. A
set of states R is strongly connected if for all r, r′ ∈ R : r �+

R r′ or |R| = 1.
A strongly connected component (SCC) is a maximal strongly connected set of
states. The graph of strongly connected components of G is called the quotient
graph of G. An SCC C is trivial if |C| = 1. An SCC is terminal if it has no
successors in the quotient graph. For every component C let Input(C) = {c ∈
C | there is an SCC C′ : ∃c′ ∈ C′ : ∃α ∈ Act(c′) : P (c′, α, c) > 0} if init �∈ C
otherwise Input(C) = {init}. Furthermore, for each nonterminal component C
we define Output(C) = {s ∈ S � C | ∃c ∈ C : ∃α ∈ Act(c) : P (c, α, s) > 0}.

Given an MDP graph G, an accepting end component (AEC) is a maximal
set C of states of G that forms (not necessary maximal) strongly connected
component in G such that C ∩ Acc �= ∅ and if there is an enabled action α in
a state of the component, the component contains either all the α-successors or
none of them [12]. From [13,14] it follows that for any state s of an MDP graph
of M × A that belongs to an AEC, there exists a scheduler D such that the
probability measure of runs originating in s and remaining in the AEC is 1 in
M under D.

Let s be a state in the MDP product graph. We define the maximal probability
xs of reaching an AEC from s as follows. If s belongs to an AEC, xs = 1, if no

58 J. Barnat et al.

accepting state nonaccepting state

b transition with probability 1 under action b

a
0.7

transitions with probabilities 0.3 and 0.7 under action a
0.3

0.5

0.5
0.6 a

ba

b

a

ba

a
a

s3

0.3
0.7

s1 s2

s4 s5 s6

AEC I
init

0.5

0.5
a

0.4
AEC II

min : xinit

xinit ≥ 0.5 · xs1 + 0.5 · xs2

xinit ≥ 0.4 · xs3 + 0.6 · xs5

xs1 ≥ 1
xs2 ≥ 0.3 · xs4 + 0.7 · xs5

xs3 ≥ 1
xs4 ≥ 1 · xs4

xs5 ≥ 1 · xs4

xs6 ≥ 1

Fig. 1. MDP and its corresponding local linear programming problem

AEC is reachable from s, xs = 0. For remaining cases the value of xs can be
calculated by solving the linear programming problem with inequalities

xs ≥
∑

v∈S×Q

PM×A(s, α, v) · xv ∀α ∈ ActM×A(s)

minimizing the objective function f =
∑

u∈S×Q

xu. For more details see [3,12].

Note that in the context of local model checking the objective function can be
simplified to f = xinit. An example is given in Figure 1.

After the solution of the linear programming problem is found, xinit contains
the value of maximal probability an AEC is reached from the state init. If the
MDP was synchronized with the automaton corresponding to the negation of a
formula ϕ, the minimal probability the MDP satisfies the formula ϕ is 1− xinit.
If the MDP was synchronized with the automaton corresponding to a formula
ψ (without negation), the maximal probability the MDP satisfies ψ is xinit.

2.2 Algorithm

The algorithm for finding all AECs was introduced in [11,12] and it was based
on recursive decomposition of MDP graph into SCCs. Our approach employs
a parallel adaptation of the algorithm of Bianco and de Alfaro (BdA) [7] that
computes a set of states for which there exists a scheduler such that the maximal
probability of reaching an AEC from the set is equal to 1. Clearly, this set can
be used instead of the set of all AECs. Henceforward, the set is refered to as AS.

The algorithm maintains an approximation set of states that may belong to
an AEC. The algorithm repeatedly refines the approximation set by locating and
removing states that cannot belong to an AEC, we call this a pruning step. The
algorithm for quantitative verification is obtained by a modification of BdA. As
the final approximation set is AS , the linear programming problem is extended
with inequalities xu ≥ 1 for all xu ∈ AS . The overall scheme of how the algorithm
proceeds is given as Algorithm 1.

Local Quantitative LTL Model Checking 59

Algorithm 1. Scheme of algorithm for local quantitative analysis
1: compute the set AS using BdA algorithm
2: create the linear programming problem LP
3: compute the solution of LP
4: return xinit

3 Local Model Checking Techniques

In this section we introduce three optimization techniques that can significantly
speed-up the verification process. We also propose a way how these techniques
can be employed in a parallel environment, shared-memory multi-core architec-
tures in our case. This is in particular very important in handling very large
real-life systems in practice.

3.1 Minimal Subgraph Identification

The first of the proposed algorithmic modifications helps to reduce the size of
the linear programming problem by pruning the MDP product M ×A into the
so called minimal subgraph.

The probability of a state depends on the probabilities of its successors. How-
ever, once we know that the probability of a state is 1, we do not need to know
the exact probabilities of its successors. Also, the probability of a state is 0 if
no state with probability 1 can be reached from it. Henceforward, we say that a
state is relevant if it is on a path from an initial state to a state with probability
1 such that the path does not contain any other state with probability 1. The
last state on the path is referred to as a seed. Relevant states define in a natural
way a slice in the original MDP (see the example in Figure 2). We call this slice
a minimal subgraph. The probability of the initial state is fully determined by
the states in the minimal subgraph only.

With the minimal subgraph we associate the linear programming problem
mLP to be minimized in the following way. Let init, s0, s1, . . . , sr−1, sr be a
path in the minimal subgraph from the initial state init to a seed sr. We add to
mLP the inequalities of form:

xinit ≥ . . .+ ps0xs0 + . . .

xs0 ≥ . . .+ ps1xs1 + . . .

...
xsr−1 ≥ . . .+ psrxsr + . . .

It is not difficult to prove that pruning the original MDP graph into the min-
imal one does not have any influence on the solution of the linear programming
problem.

60 J. Barnat et al.

a c

modified forward
reachability subgraph

minimal

0.7

0.5

0.5 0.5

0.5 0.5

0.3 0.7

0.5

0.5

0.5
0.6

0.4

0.50.5

0.2
0.8

0.1

0.1
0.7

0.5 0.5

0.3

a
b

a

a

b

a

ba

b

a
a

c

a

b

c

b

a

a

a
c

b

c

b

b

a c

a

aa

accepting states

0.1

b
0.7

0.3

seeds

states in AS

Fig. 2. Minimal subgraph identification

Lemma 1. Let M be a synchronous product of MDP and Büchi automaton, and
MG its minimal subgraph. The solution of linear programming problem LP is
equal to the solution of linear programming problem mLP.

Having computed AS we can identify relevant states, i.e. the minimal subgraph,
as follows. First, we run a forward reachability from the initial state that does not
explore states beyond a state from AS. States from AS visited in this reachability
are the seeds. Second, we run backward reachability from seeds to identify the
minimal subgraph. All states visited by the backward reachability are relevant
states. In this manner we omit states whose probability of reaching an AEC
equals to zero. The result of applying both forward and backward reachability
to obtain the minimal subgraph is illustrated in Figure 2.

3.2 Iterative Computation

Another practical technique is to decompose the given problem into simpler
subtasks. In this way we have a good chance to end-up with a set of smaller
linear programming problems that can be solved much faster.

The core idea is to decompose the minimal subgraph into SCCs, create the
appropriate quotient graph, and then iteratively solve the linear programming
problem by solving the subproblems given by the individual components in a
bottom-up manner.

Local Quantitative LTL Model Checking 61

Some subtasks can be solved independently, which provides a basis for an
effective parallel procedure as described in Subsection 3.4. Furthermore, we
show in Subsection 3.3 that some subtasks can be solved without employing an
external LP solver. Iterative computation can lead to a significant speed-up as
compared to the computation of the entire LP problem (see Section 4).

Let us consider a minimal subgraph MG, its strongly connected components
component C is formed by all inequalities xs ≥ . . . from mLP such that s ∈ C.
The objective function of LPC minimizes the sum of variables xs, s ∈ Input(C),
i.e. states with a predecessor outside the component, or the value xinit in case
init ∈ C.

The solution of LPC for each component C depends only on C itself and
on the states in Input(Ct) for each immediate successor component Ct of C,
as only variables corresponding to these states appear in the inequalities. This
means, that for a terminal SCC T we can find the solution of LPT directly.
Once we have solutions for all successor components Ct of C, we can substitute
all the variables xs, such that s �∈ C, with already computed values. LPC does
not depend on components Ct any more and the solution of LPC can thus be
computed. We call the SCC C solved if LPC has been solved, i.e. the values xs

for all s ∈ Input(C) have been computed. An unsolved SCC C is called prepared
if for all t ∈ Output(C) the state t is in a solved SCC.

Lemma 2. For each s ∈ Input(C), the solution of LPC assigns to xs the value
equal to the maximal probability that the set AS is reachable from s.

Corollary 1. For the component C containing the initial state init, the solu-
tion of LPC assigns to xinit the value equal to the maximal probability AEC is
reachable from init.

The pseudo-code of the iterative computation is described in Algorithm 2.

Algorithm 2. Iterative computation
Require: minimal subgraph MG
1: decompose MG into SCCs
2: build the quotient graph of MG
3: while there is an unsolved SCC do
4: compute the set P of prepared SCCs
5: for all C ∈ P do
6: create the linear programming problem LPC

7: substitute for xs such that s ∈ Output(C) in LPC

8: compute the solution of LPC

9: mark C as solved
10: end for
11: end while
12: return xinit

62 J. Barnat et al.

nontrivial SCC

trivial SCC

C5

C3

C4

C2

C1

C8

C6

C7

t

u

v

Fig. 3. SCC decomposition

Figure 3 shows the decomposition into strongly connected components. Com-
ponents C1, C2 and C3 are terminal and thus prepared. After they are solved,
components C4 and C5 become prepared. In the next iteration of the algorithm,
components C6 and C7 are prepared and finally, after their solution, the com-
ponent C8 containing the initial state is ready to be solved.

3.3 Trivial SCC

Let us suppose we perform the iterative computation on the minimal subgraph
MG as introduced in the previous Subsection, and let the next prepared SCC
to be solved is a trivial strongly connected component T = {t} with the corre-
sponding linear programming subtask LPT . In the following we show, that the
linear programming subtask LPT can be solved without employing an external
LP solver.

Let us firstly recall that due to deAlfaro [12] there is a history independent
scheduler that yields the maximum value for the state t. We denote by xα

t the
probability of the state t under the history independent scheduler choosing the
action α ∈ Act(t) whenever the state t is visited. Since it is sufficient to consider
only history independent schedulers for the computation of the probability xt of
the state t, it follows directly that

xt = max
α∈Act(t)

xα
t .

Local Quantitative LTL Model Checking 63

Lemma 3 says how to compute the value of xα
t . Before we state the lemma,

we introduce the necessary notation. Suppose an action α to be executed. Let
u0, u1, . . . , un be the α-successors of t that are outside the component T . Each
ui is reached with the probability P (t, α, ui) for 0 ≤ i ≤ n. Let us denote
these probabilities pα

u0
, pα

u1
, . . . , pα

un
, respectively. Since the states are outside the

component T , the probability values for these states are already known and are
refered to as vu0 , vu1 , . . . , vun . Futhermore, we denote the probability P (t, α, t)
by pα

t .

Lemma 3. Let pvα
u = pα

u0
vu0 + pα

u1
vu1 + . . .+ pα

un
vun . Then,

xα
t =

{
pvα

u

1−pα
t

if pα
t �= 1

0 otherwise.

Proof. For a Markov chain the following holds:

n∑

i=0

pα
ui

+ pα
t ≤ 1

Therefore, if pα
t = 1 then pα

ui
= 0 for all 0 ≤ i ≤ n and thus xα

t = 0. Otherwise

xα
t =pvα

u + pα
t (pvα

u) + (pα
t)2(pvα

u) + (pα
t)3(pvα

u) + (pα
t)4(pvα

u) + . . . =

pvα
u (1 + pα

t + (pα
t)2 + (pα

t)3 + (pα
t)4 + . . .) = pvα

u

1
1 − pα

t

�

To compute the value of xt we enumerate the values xα
t according to the previous

Lemma and compute their maximum. For an example, we refer to Figures 2
and 3. The component C6 containing the state t is a trivial one. After the
components C1 and C4 are solved, we have vu = 0.9, u ∈ Input(C4) and vv = 1,
v ∈ Input(C1). The value of xt can be now computed without employing the
external LP solver. Altogether, there are three actions a, b, c enabled in t resulting
in the following three cases:

xa
t =

pva
v

1 − pa
t

=
0.7 · 1

1
= 0.7 xb

t =
pvb

u

1 − pb
t

=
0.3 · 0.9
1 − 0.7

= 0.9 xc
t =

0
1 − 0.5

= 0

Finally, xt = max(xa
t , x

b
t , x

c
t) = 0.9.

3.4 Parallelization

The improved algorithm, described as Algorithm 3, consists of several consecu-
tive phases, each of them parallelized to a certain level.

Parallel version of BdA algorithm performs qualitative model checking and
computes AS as a basis for quantitative verification. The main idea builds on
the topological sort for cycle detection – an algorithm that does not depend on
DFS postorder and can be thus parallelized reasonably well. Minimal Subgraph
Identification employs only one forward and one backward reachability and thus

64 J. Barnat et al.

Algorithm 3. Improved algorithm for local quantitative analysis
1: compute the set AS using parallel version of BdA algorithm
2: compute the minimal subgraph MG using parallel reachability
3: decompose MG into SCCs using parallel OBF algorithm
4: build the quotient graph of MG in parallel
5: while there is an unsolved SCC do
6: compute the set P of prepared SCCs
7: for all C ∈ P do
8: in parallel do
9: if C is trivial then

10: compute the solution of C
11: else
12: create the linear programming problem LPC

13: substitute for xs such that s ∈ Output(C) in LPC

14: compute the solution of LPC

15: end if
16: mark C as solved
17: end in parallel
18: end for
19: end while
20: return xinit

this phase is parallelized effectively. In order to parallelize SCC Decomposition,
the implementation is based on recursive variant of OBF algorithm as described
in [6]. Iterative Computation allows to solve prepared SCCs independently by
parallel running threads. However, each component has to be solved by calling
the external serial LP solver lpsolve. This last limitation could be eventually
relaxed by a parallel LP solver (we were unfortunately not able to get access to
a suitable free parallel solver).

4 Experimental Evaluation

We have implemented all the described algorithms and techniques in the tool
called ProbDiVinE. The tool uses DiVinE Library [20] and a generally avail-
able LP solver lpsolve. We ran a set of experiments on machines equipped with
Intel Xeon 5130 and AMD Opteron 885 processors allowing us to measure the
performance of the tool when using 1 to 8 threads.

We have used five different experimental models of randomized protocols with
properties yielding minimal probability other than 0 or 1:

– Cons – randomized consensus protocol [2]
– Crypts – randomized dining cryptographers [9]
– Leads – asynchronous leader election protocol [18]
– Phils – randomized dining philosophers [19]
– Stabi – randomized self-stabilizing protocol [17]

Local Quantitative LTL Model Checking 65

a)
time

no minimal iterative
Model reduction subgraph solution

Cons 27.9 min 11.9 min 5.9 min

Crypts >10 days 17.8 min 4.7 min

Leads >10 days >10 days 3.7 min

Phils >10 days 2.5 days 4.5 min

Stabi >10 days >10 days 4.8 min

b)

0

25

50

75

100

 no reduction minimal subgraph iterative solution

%

number of inequalities
verification run time

Fig. 4. a) Runtimes for various models when no reduction is used, when only the
minimal subgraph is considered, and when both the minimal subgraph and iterative
processing is involved. b) Correlation between the number of inequalities and runtime.

Table 1 captures the size of the linear programming problem (the number
of inequalities to be solved by an external LP solver). The column whole graph
gives the size before applying any reduction, the column reduced graph gives
the size when redundant inequalities were removed by pruning the graph into
the minimal subgraph. The column largest problem gives the maximal size of a
problem to be solved by an LP solver, when the original problem was decomposed
into subproblems that were processed independently. Three of the models contain
only trivial SCCs, thus the LP solver is not called at all and the size of the largest
problem solved by LP solver is thus 0.

The table in Figure 4 demonstrates that the size and the structure of the prob-
lem plays a crucial role in the performance of the tool. The table gives overall run
times corresponding to the used reduction techniques. The first column gives run
time when no reduction technique is used (no reduction), the second one when
redundant inequalities are removed (minimal subgraph), and the third one when
the technique of iterative computation and trivial SC solving are applied on the
minimal subgraph (iterative solution). A correlation between times in Figure 4
and sizes in Table 1 is observable. With decreasing number of inequalities the
runtimes tend to speed-up dramatically. As for the speed-up, the most inconve-
nient case is when the graph is made of one large component. In such a case, the
pruning and parallel processing cannot be done and the verification runtime is
dominated by the single call to the LP solver.

Table 1. The size of LP problem with respect to used reduction techniques

inequalities for LP solver % of the whole graph

whole reduced largest reduced largest
Model # states graph graph problem graph problem

Cons 48 669 132 243 83 395 20 368 63.06 15.40

Crypts 2 951 903 8 954 217 108 045 0 1.21 0

Leads 2 995 379 8 800 096 5 678 656 0 64.5 0

Phils 5 967 065 14 740 726 1 623 722 246 11.0 Almost 0

Stabi 4 061 570 6 897 480 5 983 080 0 86.7 0

66 J. Barnat et al.

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8

S
p

ee
d

u
p

Number of cores

Speedup

Cons
Crypts
Leads
Phils
Stabi

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7 8

T
im

e
(s

ec
)

Number of cores

Scalability

Fig. 5. Overall speed-up and scalability

In the case of Cons model the reduction techniques help less than in the other
cases. However, run times decrease still significantly. Figure 4.a) gives runtimes
of verification when various degree of improvement is used. Figure 4.b) depicts
the relative decrease in the runtime and number of inequalities when various
reduction techniques are involved. In particular, the number of inequalitites de-
creases to 63% of the original number, while the runtime decreases to 21% of
the original time needed to perform the verification task.

Figure 5 reports on the overall speed-up and scalability of the verification
process we achieved using our tool on various number of CPU cores. Poor scal-
ability in case of randomized consensus protocol can be explained, because the
time consumed by the sequential LP solver takes the major part of the runtime
of the whole verification process.

Figure 6 aims on the qualitative analysis as a part of the whole verification
process. The table in Figure 6 shows the ratio between runtimes of the qualitative
analysis and the whole verification process. The graph in Figure 6 presents speed-
up of qualitative analysis (the first phase of the algorithm). In comparison to the
quantitative verification, the speed-up is much better due to the fact, that the
whole verification process contains phases where parallelization does not help

qualitative whole % qualit
Model analysis analysis of whole

Cons 30.53 358.15 8.52

Crypts 275.96 279.47 98.75

Leads 68.28 223.76 30.51

Phils 180.6 270.46 66.77

Stabi 67.36 285.34 23.61

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8

S
p

ee
d

u
p

Number of cores

Speedup

Cons
Crypts
Leads
Phils
Stabi

Fig. 6. Ratio between runtimes of the qualitative analysis and the whole verification
process (table on the left). Speed-up of qualitative analysis only (on the right).

Local Quantitative LTL Model Checking 67

much as they require frequent synchronization. We can observe, that the bigger
the part the qualitative analysis forms in the whole verification process, the
better the overall scalability is. In case of dining cryptographers protocol model,
the qualitative verification forms 98.75 % of the whole verification process and
all the LPs are solved without using external LP solver. Therefore the scalability
and speed-up are the best over all the examples.

All in all, we claim that our approach is quite successful as overall runtimes
tend to decrease as more CPU cores are used.

The structure of a graph is a crucial aspect affecting the runtime of the verifi-
cation process. For instance the Crypts model contains approximately the same
number of states as Leads, but runtimes of qualitative verification differ a lot.
On the other hand, runtime of Leads is comparable to Stabi, but their number
of states and speedup differ.

5 Conclusion

As probabilistic systems gain popularity and are coming into wider use, the
need for formal verification and analysis methods, techniques and tools capable
of handling these systems become more critical. The theory and algorithms for
formal verification of probabilistic systems have been around for some time.
However, it is the existence of a good and efficient formal verification tool that
makes the theory valid from the practitioner’s point of view.

In this paper we presented several techniques that allow to build competitive
enumerative model checking tool for quantitative analysis of linear temporal
properties over finite state probabilistic systems. In particular, we showed how
to involve parallelism and employ locality to increase the performance of such a
tool. We also showed that the costly call to the linear programming solver can
be either replaced with multiple successive calls for smaller problems, or avoided
at all. Using this approach we achieved order-of-magnitude reduction in runtime
of verification in many cases.

References

1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous-time Markov
Chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–
276. Springer, Heidelberg (1996)

2. Aspnes, J., Herlihy, M.: Fast randomized consensus using shared memory. Journal
of Algorithms 15(1), 441–460 (1990)

3. Baier, C.: On the Algorithmic Verification of Probabilistic Systems. Habilitation
Thesis, Universität Mannheim (1998)

4. Baier, C., Größer, M., Ciesinski, F.: Partial Order Reduction for Probabilistic
Systems. In: 1st International Conference on Quantitative Evaluation of Systems
(QEST 2004), pp. 230–239. IEEE Computer Society, Los Alamitos (2004)

5. Barnat, J., Brim, L., Černá, I., Češka, M., Tůmová, J.: ProbDiVinE-
MC: Multi-Core LTL Model Checker for Probabilistic Systems. In: Proceed-
ings of QEST 2008, Tool Paper. IEEE, Los Alamitos (2008) (to appear),
http://anna.fi.muni.cz/probdivine

68 J. Barnat et al.

6. Barnat, J., Chaloupka, J., van de Pol, J.: Improved Distributed Algorithms for
SCC Decomposition. Electron. Notes Theor. Comput. Sci. 198(1), 63–77 (2008)

7. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995)

8. Jeannet, B., de Argenio, P., Larsen, K.G.: RAPTURE: A tool for verifying Markov
Decision Processes. In: Proc. Tools Day / CONCUR 2002. Tech. Rep. FIMU-RS-
2002-05. MU Brno, pp. 84–98 (2002)

9. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. Journal of Cryptology 1, 65–75 (1988)

10. Ciesinski, F., Baier, C.: LiQuor: A tool for Qualitative and Quantitative Linear
Time analysis of Reactive Systems. In: Proc. of QEST 2006, pp. 131–132. IEEE
Computer Society, Los Alamitos (2006)

11. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification.
Journal of the ACM 42(4), 857–907 (1995)

12. de Alfaro, L.: Formal Verification of Stochastic Systems. PhD thesis, Stanford
University, Department of Computer Science (1997)

13. Derman, C.: Finite State Markovian Decision Processes. Academic Press, Inc.,
Orlando (1970)

14. Doob, J.L.: Measure theory. Springer, Heidelberg (1994)
15. Hansson, H., Jonsson, B.: A Framework for Reasoning about Time and Reliability.

In: IEEE Real-Time Systems Symposium, pp. 102–111 (1989)
16. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-

matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

17. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-
stabilizating mutual exclusion. In: Proc. ACM Symposium on Principles of Dis-
tributed Computing, pp. 119–131 (1990)

18. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and
Computation 88(1) (1990)

19. Lehmann, D., Rabin, M.: On the advantage of free choice: A symmetric and fully
distributed solution to the dining philosophers problem (extended abstract). In:
Proc. 8th Annual ACM Symposium on Principles of Programming Languages
(POPL 1981), pp. 133–138 (1981)

20. ProbDiVinE homepage (2008), http://anna.fi.muni.cz/probdivine
21. Puterman, M.L.: Markov Decision Processes-Discrete Stochastic Dynamic Pro-

gramming. John Wiley &Sons, New York (1994)
22. Vardi, M.Y.: Probabilistic linear-time model checking: an overview of the

automata-theoretic approach. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS
1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 265–276. Springer, Heidelberg
(1999)

23. Vardi, M.Y., Wolper, P.: Reasoning about infinite computation paths. In: Proceed-
ings of 24th IEEE Symposium on Foundation of Computer Science, Tuscan, pp.
185–194 (1983)

Efficient Symbolic Model Checking
for Process Algebras�

José Vander Meulen1 and Charles Pecheur2

1 Université catholique de Louvain
jose.vandermeulen@uclouvain.be
2 Université catholique de Louvain
charles.pecheur@uclouvain.be

Abstract. Different approaches have been developed to mitigate the
state space explosion of model checking techniques. Among them, sym-
bolic verification techniques use efficient representations such as BDDs
to reason over sets of states rather than over individual states. Unfor-
tunately, past experience has shown that these techniques do not work
well for loosely-synchronized models. This paper presents a new algo-
rithm and a new tool that combines BDD-based model checking with
partial order reduction (POR) to allow the verification of models featur-
ing asynchronous processes, with significant performance improvements
over currently available tools. We start from the ImProviso algorithm
(Lerda et al.) for computing reachable states, which combines POR and
symbolic verification. We merge it with the FwdUntil method (Iwashita
et al.) that supports verification of a subset of CTL. Our algorithm has
been implemented in a prototype that is applicable to action-based mod-
els and logics such as process algebras and ACTL. Experimental results
on a model of an industrial application show that our method can ver-
ify properties of a large industrial model which cannot be handled by
conventional model checkers.

1 Introduction

Model checking is a technique used to verify concurrent systems such as sequen-
tial circuit designs and communication protocols, by exhaustively exploring the
state space of a finite-space description of the processes involved. The properties
to be verified on such systems are typically expressed in (linear or branching)
temporal logics such as LTL, CTL or CTL*, with different algorithms and com-
plexities depending on the logic used. In particular, McMillan achieved a break-
through with the use of symbolic representations based on the use of Ordered
Binary Decision Diagrams (BDD) [1] to perform model checking of CTL, making
it possible to verify systems with a very large number of states [2].

Unfortunately, the size of the state space to be explored is frequently pro-
hibitive due, among other causes, to the modeling of concurrency by interleaving.
The aim of partial order reduction (POR) techniques is to reduce the number of
interleaving sequences that must be be considered. When a specification cannot
� This work is supported by project MoVES under the Interuniversity Attraction Poles

Programme — Belgian State — Belgian Science Policy.

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 69–84, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

70 J. Vander Meulen and C. Pecheur

distinguish between two interleaving sequences that differ only by the order in
which concurrently executed events are taken, it is sufficient to analyse one of
them [3].

This paper presents a new algorithm and tool that combine BDD-based model
checking with partial order reduction (POR) to allow the verification of models
featuring asynchronous processes, with significant performance improvements
over currently available tools. We start from the ImProviso algorithm of Lerda
et al. [4] for computing reachable states, which combines POR and symbolic
verification. We merge it with the FwdUntil method of Iwashita et al. [5] that
supports verification of a subset of CTL. Our algorithm has been implemented in
a prototype that is applicable to action-based models and logics such as LOTOS
[6] and ACTL [7].

The main contributions of this paper are the FwdUntilPOR algorithm that
combines POR and forward CTL model checking, a new symbolic model checker
which implements this algorithm and is applicable to action-based models and
logics, and an experimental evaluation of this algorithm and tool on a realistic-
sized model.

The remainder of the paper is structured as follows. In Section 2, we introduce
some background concepts, definitions and notations that are used throughout the
paper. In Section 3, we review the Two-Phase algorithm for POR, and its symbolic
incarnation in ImProviso. In Section 4, we discuss a forward approach to CTL sym-
bolic model-checking, built around the FwdUntil operator. In Section 5, we present
our own combination of ImProviso and FwdUntil, leading to the ForwardUntil-
POR algorithm. In Section 6, we present a prototype of a new symbolic model
checker implementing the FowardUntilPOR method. In Section 7, we present the
results obtained by applying our method on a case study. Section 8 reviews related
works. In Section 9, we give conclusions as well as directions for future work.

2 Background

2.1 Transitions Systems

We model the behaviour of a system as a set T of transitions over some state
space S, where each transition is a binary relation over states. Formally, let AP
be a set of atomic propositions. A state transition system is a four tuple M =
(S, T, S0, L) where S is a finite set of states, S0 ⊆ S is the set of initial states,
T is a set of transitions such that for each α ∈ T , α ⊆ S × S and L : S → 2AP

is a function that labels each state with the set of atomic propositions that are
true in that state.

We write s
α−→ s′ for (s, s′) ∈ α. A transition α is enabled in a state s iff

there is a state s′ such that s
α−→ s′. We write enabled(s) for the set of enabled

transitions in s. A transition α is deterministic in a state s iff there is at most
one s′ such that s

α−→ s′.
We define the classical pre- and post-image of a set of states X over a set of

transitions R, used in backward and forward state-space traversal respectively:

pre(R, X) = {s′ ∈ S|∃s ∈ X, α ∈ R · s′ α−→ s}
post(R, X) = {s′ ∈ S|∃s ∈ X, α ∈ R · s α−→ s′}

Efficient Symbolic Model Checking for Process Algebras 71

2.2 Partial-Order Reduction

The goal of the partial-order reduction methods (POR) is to reduce the num-
ber of states explored by model-checking, by not exploring different equivalent
interleavings of concurrent events. Naturally, these methods are best suited for
strongly asynchronous programs. Interleavings which are required to be pre-
served may depend on the property to be checked.

Partial-order reduction is based on the notions of independence between tran-
sitions and invisibility of a transition with respect to a property. Two transitions
are independent if they do not disable one another and executing them in ei-
ther order results in the same state. A transition is invisible with respect to a
property f when its execution from any state does not change the value of the
atomic propositions in f . Intuitively, if two independent transitions α and β are
invisible w.r.t. the property f that one wants to verify, then it does not matter
whether α is executed before or after β, because they lead to the same state and
do not affect the truth of f .

Partial-order reduction consists in identifying such situations and restricting
the exploration to either of these two alternatives. In effect, POR amounts to
exploring a reduced model M ′ = (S′, T ′, S0, L) with S′ ⊆ S and for each α′ ∈ T ′
there is an α ∈ T such that α′ ⊆ α. In practice, classical POR algorithms
[3,8] execute a modified depth-first search (DFS). At each state s, an adequate
subset ample(s) of the transitions enabled in s are explored. To ensure that this
reduction is adequate, that is, that verification results on the reduced model
hold for the full model, ample(s) has to respect a set of conditions, based on
the independence and invisibility notions previously defined. In some cases, all
enabled transitions have to be explored. The following conditions are set forth
in [9]:

C1. Only operations in T − ample(s) that are independent from operations in
ample(s) can be executed before an operation from ample(s) is executed.1

C2. For every cycle in the state graph, there is at least one state s in the cycle
that is fully expanded, i.e. ample(s) = enabled(s).

C3. If ample(s) �= enabled(s), then all transitions in ample(s) are invisible.
C4. If ample(s) �= enabled(s), then ample(s) contains only one transition that

is deterministic in s.2

Conditions C1, C2 and C3 are sufficient to guarantee that the reduced model
preserves properties expressed in LTLX , i.e. linear temporal logic without the
next operator (see e.g. [8]). Condition C4 is significantly more restrictive but is
necessary to ensure preservation of branching temporal logics. In that case, [9]
shows that there is a so-called visible bisimulation between the complete and
reduced models, which ensures preservation of both state-based logics such as
CTL∗

X (and thus CTLX). This fits our purpose, since we address action-based
models and logics.

Conditions C1 and C2 depend on the whole state graph and are not directly
exploitable in a verification algorithm. Instead, one uses sufficient conditions,
1 or equivalently in [9], No operation in T−ample(s) that is dependent on an operation

in ample(s) can be executed before an operation from ample(s) is executed.
2 This is more general than [9], which assumes that all transitions are deterministic.

72 J. Vander Meulen and C. Pecheur

typically derived from the structure of the model description, to safely decide
where reduction can be performed. In our case, we refine the model in terms of
processes, with local and global variables and transitions and base the reduction
on the notion of safe local transition, as developed in next section.

2.3 Process Models

We assume a process-oriented modeling language, where a concurrent system
consists of a finite set of processes P accessing a set of variables V . Each process
p ∈ P maintains a set of local variables V (p) that only it can access. All the
processes also share a set of global variables, given by V −⋃

p∈P V (p). The global
state s ∈ S consists of the values of all the variables; the local state of p, written
s(p), consists of the values of the local variables V (p) in s. More generally, we
write s(W) for the values of a set of variables W ⊆ V in s. The set of all possible
states of the system is thus the cartesian product of the range of all variables,
which we assume to be finite.

Transitions α ∈ T are characterized by the variables V (α) that they may
modify or depend on: α is reducible to a relation α0 on the range of V (α) such
that s

α−→ s′ iff s(V (α)) α0−→ s′(V (α)) and s(V − V (α)) = s′(V − V (α)).
We consider that processes participate in all the transitions that affect their

variables, and define the set of transitions of a process p as T (p) = {α ∈ T |V (p)∩
V (α) �= ∅}, which divides into local transitions Tl(p) = {α ∈ T (p)|V (α) ⊆ V (p)}
and shared transitions Ts(p) = T (p) − Tl(p). The locally offered transitions of p
in s are the transitions of p that are allowed by s(p), that is, trans(p, s) = {α ∈
T (p)|∃s′ · s′(p) = s(p) ∧ α ∈ enabled(s′)}. Note that a locally offered transition
is not necessarily (globally) enabled, i.e. trans(p, s) �⊆ enabled(p). A transition
is safe iff it is deterministic and invisible (w.r.t. the property f being verified)
in all states. We write safe(p) for the set of safe local transitions of p, where
safe(p) ⊆ Tl(p) ⊆ T (p). It is easily seen that if V (α) ∩ V (β) = ∅, then α an β
are independent. In particular, if α ∈ Tl(p) and α′ /∈ T (p) then α and α′ are
independent.

With this in hand, we can define sufficient conditions to apply partial-order
reduction to our refined process-based models: essentially, as long as some process
offers only safe local transitions, among which only one is enabled, then that
transition can be selected as the ample set while meeting conditions C1 to C4.
More formally, a process p is defined as deterministic in state s if the following
conditions are met: (1) only safe local transitions are locally offered by p in s,
that is, trans(p, s) ⊆ safe(p), and (2) only one transition of p is enabled in s,
that is,

∣
∣T (p) ∩ enabled(s)

∣
∣ = 1.

If p is deterministic in s, then s can be partially expanded by ample(s) =
T (p) ∩ enabled(s) = {α}, where α is a single safe local transition of p, while
maintaining the validity of verification (cf. Section 5).

3 The Two-Phase Approach to Partial Order Reduction

3.1 The Two-Phase Algorithm

The Two-Phase algorithm (presented in [10]) is a variant of the classical DFS
algorithm with POR of [3,8]. It alternates between two distinct phases:

Efficient Symbolic Model Checking for Process Algebras 73

– Phase 1 expands only deterministic states considering each process at a time,
in a fixed order. As long as a process is deterministic, the single transition
that is enabled for that process is executed. Otherwise, the algorithm moves
on to the next process. After expanding all processes, the last reached state
is passed on to phase 2.

– Phase 2 is simple. It performs a full expansion of the states resulting from
the phase 1, then applies phase 1 to the reached states.

In order not to postpone a transition indefinitely, for each cycle in the reduced
state space, at least one state in this cycle must be fully expanded. Such an
indefinite postponing can only arise within phase 1, and is handled by detecting
cycles within the current phase 1 expansion and switching to a phase 2 expansion
when they occur.

As shown in [10], the Two-Phase algorithm produces a reduced state space
which is stuttering equivalent to the whole one, and therefore preserves CTLX

properties [9].

3.2 ImProviso

[4] proposes ImProviso, a symbolic version for computing the reachable states
of the Two-Phase algorithm. It efficiently combines the advantages of POR and
symbolic methods. Classical symbolic model checking algorithms use a single
transition relation (partitioned or not) to carry out the required computation
on the state space. On the other hand, the ImProviso method defines n + 1
transition relations, where n is the number of processes in the system. One is
the full transition relation T used in phase 2, and the others contain only the
safe local transitions from deterministic states, denoted as T1(p) of each process
p, used in phase 1.

Contrary to the nested DFS preferred by classical POR methods, the symbolic
methods amount to a breadth-first search (BFS). It is thus harder to detect cycles
within phase 1 in the symbolic case, and that detection is required to maintain
the validity of the algorithm. ImProviso adopts a pessimistic approach: at each
step during phase 1, it is assumed pessimistically that any previously expanded
state that is reached again might close a cycle, although these occurrences might
actually be on different execution paths. This over-approximation guarantees
that all cycles are correctly identified, but possibly needlessly reduces the number
of states where phase 1 can be applied. This is the key justification for basing
ImProviso on the Two-Phase algorithm, as this limits the need for cycle detection
to each single execution of phase 1, as opposed to the whole exploration for more
traditional POR approaches.

The original ImProviso algorithm is not detailed here but is very similar to
the FwdUntilPOR algorithm of Section 5, which is based on ImProviso.

4 Forward Symbolic Model-Checking of CTL

In [5], Iwashita et al. present a model checking algorithm based on forward state
traversal, which is shown to be more effective than backward state traversal in

74 J. Vander Meulen and C. Pecheur

many situations. Forward traversal is applicable only to a subset of CTL, but
can be combined with backward traversal for the rest of the formulæ. In the
following sections we combine this algorithm with ImProviso in order to extend
the advantages of partial-order reduction in symbolic methods from reachability
properties to CTL properties.

The semantics of a CTL formula f is defined as a relation s |= f over states
s ∈ S. In this paper we define the language of f as L(f) = {s ∈ S|s |= f}. In
the sequel we assimilate temporal logic formulæ f to the set of states L(f) that
they denote, for the sake of simplifying the notations. In particular, we denote
set-based computations as the formula-based fixpoints that they compute.

Given a formula f and initial conditions h0, conventional BDD-based symbolic
model-checking can be described as evaluating L(f) over the sub-formulas of
f in a bottom-up manner, and checking whether L(h0) ⊆ L(f). This can be
expressed as checking whether h0 ⇒ f , or equivalently, whether h0∧¬f = false.
The evaluation of (future) CTL operators in f results in a backward state-space
traversal of the model.

[5] introduces forward exploration by transforming a property h ∧ op(f) =
false into equi-satisfiable one op′(h) ∧ f = false, where a future, backward-
traversal CTL operator op in the right term is transformed into a past, forward-
traversal operator op′ in the left term. In general, h is then a past-CTL formula.
The following (past-temporal) operations over formulæ are defined

FwdUntil(h, f) = μZ.[h ∨ post(Z ∧ f)]
EH(h) = νZ.[h ∧ post(Z)]

FwdGlobal(h, f) = EH(FwdUntil(h, f) ∧ f)

FwdUntil(h, f) computes states s that can be reached from h within f (except
for s itself), and EH(h) computes states reachable from a cycle, all within h.
On this basis, the following equivalences are established:

h ∧ EXf = false ⇐⇒ post(h) ∧ f = false

h ∧ E[g Uf] = false ⇐⇒ FwdUntil(h, g) ∧ f = false

h ∧ EGf = false ⇐⇒ FwdGlobal(h, f) = false

The transformation process starts from h0 ∧ ¬f = false, where h0 is the
initial conditions and ¬f is the (suitably re-written) negation of the property
to be verified. The equivalences above are applied recurrently until the right
part cannot be reduced further, either because all temporal operators have been
eliminated or because no rule applies to those remaining. Disjunctions in f can
also be handled by case-splitting. Given the final h∧f = false, L(h) is evaluated
using forward traversal, and the resulting set of states is used as the new initial
conditions for a classical, backward model-checking of the remaining f .

By using these equivalences, it is possible to replace an outermost EX , EU
or EG operator in f with a forward traversal operator in h. For instance, one
can derive the following equivalence:

h0 ⇒ AG(req → AFack) ⇐⇒
FwdGlobal((FwdUntil(h0, true) ∧ req),¬ack) = false

Efficient Symbolic Model Checking for Process Algebras 75

Unfortunately, it is not possible to achieve the complete conversion of all CTL
properties by applying this method. For instance, the following property is not
fully transformable, because the negation in the right term cannot be eliminated:

p0 ⇒ AG EFa ⇐⇒ FwdUntil(p0, true) ∧ ¬EFa = false

Informally, reduction is possible for a restricted fragment of universal CTL,
where temporal operators do not appear in the context of disjunctions nor on
the left side of Until operators.3

5 Forward Model Checking with Partial Order Reduction

In this section we bring together the POR approach of ImProviso, presented
in Section 3.2, and the forward model checking approach of Section 4. The key
element is to define a new algorithm FwdUntilPOR, which applies ImProviso’s
principles to perform POR during the forward exploration of FwdUntil. The
algorithm for FwdUntilPOR(h, f) is given in Listing 1.1, and is based on Im-
Proviso’s algorithm in [5].

Given two visible constraints h and f , the FwdUntilPOR algorithm computes
the set of states of the reduced state space belonging to a path of the form
s0 → s1 → . . . → sn−1 → sn where s0 |= h and ∀i ∈ {0, . . . , n − 1} : si |= f .
T is the global transition relation of the model, and T1[p] contains safe local
transitions of process p, and only from such states where p is deterministic.
The deadState(T, X) function computes the states of X that have no enabled
transition from T , i.e. deadStates(T, X) = {s ∈ X |¬∃s′ ∈ S, α ∈ T · s α−→ s′}.

The FwdUntilPOR procedure initializes the global variables and performs the
two phases alternatively until no states to visit remain. The global variable
frontier contains the current frontier, that is, the set of states which have
been reached but not expanded yet. The global variable visited contains all
the reached states.

The phase1 procedure performs the first phase, consisting of partial expansion
of deterministic transitions. It is composed of two nested loops. The outer one
(lines 22 – 33) expands all processes in a given order. The inner one (lines 25
– 31) expands all deterministic transitions of the current process, from states
satisfying f , until no more new states can be found.

The stack variable contains all the states which have already been reached
during the current run of phase1. cycleApprox over-approximates the set of
states closing a cycle. It contains all the states which have been reached twice
during the current run of phase 1. The dead variable gathers all the states with
no outgoing deterministic transition for the current process; those states are
added back to the current frontier when moving to the next process (line 32).

The original ImProviso algorithm defines an additional outermost loop in
phase 1, which guarantees that a state is passed from phase 1 to phase 2 only if

3 Universal CTL is the fragment of CTL such that negated normal forms contain only
universal path quantifiers (AX,AU, AG, AF). As detailed in [5], if the model has
a single initial state (L(h0) = {s0}), then the validity of f can also be phrased as
h0 ∧ f �= false, and existential formulæ can be handled as well.

76 J. Vander Meulen and C. Pecheur

it has no enabled deterministic transition for any process. This is useful in the
case where a local transition from one process can activate another process, as
for example posting a message to a channel that can be subsequently received.
In our case, this fixpoint calculation is not needed because by construction our
notions of local transition and deterministic process do not allow this kind of
situation. It would easily be added back if it were to become useful.

The phase2 procedure performs a full expansion of the states of the current
frontier satisfying the constraint f .

1 global T //total transition relation
2 global T1[1..n] // safe local transitions of each process
3
4 global f // constraints f
5 global frontier // current frontier
6 global visited // visited states
7
8 procedure FwdUntilPOR(inH, inF)
9 frontier := inH

10 f := inF
11 visited := inF
12 while (frontier != {}) {
13 phase1 ()
14 phase2 ()
15 }
16 }
17
18 procedure phase1 () {
19 local cycleApprox := {}
20 local stack := frontier
21
22 foreach (p : Processes) {
23 local dead := {}
24 local image := post(T1[p], frontier and f)
25 while ((image - stack) != {}) {
26 dead := dead or deadStates(T1[p], frontier)
27 cycleApprox := cycleApprox or (image and stack)
28 stack := stack or image
29 frontier := image - stack
30 image := post(T1[p],frontier and f)
31 }
32 frontier := frontier or dead
33 }
34 frontier := frontier or cycleApprox
35 visited := visited or stack
36 }
37
38 procedure phase2 () {
39 local image := post(T, frontier and f)
40 frontier := image - visited
41 visited := visited or image
42 }

Listing 1.1. FwdUntilPOR algorithm

Correctness. A full formal proof of correctness of the proposed approach is
beyond the scope of this paper. The validity of the overall verification technique
depends on a number of components, a number of which are inherited from
existing techniques and tools. One important point is the validity of the ample
sets used for POR, which we address in more details first, based on the definitions
of Section 2. The following lemma will be useful in the main proof:

Efficient Symbolic Model Checking for Process Algebras 77

Lemma 1. If a process p is deterministic in a state s with enabled(s)∩ T (p) =

{α} and there is a transition α′ �= α such that s
α′−→ s′ then s′(p) = s(p) and p

is deterministic in s′ with enabled(s′) ∩ T (p) = {α} .

Proof. We have that α′ ∈ enabled(s). Since enabled(s) ∩ T (p) = {α}, α′ /∈ T (p)
and s(p) = s′(p). trans(p, s) only depends on s(p) so trans(p, s) = trans(p, s′)
and enabled(s′) ∩ T (p) ⊆ trans(p, s′) ⊆ safe(p) so enabled(s′) ∩ T (p) =
enabled(s) ∩ T (p). ��

Then we come to the main result:

Theorem 1 (Correctness of Ample Sets). Given a state s, if trans(p, s) ⊆
safe(p) and

∣
∣T (p) ∩ enabled(s)

∣
∣ = 1, then ample(s) = T (p) ∩ enabled(s) = {α}

is a valid ample set for s.

Proof. This requires checking that ample(s) meets conditions C1 to C4 of
Section 2.2.
C1 is proved by contradiction. Suppose that there is a path s = s0

α1−→ s1 . . .
αm−→

sm
α′−→ s′, where all αi are independent from α and α′ is dependent on (but

different from) α. By applying lemma 1 inductively in s, s1, . . . , sm−1, we get
that s(p) = s1(p) = · · · = sm(p), and p is deterministic in sm with T (p) ∩
enabled(sm) = {α}, and therefore α′ /∈ T (p). If α′ /∈ T (p), then since α ∈
safe(p), α and α′ are independent, a contradiction.
C2 is satisfied because in every cycle in the reduced graph, at least one state is
fully expanded in phase 2 of the algorithm. If the cycle contains at least one states
s where no process is deterministic, then that state will not be expanded in phase
1. If the cycle is composed exclusively of states where a process is deterministic,
then the algorithm guarantees conservatively that the loop is detected in phase
1 and one state is deferred to phase 2 (see the cycleApprox variable, line 27).
C3 is satisfied because either ample(s) = enabled(s) or ample(s) ⊆ safe(s) by
construction.
C4 is satisfied by construction of ample(s). ��
The validity of the overall technique follows, based on the following arguments:

1. The equivalence relations between backward and forward operators of
section 4 are valid, in the sense that the transformed formulas, introduc-
ing forward traversal where feasible, are satisfiable if and only if the original
formulas are satisfiable. This result is assumed from [5].

2. Classical backward BDD-based model-checking, and in particular the reduc-
tion of CTL to EX , EU and EG operators, is valid. This is a well-established
result, see e.g. [8].

3. The single enabled transition of a deterministic process p in a state s, as
defined in Section 2.3, is indeed a valid ample set for s (Theorem 1).

4. Assuming § 3, FwdUntilPOR performs a valid exploration of a subset of the
behaviours explored by FwdUntil, reduced through POR. This is verified by
checking that FwdUntilPOR is a valid symbolic implementation of the Two-
Phase algorithm based on deterministic processes as defined in Secton 2.3
in the same way as the original ImProviso, but adapted for adapted for
restricting the exploration to paths of the form s0 → s1 → . . . → sn−1 → sn

where s0 |= h and ∀i ∈ {0, . . . , n − 1} : si |= f .

78 J. Vander Meulen and C. Pecheur

5. The overall, combined forward and backward exploration is a valid model-
checking technique for CTLX . This combines the validity of the transfor-
mation (§ 1), of classic CTL model-checking (§ 2) and of the POR-reduced
exploration by FwdUntilPOR (§ 4), combined with the observation in Sec-
tion 2.2 that POR reduction respecting conditions C1 to C4 preserves CTLX

properties.

6 Implementation

We have developed the FwdUntilPORmethod in a new symbolic model checker. It
allows to describe concurrent systems and to verify CTL properties, and action-
based extension thereof, on these models.

Our prototype has been implemented with the Scala language [11]. Scala is a
multi-paradigm programming language, fully interoperable with Java, designed
to integrate features of object-oriented programming and functional program-
ming. Scala is a pure object-oriented language in the sense that every value is
an object. Scala is also a functional language in the sense that every function is
a value. To obtain better performance, our model checker uses a BDD package,
named BuDDy[12], written in C.

The model checker defines a language for describing transitions systems. The
design of the language has been influenced on the one hand by process algebras
and on the other hand by the NuSMV language [13]. A model of a concurrent
system declares a set of global variables, a set of shared actions and a set of
processes. A process p declares a set of local variables, a set of local actions
and the set of shared actions which p is synchronized on. Each process has
a distinguished local program counter variable pc. For each value of pc, the
behavior of a process is defined by means of a list of action-labelled guarded
commands of the form [α] c → u, where α is an action, c is a condition on
variables and u is an assignment updating some variables. Shared actions are
used to define synchronization between the processes. A shared action occurs
simultaneously in all the processes that share it, and only when all enable it.

Properties are expressed in an action-based extension of CTL similar to ACTL
[7] 4. These properties can be checked with three techniques: the backward traver-
sal method, the FwdUntil method (Section 4) and the FwdUntilPOR method
(Section 5). If the FwdUntilPOR is applied, some syntactic restrictions are im-
posed in order to satisfy the conditions allowing the POR. For instance, the
propositions allowed in the CTLX properties can only concern the global vari-
ables so as to satisfy the visibility condition. For each p, safe commands are
determined at compile time and combined into T 1(p). A guarded command is
considered as safe if it contains only local variables and actions. For each pc, a
list of guarded command gcs is considered as safe, if all elements of gcs are safe
and all of them are mutually exclusive .

Ordering of the Variables. BDDs require a fixed ordering among the boolean
variables used to represent the system. The size of BDDs, and therefore the
4 Specifically, we use Action-Restricted CTL (ARCTL) [14], which associates actions

to path quantifiers rather than temporal operators.

Efficient Symbolic Model Checking for Process Algebras 79

performance of BDD-based model-checking, strongly depends on this ordering.
For instance, the size of the BDD representing a n-bit comparator (x1 = x′

1 ∧
. . .∧xn = x′

n) can go from 3∗n+2 nodes with the order x1 ≺ x′
1 ≺ . . . ≺ xn ≺ x′

n

to 3 ∗ 2n − 1 nodes with the order x1 ≺ . . . ≺ xn ≺ x′
1 ≺ . . . ≺ x′

n. In general,
finding the best variable ordering is a NP-complete problem. The topic has been
intensively studied and several heuristics have been developed for finding a good
ordering between variables.

This research has mostly focused on ordering variables within a state, but
there is also an opportunity for optimizing the order of variables used for the
transitions relation T (s, α, s′), which ranges over sets of boolean variables, s, α,
s′ respectively. If s

α−→ s′, s is named the source state and s′ is named the target
state. In order to represent the relation T as a boolean function T (s, α, s′), three
sets of boolean variables are used: s = s1, s2, . . . , sm, α = α1, α2, . . . , αn and
s′ = s′1, s′2, . . . , s′m. An intuitive approach would be to start with α, followed
by s, then s′. In the case of strongly asynchronous systems, this approach leads
to an explosion of the BDD size [15]. A better solution is proposed in [15] for
asynchronous models such as those obtained from process algebra specifications.
The action variables are encoded first, followed by an “interlacing” between the
source variables and the target variables: a1 ≺ a2 ≺ . . . ≺ an ≺ s1 ≺ s′1 ≺ s2 ≺
s′2 ≺ . . . ≺ sm ≺ s′m.

Experimental results show that the resulting BDDs only grow linearly in the
number of asynchronous components. Intuitively, the ordering works well due to
the fact that, in the case of asynchronous processes, most of the time a small
number of processes proceed, so only the variables of those processes change
while most variables remains the same (i.e. si = s′i). These constraints are more
efficiently encoded in the BDD, if si and s′i are next to each other in the ordering,
similarly to the n-bit comparator example above.

Table 1 compares the transition relation BDD size and the time between the
intuitive and the interlaced ordering, based on the case study of Section 7. The
size of the model is driven by the parameter #drill, and the time corresponds to
verifying property p6. It confirms the much reduced growth rate of the interlaced
ordering, allowing a much larger number of components to be added.

Table 1. Size of the transition relation BDD (in # nodes) and verification time (in
seconds) for property p6 of the Turntable case study, using interlaced vs. non-interlaced
orderings, — correspond to memory exhausted (2 GB)

drills # vars interlaced non-interlaced
size time size time

1 24 1 543 .041 153 056 6.222
2 31 1 913 .070 4 051 081 409.078
3 38 2 307 .114 — —

20 157 12 184 4.436 — —
40 297 31 572 30.884 — —

80 J. Vander Meulen and C. Pecheur

7 Case Study

In order to assess the effectiveness of our method, we applied it to a turntable
model which is described in [16,17]. For initial experiments, we modelled the
system in the NuSMV language. We then converted the language of our pro-
totype. We compared performance of verification using three methods: classical
backward, FwdUntil and FwdUntil with POR, as well as with the NuSMV tool
and with the non-symbolic tool from the CADP toolset: Evaluator [18]. This
section presents the system and the results we obtained. All the test have been
run on a 2,16 GHz Intel Core 2 Duo with 2 GB of RAM memory.

The turntable system consists of a round turntable, n drills and a testing
device, as illustrated in Figure 1. The turntable transports products between
the drills, the testing device and input and output positions. The drills bore
holes in the products. After being drilled, the products are delivered to the
tester, where the depth of the holes is measured, since it is possible that drilling
went wrong. The turntable has n + 3 slots that each can hold a single product.
The original model had only one drill; we extended it to represent an arbitrary
number of drills. Although a turntable with 40 drills is a bit artificial, it gives a
model of a fairly large realistic size.

. . .

input

output

test

drilln

drill1

drill2

drill3

Fig. 1. Turntable System

The original model was described in LOTOS, a formal specification technique
based on process algebras [6]. First we translated the LOTOS model into a
NuSMV model. The difficult part of this task comes from the fact that LOTOS
and NuSMV do not have the same concurrency model. LOTOS has a more
expressive synchronization mechanism. The conversion in the prototype language
was easier because our language is inspired by languages like LOTOS.

We have verified 13 properties from [17] expressed as a regular alternation-free
μ-calculus formulae [19], here labelled p1 to p13. p1 to p6 are safety properties
and p7 to p13 are liveness properties. For instance, the safety property p6 states
that if a piece is well drilled, no alarm will be raised during the next cycle. The
liveness property p11 states that each piece will be removed from the turntable
after it is tested.
P6 :[true*.INF !TESTED !TRUE.(not INF !TURNED)*.INF !TURNED.(not INF !TURNED)*.ERR] false
P11:[true*.INF !TESTED.*]inev(not CMD !TURN,CMD !TURN,inev(not CMD !TURN,REQ !REMOVE.*,true))

For 11 of the 13 properties, the FwdUntilPOR method outperforms the classical
backward CTL algorithm. However for p1 and p2, the classical method is approx-
imately 30 times faster than the FwdUntilPOR algorithm. Currently, we do not

Efficient Symbolic Model Checking for Process Algebras 81

Table 2. Verification times (in seconds) for properties p6 and p11 of the Turntable
model, using NuSMV, CADP and our prototype using standard backward exploration
(Bwd), FwdUntil (Fwd) and FwdUntilPOR (Fwd+POR). — indicates that the com-
putation did not end within 5 hours.

drill property p6 property p11
NuSMV CADP Bwd Fwd Fwd+POR CADP Bwd Fwd Fwd+POR

1 2.001 2.770 .041 .022 .055 3.640 .037 .076 .097
2 36.400 5.480 .070 .043 .082 19.350 .062 .132 .139
3 578.500 81.260 .114 .074 .106 335.130 .094 .167 .185
4 6617.000 13393.630 .157 .104 .144 19031.340 .132 .244 .245

10 — — .721 .875 .335 — .663 1.064 .589
20 — — 4.436 9.698 .838 — 6.112 9.187 1.496
30 — — 13.842 31.295 1.475 — 19.412 25.520 2.780
40 — — 30.884 80.519 2.499 — 40.304 67.761 4.355

have an explanation for such a difference which is left for further investigation.
On this model, the FwdUntil method is less efficient than the classical method,
taking exception from the general observation reported in [5].

Table 2 shows the time for the verification of the properties p6 and p11. If the
turntable comprises 40 drills, p6 properties is checked approximately 12 times
faster and p11 is checked approximately 9 times faster with the FwdUntilPOR
method than with the backward method. The causes for the huge increase for
CADP between 3 and 4 drills remain to be investigated.

Table 3 compares the time needed for computing the reachable state space
between NuSMV and our prototype. We notice that NuSMV cannot handle a
model beyond 4 drills, while our prototype can still easily handle up to 40 drills.
It is quite interesting to note that while POR increases the number of BDD
nodes for the reduced state space (likely due to breaking some symmetry in
the full state space), it results in substantial speed improvements. One possible
explanation for the huge difference between NuSMV and our prototype is that
the modeling language of NuSMV, as opposed to that of our prototype, does not
support synchronization through shared actions, and so the translation of the
original LOTOS model is more convoluted and less straightforward. This issue
deserves further investigation.

Table 3. BDD size (in # nodes), state space size (in # states) and computation time
(in seconds) for the reachable state space of the Turntable model in NuSMV vs. our
prototype, both with full and POR exploration (i.e. using the ImProviso algorithm).
— indicates that the computation did not end within 5 hours.

drills # nodes # states time
NuSMV proto full proto POR NuSMV proto full proto POR NuSMV proto full proto POR

1 2660 131 196 10 068 9 084 5572 1.009 .289 .149
2 12888 274 488 170 058 146 784 7948 32.000 .297 .153
3 64616 428 869 ≈ 106 ≈ 106 10324 553.400 .401 .181
4 244967 582 1286 ≈ 107 ≈ 107 12700 4 784.600 .545 .228

10 — 1506 4709 — ≈ 1011 26956 — 1.892 .528
20 — 3046 14039 — ≈ 1020 50716 — 7.984 1.147
40 — 6126 49649 — ≈ 1037 98236 — 63.721 3.434

82 J. Vander Meulen and C. Pecheur

8 Related Work

In [20], Alur et al. transform an explicit model checking algorithm performing
partial order reduction and able to check invariance of local properties. They
start from a DFS algorithm to obtain a modified BFS algorithm. Both expand
an ample set of transitions in each step. In order to detect the cycles, they
assume pessimistically that each previous expanded state might close a cycle. By
contrast, ImProviso makes a smaller over-approximation of such states because
it only needs to consider cycles formed exclusively by deterministic transitions.
Consequently it looks for possible cycles only with respect to states visited during
phase 1.

In [21], Abdulla et al. present a general method for combining POR and
symbolic model checking. Their method can check safety properties either by
backward or forward reachability analysis. So as to perform the reduction, they
employ the notion of commutativity in one direction, a weakening of the depen-
dency relation which is usually used to perform POR. It can be applied either
to finite or infinite state spaces. One difference between this approach and ours
is the checked properties. This approach deals both with backward and forward
reachability analysis, while we are able to check a subset of CTLX properties
using only forward analysis.

In [22], Kurshan et al. introduce a partial order reduction algorithm based
on static analysis. They notice that each cycle in the state space is composed of
some local cycles. The method performs a static analysis of the checked model
so as to discover local cycles and set up all the reductions at compile time. The
reduced state space can be handled with symbolic techniques. Their approach
differs from ours in that it performs the reduction at compile time. On the
contrary our approach performs the reduction at run time. Lerda et al. suggest
that the Improviso method is more efficient than the one introduced by Kurshan
et al.[4]. However, we think that it still would be interesting to see how both
approaches can benefit from each other.

In [23], Fantechi et al. present SAM, a symbolic model checker based on BSP
(Boolean symbolic programming), a programming language aimed at defining
computations on boolean functions. SAM takes as input an LTS s and a (possibly
recursive) μ-ACTL formula p, and transforms both into BSP programs, which
are then compiled into a sequence of calls to BDD primitives. Checking that s
verifies p reduces to checking whether the boolean function ”tr(s) ⇒ tr(p)” is
a tautology. SAM is able to check μ-ACTL formulae which is a richer language
that the one of our prototype, but does not address performance optimizations
such as partial-order reduction.

9 Conclusion and Perspectives

In this paper, we introduced the FwdUntilPOR algorithm that combines two
existing techniques to provide efficient symbolic model checker of CTL on asyn-
chronous models. The first technique is the ImProviso algorithm which efficiently
merges POR and symbolic methods. The second technique is the forward sym-
bolic model checking approach applicable to a subset of CTL.

Efficient Symbolic Model Checking for Process Algebras 83

We also implemented the FwdUntilPOR algorithm in a new symbolic model
checker. Its input syntax supports actions-based models and logics. We show on
a realistic-sized case study that our method achieves a strong improvement in
comparison to the classical backward algorithm, in the majority of cases.

Although it is usually considered that symbolic model checking is inadequate
for loosely-synchronized models, our results show that with appropriate opti-
mization this approach might in fact be quite effective to tackle the state space
explosion problem. On this basis, we plan to develop our approach and our
prototype in a number of ways:

– We plan to extend the FwdUntilPOR method for applying POR to a larger
subset of CTL. We will investigate how the approach of [21] can be extended
for combining the classical backward symbolic model checking algorithms
and POR.

– We need to explore how it is possible to compute a better approximation
of the deterministic states. There exists a large body of literature on this
subject.

– We need to extend our prototype by adding generation of counter-examples
for failed properties Another source of improvement can come from apply-
ing traditional partitioning techniques to BDDs representing the transition
relations. Besides, it would be convenient to accept or translate, as input,
a popular language such as LOTOS in order to exploit the numerous case
studies available in this formalism.

– As observed in our case study, for some properties the FwdUntilPOR method
performs much worse than the standard backward model checking. We will
investigate this issue, in order to try to characterize the classes of proper-
ties where this happens and to investigate whether our algorithm can be
improved to better handle those cases.

References

1. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35(8), 677–691 (1986)

2. Burch, J., Clarke Jr., E., McMillan, K., Dill, D., Hwang, L.: Symbolic Model Check-
ing: 1020 States and Beyond. In: Proceedings of the Fifth Annual IEEE Symposium
on Logic in Computer Science, Washington, D.C., pp. 1–33. IEEE Computer So-
ciety Press, Los Alamitos (1990)

3. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems.
LNCS, vol. 1032. Springer, Heidelberg (1996)

4. Lerda, F., Sinha, N., Theobald, M.: Symbolic model checking of software. In: Cook,
B., Stoller, S., Visser, W. (eds.) Electronic Notes in Theoretical Computer Science,
vol. 89. Elsevier, Amsterdam (2003)

5. Iwashita, H., Nakata, T., Hirose, F.: CTL model checking based on forward state
traversal. In: ICCAD 1996: Proceedings of the 1996 IEEE/ACM international con-
ference on Computer-aided design, Washington, DC, USA, pp. 82–87. IEEE Com-
puter Society, Los Alamitos (1996)

6. ISO/IEC: LOTOS — a formal description technique based on the temporal order-
ing of observational behaviour. International Standard 8807, International Orga-
nization for Standardization — Information Processing Systems — Open Systems
Interconnection, Genève (1988)

84 J. Vander Meulen and C. Pecheur

7. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990)

8. Clarke Jr., E., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

9. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach to branch-
ing time logic model checking. Inf. Comput. 150(2), 132–152 (1999)

10. Nalumasu, R., Gopalakrishnan, G.: A new partial order reduction algorithm for
concurrent systems. In: Delgado Kloos, C., Cerny, E. (eds.) Hardware Description
Languages and their Applications (CHDL 1997), Toledo, Spain. Chapman and
Hall, Boca Raton (1997)

11. Odersky, M., Spoon, L., Venners, B.: Programming in Scala, a comprehensive step-
by-step guide. PrePrintTM Edition, Version 3 (May 2008)

12. Lind-Nielsen, J.: Buddy - a binary decision diagram package (June 10, 2008),
http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.itu.dk/research/

buddy/index.html

13. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–
499. Springer, Heidelberg (1999)

14. Pecheur, C., Raimondi, F.: Symbolic model checking of logics with actions. In:
Edelkamp, S., Lomuscio, A. (eds.) MoChArt IV. LNCS, vol. 4428, pp. 113–128.
Springer, Heidelberg (2007)

15. Enders, R., Filkorn, T., Taubner, D.: Generating BDDs for symbolic model check-
ing in CCS. Distrib. Comput. 6(3), 155–164 (1993)

16. Bortnik, E., Trčka, N., Wijs, A.J., Luttik, B., van de Mortel-Fronczak, J., Baeten,
J.C.M., Fokkink, W.J., Rooda, J.: Analyzing a χ model of a turntable system using
SPIN, CADP and UPPAAL. Journal of Logic and Algebraic Programming 65(2),
51–104 (2005)

17. Mateescu, R.: 5. IC2 treatise. Systèmes temps réel 1 - techniques de description et
de vérification. Lavoisier, 151–180 (2006)

18. Garavel, H.: Open/Cæsar: An open software architecture for verification, simula-
tion, and testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 68–84.
Springer, Heidelberg (1998)

19. Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. Science of Computer Programming 46(3), 255–281
(2003)

20. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-order
reduction in symbolic state space exploration. In: Computer Aided Verification, pp.
340–351 (1997)

21. Abdulla, P.A., Jonsson, B., Kindahl, M., Peled, D.: A general approach to partial
order reductions in symbolic verification (extended abstract). In: Computer Aided
Verification, pp. 379–390 (1998)

22. Kurshan, R.P., Levin, V., Minea, M., Peled, D., Yenigün, H.: Static partial or-
der reduction. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 345–357.
Springer, Heidelberg (1998)

23. Fantechi, A., Gnesi, S., Mazzanti, F., Pugliese, R., Tronci, E.: A symbolic model
checker for ACTL. In: Hutter, D., Traverso, P. (eds.) FM-Trends 1998. LNCS,
vol. 1641, pp. 228–242. Springer, Heidelberg (1999)

Reentrant Readers-Writers: A Case Study
Combining Model Checking with

Theorem Proving

Bernard van Gastel, Leonard Lensink, Sjaak Smetsers, and Marko van Eekelen

Institute for Computing and Information Sciences, Radboud University Nijmegen
Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands

b.vangastel@student.science.ru.nl,
{l.lensink,s.smetsers,m.vaneekelen}@cs.ru.nl

Abstract. The classic readers-writers problem has been extensively
studied. This holds to a lesser degree for the reentrant version, where it
is allowed to nest locking actions. Such nesting is useful when a library is
created with various procedures that each start and end with a lock. Al-
lowing nesting makes it possible for these procedures to call each other.
We considered an existing widely used industrial implementation of the
reentrant readers-writers problem. We modeled it using a model checker
revealing a serious error: a possible deadlock situation. The model was
improved and checked satisfactorily for a fixed number of processes. To
achieve a correctness result for an arbitrary number of processes the
model was converted to a theorem prover with which it was proven.

1 Introduction

It is generally acknowledged that the growth in processor speed is reaching a hard
physical limitation. This has led to a revival of interest in concurrent processing.
Also in industrial software, concurrency is increasingly used to improve efficiency
[26]. It is notoriously hard to write correct concurrent software. Finding bugs
in concurrent software and proving the correctness of (parts of) this software is
therefore attracting more and more attention, in particular where the software
is in the core of safety critical or industrial critical applications.

However, it can be incredibly difficult to track concurrent software bugs down.
In concurrent software bugs typically are caused by infrequent ’race conditions’
that are hard to reproduce. In such cases, it is necessary to thoroughly investigate
‘suspicious’ parts of the system in order to improve these components in such a
way that correctness is guaranteed.

Two commonly used techniques for checking correctness of such system are
formal verification and testing. In practice, testing is widely and successfully
used to discover faulty behavior, but it cannot assure the absence of bugs. In
particular, for concurrent software testing is less suited due to the typical char-
acteristics of the bugs (infrequent and hard to reproduce). There are roughly two
approaches to formal verification: model checking and theorem proving. Model
checking [6,23] has the advantage that it can be performed automatically, pro-
vided that a suitable model of the software (or hardware) component has been

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 85–102, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

86 B. van Gastel et al.

created. Furthermore, in the case a bug is found model checking yields a coun-
terexample scenario. A drawback of model checking is that it suffers from the
state-space explosion and typically requires a closed system. In principle, theo-
rem proving can handle any system. However, creating a proof may be hard and
it generally requires a large investment of time. It is only partially automated
and mainly driven by the user’s understanding of the system. Besides, when
theorem proving fails this does not necessarily imply that a bug is present. It
may also be that the proof could not be found by the user.

In this paper we consider the reentrant readers-writers problem as a formal
verification case study. The classic readers-writers problem [8] considers multiple
processes that want to have read and/or write access to a common resource (a
global variable or a shared object). The problem is to set up an access protocol
such that no two writers are writing at the same time and no reader is accessing
the common resource while a writer is accessing it. The classic problem is stud-
ied extensively[22]; the reentrant variant (in which locking can be nested) has
received less attention so far although it is used in Java, C# and C++ libraries.

We have chosen a widely used industrial library (Trolltech’s Qt) that provides
methods for reentrant readers-writers. For this library a serious bug is revealed
and removed. This case study is performed in a structured manner combining
the use of a model checker with the use of a theorem prover exploiting the
advantages of these methods and avoiding their weaknesses.

In Section 2 we will introduce the case study. Its model will be defined, im-
proved and checked for a fixed number of processes in Section 3. Using a theorem
prover the model will be fully verified in Section 4. Finally, related work, future
work and concluding remarks are found in Sections 5 and 6.

2 The Readers-Writers Problem

If in a concurrent setting two threads are working on the same resource, syn-
chronization of operations is often necessary to avoid errors. A test-and-set op-
eration is an important primitive for protecting common resources. This atomic
(i.e. non-interruptible) instruction is used to both test and (conditionally) write
to a memory location. To ensure that only one thread is able to access a resource
at a given time, these processes usually share a global boolean variable that is
controlled via test-and-set operations, and if a process is currently performing
a test-and-set, it is guaranteed that no other process may begin another test-
and-set until the first process is done. This primitive operation can be used to
implement locks. A lock has two operations: lock and unlock. The lock operation
is done before the critical section is entered, and the unlock operation is per-
formed after the critical section is left. The most basic lock can only be locked
one time by a given thread. However, for more sophisticated solutions, just an
atomic test-and-set operation is insufficient. This will require support of the un-
derlying OS: threads acquiring a lock already occupied by some thread should
be de-scheduled until the lock is released. A variant of this way of locking is
called condition locking: a thread can wait until a certain condition is satisfied,
and will automatically continue when notified (signalled) that the condition has

Reentrant Readers-Writers 87

been changed. An extension for both basic and condition locking is reentrancy,
i.e. allowing nested lock operations by the same thread.

A so-called read-write lock functions differently from a normal lock: it either
allows multiple threads to access the resource in a read-only way, or it allows
one, and only one, thread at any given time to have full access (both read
and write) to the resource ([10]). These locks are the standard solution to the
producer/consumer problem in which a buffer has to be shared.

Several kinds of solutions to the classical readers-writers problem exist. Here,
we will consider a read-write locking mechanism with the following properties.

writers preference. Read-write locks suffer from two kinds of starvation, one
with each kind of lock operation. Write lock priority results in the possibility
of reader starvation: when constantly there is a thread waiting to acquire a
write lock, threads waiting for a read lock will never be able to proceed. Most
solutions give priority to write locks over read locks because write locks are
assumed to be more important, smaller, exclusive, and to occur less.

reentrant. A thread can acquire the lock multiple times, even when the thread
has not fully released the lock. Note that this property is important for mod-
ular programming: a function holding a lock can use other functions which
possibly acquire the same lock. We distinguish two variants of reentrancy:
1. Weakly reentrant : only permit sequences of either read or write locks;
2. Strongly reentrant : permit a thread holding a write lock to acquire a read

lock. This will allow the following sequence of lock operations: write lock,
read lock, unlock, unlock. Note that the same function is called to unlock
both a write lock and a read lock. The sequence of a read lock followed by
a write lock is not admitted because of the evident risk of a deadlock (e.g.
when two threads both want to perform the locking sequence read lock,
write lock they can both read but none of them can write).

2.1 Implementation of Read-Write Locks

In this section we show the C++ implementation of weakly reentrant read/write
locks being part of the multi-threading library of the Qt development framework,
version 4.3. The code is not complete; parts that are not relevant to this presen-
tation are omitted. This implementation uses other parts of the library: threads,
mutexes and conditions. Like e.g. in Java, a condition object allows a thread
that owns the lock but that cannot proceed, to wait until some condition is sat-
isfied. When a running thread completes a task and determines that a waiting
thread can now continue, it can call a signal on the corresponding condition.
This mechanism is used in the C++ code listed in Figure 1.

The structure QReadWriteLockPrivate contains the attributes of the class.
These attributes are accessible via an indirection named d. The attributes mutex,
readerWait and writerWait are used to synchronize access to the other admin-
istrative attributes, of which accessCount keeps track of the number of locks (in-
cluding reentrant locks) acquired for this lock. A negative value is used for write

88 B. van Gastel et al.

struct QReadWriteLockPrivate

{

QReadWriteLockPrivate()

: accessCount(0),

currentWriter(0),

waitingReaders(0),

waitingWriters(0)

{ }

QMutex mutex;

QWaitCondition readerWait,

writerWait;

Qt::HANDLE currentWriter;

int accessCount,waitingReaders,

waitingWriters;

};

void QReadWriteLock::lockForRead()

{

QMutexLocker lock(&d->mutex);

while (d->accessCount < 0 ||

d->waitingWriters) {

++d->waitingReaders;

d->readerWait.wait(&d->mutex);

--d->waitingReaders;

}

++d->accessCount;

Q_ASSERT_X(d->accessCount>0,

"...","...");

}

void QReadWriteLock::lockForWrite()

{

QMutexLocker lock(&d->mutex);

Qt::HANDLE self =

QThread::currentThreadId();

while (d->accessCount != 0) {

if (d->accessCount < 0 &&

self == d->currentWriter) {

break; // recursive write lock

}

++d->waitingWriters;

d->writerWait.wait(&d->mutex);

--d->waitingWriters;

}

d->currentWriter = self;

--d->accessCount;

Q_ASSERT_X(d->accessCount<0,

"...","...");

}

void QReadWriteLock::unlock()

{

QMutexLocker lock(&d->mutex);

Q_ASSERT_X(d->accessCount!=0,

"...","...");

if ((d->accessCount > 0 &&

--d->accessCount == 0) ||

(d->accessCount < 0 &&

++d->accessCount == 0)) {

d->currentWriter = 0;

if (d->waitingWriters) {

d->writerWait.wakeOne();

} else if (d->waitingReaders) {

d->readerWait.wakeAll();

}

}

}

Fig. 1. QReadWriteLock class of Qt

access and a positive value for read access. The attributes waitingReaders and
waitingWriters indicate the number of threads requesting a read respectively
write permission, that are currently pending. If some thread owns the write lock,
currentWriter contains a HANDLE to this thread; otherwise currentWriter is
a null pointer.

The code itself is fairly straightforward. The locking of the mutex is done
via the constructor of the wrapper class QMutexLocker. Unlocking this mutex
happens implicitly in the destructor of this wrapper. Observe that a write lock
can only be obtained when the lock is completely released (d->accessCount
== 0), or the thread already has obtained a write lock (a reentrant write lock
request, d->currentWriter == self).

Reentrant Readers-Writers 89

The code could be polished a bit. E.g. one of the administrative attributes
can be expressed in terms of the others. However, we have chosen not to deviate
from the original code, except for the messages in the assertions which were, of
course, more informative.

3 Model Checking Readers/Writers with Uppaal

Uppaal [17] is a tool for modeling and verification of real-time systems. The
idea is to model a system using timed automata. Timed automata are finite
state machines with time. A system consists of a collection of such automata.
An automaton is composed of locations and transitions between these locations
defining how the system behaves. To control when to fire a transition one can
use guarded transitions and synchronized transitions. Guards are just boolean
expressions whereas the synchronization mechanism is based on hand-shakes:
two processes (automata) can take a simultaneous transition, if one does a send,
ch!, and the other a receive, ch?, on the same channel ch. For administration
purposes, but also for communication between processes, one can use global
variables. Moreover, each process can have its own local variables. Assignments
to local or global variables can be attached to transitions as so-called updates.

In this paper we will not make use of time. In Uppaal terminology: we don’t
have clock variables. Despite the absence of this most distinctive feature of
Uppaal, we have still chosen to use Uppaal here because of our local expertise and
the intuitive and easy to use graphical interface which supports understanding
and improving the model in a elegant way. The choice of model checker is however
not essential for the case study. It could also have been performed with any other
model checker such as e.g. SMV [19], mCRL2 [11] or SPIN [14].

Constructing the Uppaal Model

Our intention is to model the code from Figure 1 as an abstract Uppaal model,
preferably in a way that the distance between code and model is kept as small
as possible. However, instead of trying to model Qt-threads in Uppaal we will
directly use the built-in Uppaal processes to represent these threads. Thread
handles are made explicit by numbering the processes, and using these numbers
as identifications. NT is the total number of processes. The identification numbers
are denoted by tid in the model, ranging 0 to NT - 1. The NT value is also used
to represent the null pointer for the variable currentWriter in the C++ code.
Mutexes and conditions directly depend on the thread implementation, so we
cannot model these objects by means of code abstraction. Instead we created an
abstract model in Uppaal that essentially simulates the behavior of these objects.
The result is shown in Figure 2. In this basic locking model, method calls are
simulated via synchronization messages. The conditions are represented by two
integer variables, sleepingReaders and sleepingWriters, that maintain the
number of waiting readers and waiting writers, respectively. A running process
can signal such a process which will result in a wake up message. A process
receiving such a message should always immediately try to acquire the lock,
otherwise mutual exclusion is not guaranteed anymore.

90 B. van Gastel et al.

Locked

Unlocked

writerWait?
sleepingWriters++

sleepingWriters > 0

wakeOne!
sleepingWriters--

sleepingWriters == 0

signalOneWriter?

sleepingReaders>0
wakeAll!
sleepingReaders--

sleepingReaders==0

signalAllReaders?

 readerWait ?

sleepingReaders++

unlock?lock?

Fig. 2. Mutex and condition model

The RWLock implementation is model checked using the combination of this
basic locking process with a collection of concurrent processes, each continuously
performing either a lockForRead, lockForWrite, or unlock step. The abstract
model (see Figure 3) is obtained basically by translating C++ statements into
transitions.

For convenience of comparison, we have split the model into three parts, corre-
sponding to lockForRead, writeLock and unlock respectively. These parts can
be easily combined into a single model by collapsing the Start states, and, but
not necessarily, the Abort states. The auxiliary functions testRLock, testWLock,
and testReentrantWLock are defined as:

bool testRLock(ThreadId tid)

{ return waitingWriters>0 ||(currentWriter!=NT && currentWriter!=tid);}

bool testWLock (ThreadId tid) bool testReentrantWLock (ThreadId tid)

{ return accessCount != 0 && { return accessCount != 0 &&

currentWriter != tid; tid == currentWriter;

} }

If a process performs a lock operation it will enter a location that is labeled
with EnterXX. Here, XX corresponds to the called operation. The call is left
via a LeaveXX location. For example, if a thread invokes lockForRead it will
enter the location EnterRL. Hereafter, the possible state transitions directly
reflect the corresponding flow of control in the original code for this method.
The call ends at LeaveRL. These special locations are introduced to have a
kind of separation between definition and usage of methods. If the thread was
suspended (due to a call to the wait method on the readerWait condition)
the process in the abstract model will be waiting in the location RWait. The
wrapper QMutexLocker has been replaced by a call to lock. To take the effect
of the destructor into account, we added a call to unlock at the end of the scope
of the wrapper object. Furthermore, observe that assertions are modeled as a
‘black hole’: a state, labeled Abort, from which there is no escape possible.

Reentrant Readers-Writers 91

lockForRead

Abort

LeaveRL

EnterRL RWaitReadLock

Start

accessCount++

accessCount > 0

unlock!

accessCount <= 0 lock!
waitingReaders--

lock!

wakeAll?

testRLock (tid)

readerWait !

waitingReaders++!testRLock (tid)

lockForWrite

Abort

LeaveWL

EnterWL

WWait

WriteLock

Start

accessCount >= 0

accessCount < 0

unlock!

!testWLock(tid)

testReentrantWLock(tid)

!testReentrantWLock(tid)
writerWait!

waitingWriters++

lock! waitingWriters--

wakeOne?testWLock(tid)

currentWriter=tid,
accessCount--

lock!

unlock

LeaveUN

Abort

EnterUN

Start

waitingWriters == 0 &&
 waitingReaders > 0

signalAllReaders!

accessCount == 0

unlock!

waitingWriters == 0 &&
 waitingReaders == 0

waitingWriters > 0

signalOneWriter!

accessCount < 0 accessCount++

accessCount != 0

accessCount==0 currentWriter = NT

lock!

accessCount > 0 accessCount--

Fig. 3. Uppaal models of the locking primitives

Checking the Model

The main purpose of a model checker is to verify the model w.r.t. a requirement
specification. In Uppaal, requirements are specified as queries consisting of path
and state formulae. The latter describe individual states whereas the former
range over execution paths or traces of the model. In Uppaal, the (state) formula
A[] ϕ expresses that ϕ should be true in all reachable states. deadlock is a built-
in formula which is true if the state has no outgoing edges.

In our example we want to verify that the model is deadlock-free, which is a
state property. This can easily be expressed by means of the following query:

A [] not deadlock

When running Uppaal on this model consisting of 2 threads, the verifier will
almost instantly respond with: Property is not satisfied. The trace gener-
ated by Uppaal shows a counter example of the property, in this case a scenario
leading to a deadlock. The problem is that if a thread, which is already holding
a read lock, does a (reentrant) request for another read lock, it will be suspended

92 B. van Gastel et al.

if another thread is pending for a write lock (which is the case if the write lock
was requested after the first thread obtained the lock for the first time). Now
both threads are waiting for each other.

3.1 Correcting the Implementation/Model

The solution is to let a reentrant lock attempt always succeed. To avoid writ-
ers starvation, new read lock requests should be accepted only if there are no
writers waiting for the lock. To distinguish non-reentrant and reentrant uses, we
maintain, per thread, the current number of nested locks making no distinction
between read and write locks. Additionally, this solution allows strongly reen-
trant use. In the implementation this is achieved by adding a hash map (named
current of type QHash) to the attributes of the class that maps each thread
handle to a counter. To illustrate our adjustments, we show the implementation
of lockForRead 1.

void QReadWriteLock::lockForRead() {
QMutexLocker lock(&d->mutex);

Qt::HANDLE self = QThread::currentThreadId();

QHash<Qt::HANDLE, int>::iterator it = d->current.find(self);
if (it != d->current.end()) {

++it.value();
Q_ASSERT_X(d->numberOfThreads > 0, "...", "...");
return;

}
while (d->currentWriter != 0 || d->waitingWriters > 0) {

++d->waitingReaders;
d->readerWait.wait(&d->mutex);
--d->waitingReaders;

}
d->current.insert(self, 1);
++d->numberOfThreads;
Q_ASSERT_X(d->numberOfThreads> 0, "...", "...");

}

To verify this implementation we again converted the code to Uppaal. Since
handles where represented by integers ranging from 0 to NT - 1 (where NT de-
notes the number of threads), we can use a simple integer array to maintain
the number of nested locks per thread, instead of a hash map. In this array, the
process id is used as an index. Figure 4 shows the part of the Uppaal model
that corresponds to the improved lockForRead. For the full Uppaal model, see
www.cs.ru.nl/\simsjakie/papers/readerswriters/.

To limit the state space we have added an upper bound maxNest to the nest-
ing level and a counter readNest indicating the current nesting level. This vari-
able is decremented in the unlock part of the full model. Running Uppaal on
1 For the complete code, see www.cs.ru.nl/~sjakie/papers/readerswriters/ .

Reentrant Readers-Writers 93

BeginRL

EndRL

Abort

RBlockedLeaveRL

EnterRL RWaitReadLock

Start

current[tid] == 0

current[tid] > 0

current[tid]++

numberOfThreads > 0
unlock!

numberOfThreads <= 0

lock!
waitingReaders--

lock!

readNest++

readNest <
 maxNest

wakeupReader?

currentWriter != NT ||
 writersWaiting > 0

readersWait!
waitingReaders++

!(currentWriter != NT ||
 writersWaiting > 0)

current[tid] = 1,
numberOfThreads++

Fig. 4. Uppaal model of the correct version of lockForRead

the improved model will, not surprisingly, result in the message: Property is
satisfied. In this experiment we have limited the number of processes to 4,
and the maximum number of reentrant calls to 5. If we increase these values
slightly, the execution time worsens drastically. So, for a complete correctness
result, we have to proceed differently.

4 General Reentrant Readers-Writers Model

In this section we will formalize the Uppaal model in PVS [21].
We prove that the reentrant algorithm is free from deadlock when we

generalize to any number of processes. While explaining the formalization
we will briefly introduce PVS. For the complete PVS specification, see
www.cs.ru.nl/~sjakie/papers/readerswriters/.

4.1 Readers-Writers Model in PVS

PVS offers an interactive environment for the development and analysis of formal
specifications. The system consists of a specification language and a theorem
prover. The specification language of PVS is based on classic, typed higher-
order logic. It resembles common functional programming languages, such as
Haskell, LISP or ML. The choice of PVS as the theorem prover to model the
readers writers locking algorithm is purely based upon the presence of local
expertise. The proof can be reconstructed in any reasonably modern theorem
prover, for instance Isabelle [20] or Coq[5]. There is no implicit notion of state in
PVS specifications. So, we explicitly keep track of a system state that basically
consists of the system variables used in the Uppaal model.

In the Uppaal model a critical section starts with a lock! and ends with
either a unlock!, readersWait! or writersWait! synchronization. Not all the
state transitions are modelled individually in the PVS model. All actions occur-
ing inside a critical section are modeled as a single transition. This makes the
locking mechanism protecting the critical sections superfluous in the PVS model
and enables us to reduce the number of different locations. Only these locations in

94 B. van Gastel et al.

the Uppaal model that are outside a critical section are needed and are tracked by
the ThreadLocation variable. Furthermore, the EnterXX and LeaveXX locations
are ignored, because they are only used as a label for a function call and have
no influence on the behavior of the modeled processes.

With NT denoting the total number of processes, we get the following
representation:

ThreadID : TYPE = below(NT)2

ThreadLocation : TYPE = { START , RWAIT , RBLOCKED , WWAIT , WBLOCKED }
ThreadInfo : TYPE = [# status : ThreadLocation , current : nat #]3

System : TYPE = [# waitingWriters , waitingReaders ,
numberOfThreads : nat ,
currentWriter : below(NT+1) ,

threads : ARRAY [ThreadID → ThreadInfo] #]4

The auxiliary variables readNest, writeNest and maxNest restrict the Uppaal
model to a maximum number of nested reads and writes. They also prevent
unwanted sequences of lock/unlock operations, e.g. when a write lock request
occurs after a read lock has already been obtained. In the PVS model we allow
for any amount of nesting, so the variables writeNest and maxNest introduced to
limit nesting can be discarded. The readNest variable is used to check whether
there already is a read lock present when a write lock is requested. In the PVS
model we have implemented this check by testing whether the lock counter for
this particular thread is 0 before it starts waiting for a (non-reentrant) write
lock. The logic behind it is that if, previously, a read lock had been obtained by
this thread, the counter would have been unequal to 0.

Because none of the variable updates in the Uppaal model occur outside of
a critical section, we can model the concurrent execution of the different pro-
cesses obtaining writelocks, readlocks and releasing them by treating them as
interleaved functions.

We first define a step function that executes one of the possible actions for
a single process. The step function is restricted to operate on a subset of the
System data type, signified by the validState? predicate, further explained in
Section 4.3. The actions themselves do not deliver just a new state but a lifted
state. In PVS, the predefined lift datatype, consisting of two constructors up
and bottom, adds a bottom element to a given base type, in our case validState?
incorporating the state of the model. This is useful for defining partial functions,
particularly to indicate the cases that certain actions are not permitted.

In essence the step function corresponds to the center of the Uppaal model
consisting of the Start and the EnterXX/LeaveXX states.

step(tid:ThreadID, s1, s2: (validState?)): bool =
writelock(s1,tid) = up(s2) ∨readlock(s1,tid) = up(s2) ∨

unlock(s1 ,tid) = up(s2)

2 Denotes the set ofnatural numbers between 0 and NT, exclusive ofNT.
3 Recordtypes in PVS aresurrounded by [# and #].
4 Arrays in PVS are denoted as functions.

Reentrant Readers-Writers 95

The predicate interleave simulates parallel execution of threads.

interleave (s1,s2:System): bool =
∃ (tid:ThreadID): step(tid,s1,s2) ∧

∀ (other_tid: ThreadID): other_tid �= tid ⇒
s1‘threads(other_tid) = s2 ‘threads(other_tid) 5

4.2 Translation from Uppaal to PVS

The functions that perform the readlock, writelock and unlock respectively are
essentially the same as in the original code. It is very well possible to de-
rive the code automatically from the Uppaal model by identifying all paths
that start with a lock! action on its edge and lead to the first edge with an
unlock!, readersWait! or writersWait! action. The readlock function is pro-
vided as an example of this translation. For instance, the round trip in Figure
4 from the Start location, through BeginRL directly going to EndRL, has guard
current[tid] > 0, and action current[tid]++; associated with it. It starts
and ends in the START location of the PVS model. This can be recognized as a
part of the code of the readlock function below.

readlock(s1:(validState?) , tid:ThreadID) : lift [(validState?)] =
LET thread = s1 ‘threads(tid) IN

CASES thread‘status OF

START:
IF thread‘current > 0
THEN up(s1 WITH [threads := s1 ‘threads WITH

[tid := thread WITH [current := thread‘current+1]]])
ELSIF s1‘currentWriter �= NT∨s1‘waitingWriters > 0
THEN up(s1 WITH [waitingReaders := s1‘waitingReaders + 1,

threads := s1‘threads WITH

[tid := thread WITH [status := RWAIT]]])
ELSE up(s1 WITH [numberOfThreads := s1‘numberOfThreads + 1,

threads := s1‘threads WITH

[tid := thread WITH [current := 1]]])
ENDIF,

RBLOCKED:
IF s1 ‘currentWriter �= NT∨s1‘waitingWriters > 0
THEN up(s1)
ELSE up(s1 WITH [numberOfThreads := s1‘numberOfThreads + 1,

waitingReaders := s1‘waitingReaders - 1,
threads := s1‘threads WITH

[tid := thread WITH [current := 1, status := START]]])
ENDIF

ELSE:
up(s1)

ENDCASES

5 The ‘ operator denotes record selection.

96 B. van Gastel et al.

4.3 System Invariants

Not every combination of variables will be reached during normal execution of
the program. Auxiliary variables are maintained that keep track of the total
amount of processes that are in their critical section and of the number of pro-
cesses that are waiting for a lock. We express the consistency of the values of
those variables by using a validState? predicate. This is an invariant on the
global state of all the processes and essential in proving that the algorithm is
deadlock free. We want to express in this invariant that the global state is sane
and safe. Sanity is defined as:

– The value of the waitingReaders should be equal to the total number of
processes with a status of RWAIT or RBLOCKED.

– The value of the waitingWriters should be equal to the total number of
processes with a status of WWAIT or WBLOCKED.

– The value of the numberOfThreads variable should be equal to the number
of processes with a lock count of 1 or higher.

Besides the redundant variables having sane values, we also prove that the in-
variant satisfies that any waiting process has a count of zero current readlocks,
stored in the current field of ThreadInfo. Furthermore, if a process has ob-
tained a write lock, then only that process can be in its critical section:

s: VAR System countInv(s): bool = s ‘numberOfThreads = count(s ‘threads)

waitingWritersInv(s): bool = s ‘waitingWriters = waitingWriters(s)
waitingReadersInv(s): bool = s ‘waitingReaders = waitingReaders(s)

statusInv(s): bool = ∀(tid:ThreadID):
LET thr = s ‘threads(tid) IN

thr‘status = WWAIT∨thr‘status = WBLOCKED ∨
thr‘status = RWAIT∨thr‘status = RBLOCKED ⇒ thr‘current = 0

writeLockedByInv(s) : bool = LET twlb = s ‘currentWriter IN

twlb �= NT ⇒ s ‘numberOfThreads = 1∧
s ‘threads(twlb) ‘status = START∧ s ‘threads(twlb) ‘current > 0∧
∀(tid:ThreadID): tid �= twlb ⇒ s ‘threads(tid) ‘current = 0))

validState?(s) : bool = countInv(s) ∧ waitingWritersInv(s) ∧
statusInv(s) ∧ writeLockedByInv(s) ∧ waitingReadersInv(s)

Before trying to prove the invariant with PVS, we have first tested the above
properties (except for waitingWritersInv) and waitingReadersInv) in the Up-
paal model to see if they hold in the fixed size model (see Figure 5). The proper-
ties waitingWritersInv and waitingReadersInv cannot be expressed in Uppaal
because one cannot count the number of processes residing in a specific location.
The inspection of the above properties in Uppaal enables us to detect any mis-
takes in the invariant before spending precious time on trying to prove them in
PVS.

Reentrant Readers-Writers 97

– A[]countCurrents() = numberOfThreads (Count Inv.) 6

– A[] ∀t ∈ ThreadId : Thread(t).WWait ∨ Thread(t).RWait∨
Thread(t).WBlocked ∨ Thread(t).RBlocked ⇒ current[t] = 0 (Status Inv.)

– A[]currentWriter �= NT ⇒ (writeLockedBy Inv.)
numberOfThreads = 1 ∧
¬Thread(currentWriter).writeLockEnd ⇒ current[currentWriter] > 0 ∧
∀t ∈ ThreadId : t �= currentWriter ⇒ current[t] = 0

Fig. 5. The invariants checked in Uppaal

The definition of the readlock function over the dependent type validState?
implies that automatically type checking conditions are generated. They oblige
us to prove that, if we are in a valid state, the transition to another state will yield
a state for which the invariant still holds. The proof itself is a straightforward,
albeit large (about 400 proof commands), case distinction with the help of some
auxiliary lemmas.

4.4 No Deadlock

The theorem-prover PVS does not have an innate notion of deadlock. If, however,
we consider the state-transition model as a directed graph, in which the edges are
determined by the interleave function, deadlock can be detected in this state
transition graph by identifying a state for which there are no outgoing edges.
This interpretation of deadlock can be too limited. If, for example, there is a
situation where a process alters one of the state variables in a non terminating
loop, the state-transition model will yield an infinite graph and a deadlock will
not be detected, because each state has an outgoing edge. Still, all the other
processes will not be able to make progress. To obtain a more refined notion of
deadlock, we define a well founded ordering on the system state and show that
for each state reachable from the starting state (except for the starting state
itself), there exists a transition to a smaller state according to that ordering.
The smallest element within the order is the starting state. This means that
each reachable state has a path back to the starting state and consequently it is
impossible for any process to remain in a such a loop indefinitely. Moreover, this
also covers the situation in which we would have a local deadlock (i.e. several
but not all processes are waiting for each other).

t : VAR ThreadInfo
starting? : PRED[ThreadInfo] = { t | t ‘status = START∧ t ‘current = 0}

startingState(s: (validState?)): bool =
∀(tid:ThreadID): starting?(s ‘threads(tid))

In the starting state all processes are running and there are no locks.
We create a well founded ordering by defining a state to become smaller if the

number of waiting processes decreases or alternatively, if the number of waiting
6 countCurrents determines the number of threads having a current greater than 0.

98 B. van Gastel et al.

processes remains the same and the total count of the number of processes that
have obtained a lock is decreasing. Well foundedness follows directly from the
well foundedness of the lexicographical ordering on pairs of natural numbers.

smallerState(s2 , s1 : (validState?)) : bool =
numberWaiting(s2) < numberWaiting(s1) ∨

numberWaiting(s2) = numberWaiting(s1) ∧
totalCount(s2) < totalCount(s1)

The numberWaiting function as well as the totalCount function are recursive
functions on the array with thread information yielding the number of processes
that have either a RBLOCKED, RWAIT, WBLOCKED or WWAIT status, and sum of all
current fields respectively.

Once we have established that each state transition maintains the invariant, all
we have to prove is that each transition, except for the starting state will possibly
result in a state that is smaller. This is the noDeadlock theorem. Proving this
theorem is mainly a case distinction with a couple of inductive proofs thrown
in for good measure. The induction is needed to establish that the increase and
decrease in the variables can only happen if certain preconditions are met. The
proof takes about 300 proof commands.

noDeadlock: THEOREM

∀(s1: (validState?)) : ¬startingState(s1) ⇒
∃(s2: (validState?)) : interleave(s1 , s2) ∧ smallerState(s2, s1)

5 Related and Future Work

Several studies investigated either the conversion of code to state transition mod-
els, as is done e.g. in [28] with mcrl2 or the transformation of a state transition
model specified in a model checker to a state transition model specified in a
theorem prover, as is done e.g. in [16] using VeriTech. With the tool TAME one
can specify a time automaton directly in the theorem prover PVS [3]. For the
purpose of developing consistent requirement specifications, the transformation
of specifications in Uppaal [17] to specifications in PVS has been studied in [9].

In [22] model checking and theorem proving are combined to analyze the
classic (non-reentrant) Readers/Writers problem. The authors do not start with
actual source code but with a tabular specification that can be translated
straightforwardly into SPIN and PVS. Safety and clean completion properties
are derived semi-automatically. Model checking is used to validate potential
invariants.

[13] reports on experiments in combing theorem proving with model checking
for verifying transition systems. The complexity of systems is reduced abstracting
out sources for unboundedness using theorem proving, resulting in an bounded
system suited for being model checked. One of the main difficulties is that formal
proof techniques are usually not scalable to real sized systems without an extra
effort to abstract the system manually to a suitable model.

Reentrant Readers-Writers 99

The verification framework SAL (See [25]) combines different analysis tools and
techniques for analyzing transition systems. Besides model checking and theorem
proving it provides program slicing, abstraction and invariant generation.

In [12] part of an aircraft control system is analyzed, using a theorem prover.
This experiment was previously performed on a single configuration with a model
checker. A technique called feature-based decomposition is proposed to determine
inductive invariants. It appears that this approach admits incremental exten-
sion of an initially simple base model making it better scalable than traditional
techniques.

Java Pathfinder (JPF) [29] operates directly on Java making a transformation
of source code superfluous. However, this tool works on a complete program, such
that it is much more difficult to create abstractions. The extension of JPF with
symbolic execution as discussed by [1] might be a solution to this problem.

An alternative for JPF is Bandera [7], which translates Java programs to the
input languages of SMV and SPIN. Like in JPF, it is difficult to analyse separate
pieces of code in Bandera. There is an interesting connection between Bandera
and PVS. To express that properties do not depend on specific values, Bandera
provides a dedicated language for specifying abstractions, i.e. concrete values are
automatically replaced by abstract values, thus reducing the state space. The
introduction of these abstract values may lead to prove obligations which can be
expressed and proven in PVS.

In [24] a model checking method is given which uses an extension of JML [18]
to check properties of multi-threaded Java programs.

With Zing [2] on the one hand models can be created from source code and
on the other hand executable versions of the transition relation of a model can
be generated from the model. This has been used successfully by Microsoft to
model check parts of their concurrency libraries.

Future Work

The methodology used (creating in a structured way a model close to the code,
model checking it first and proving it afterwards) proved to be very valuable.
We found a bug, improved the code, extended the capabilities of the code and
proved it correct. One can say that the model checker was used to develop
the formal model which was proven with the theorem prover. This decreased
significantly the time investment of the use of a theorem prover to enhance
reliability. However, every model was created manually. We identified several
opportunities for tool support and further research.

Model checked related to source code. Tool support could be helpful here:
not only to ’translate’ the code from the source language to the model
checker’s language. It could also be used to record the abstractions that
are made. In this case that were: basic locks → lock process model, hash
tables → arrays, threads → processes and some name changes. A tool that
recorded these abstractions, could assist in creating trusted source code from
the model checked model.

100 B. van Gastel et al.

Model checked related to model proven. It would be interesting to prove that
the model in the theorem prover is equivalent with the model checked. In-
teresting methods to do this would be using a semantic compiler, as was
done in the European Robin project [27], or employing a specially designed
formal library for models created with a model checker, like e.g. TAME [3].

Model proven related to source code. Another interesting future research op-
tion is to investigate generating code from the fully proven model. This could
be code generated from code-carrying theories [15] or it could be proof-
carrying code through the use of refinement techniques [4].

6 Concluding Remarks

We have investigated Trolltech’s widely used industrial implementation of the
reentrant readers-writers problem. Model checking revealed an error in the im-
plementation. Trolltech was informed about the bug. Recently, Trolltech released
a new version of the thread library (version 4.4) in which the error was repaired.
However, the new version of the Qt library is still only weakly reentrant, not
admitting threads that have write access to do a read lock. This limitation un-
necessarily hampers modular programming.

The improved Readers-Writers model described in this paper is deadlock free
and strongly reentrant. The model was first developed and checked for a limited
number of processes using a model checker. Then, the properties were proven
for any number of processes using a theorem prover.

Acknowledgements

We would like to thank both Erik Poll and the anonymous referees of an earlier
version of this paper for their useful comments improving the presentation of
this work.

References

1. Anand, S., Pasareanu, C.S., Visser, W.: Jpf-se: A symbolic execution extension to
java pathfinder. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 134–138. Springer, Heidelberg (2007)

2. Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: Zing: A model checker
for concurrent software. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 484–487. Springer, Heidelberg (2004)

3. Archer, M., Heitmeyer, C., Sims, S.: TAME: A PVS interface to simplify proofs
for automata models. In: User Interfaces for Theorem Provers, Eindhoven, The
Netherlands (1998)

4. Barbosa, M.A.: A refinement calculus for software components and architectures.
SIGSOFT Softw. Eng. Notes 30(5), 377–380 (2005)

5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
In: Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Com-
puter Science. Springer, Heidelberg (2004)

Reentrant Readers-Writers 101

6. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite state
concurrent systems using temporal logic specifications: A practical approach. In:
POPL, pp. 117–126 (1983)

7. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby,
Zheng, H.: Bandera: extracting finite-state models from java source code. In: Pro-
ceedings of the 2000 International Conference on Software Engineering, pp. 439–448
(2000)

8. Courtois, P.J., Heymans, F., Parnas, D.L.: Concurrent control with “readers” and
“writers”. Commun. ACM 14(10), 667–668 (1971)

9. de Groot, A.: Practical Automaton Proofs in PVS. PhD thesis, Radboud University
Nijmegen (2008)

10. Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., Lea, D.: Java Concur-
rency in Practice. Addison Wesley Professional, Reading (2006)

11. Groote, J.F., Mathijssen, A.H.J., Reniers, M.A., Usenko, Y.S., van Weerdenburg,
M.J.: The formal specification language mCRL2. In: Proc. Methods for Modelling
Software Systems, number 06351 in Dagstuhl Seminar Proceedings (2007)

12. Ha, V., Rangarajan, M., Cofer, D., Rues, H., Dutertre, B.: Feature-based decom-
position of inductive proofs applied to real-time avionics software: An experience
report. In: ICSE 2004: Proceedings of the 26th International Conference on Soft-
ware Engineering, Washington, DC, USA, pp. 304–313. IEEE Computer Society,
Los Alamitos (2004)

13. Havelund, K., Shankar, N.: Experiments in Theorem Proving and Model Checking
for Protocol Verification. In: Gaudel, M.-C., Woodcock, J.C.P. (eds.) FME 1996.
LNCS, vol. 1051, pp. 662–681. Springer, Heidelberg (1996)

14. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5), 279–295 (1997)

15. Jacobs, B., Smetsers, S., Wichers Schreur, R.: Code-carrying theories. Formal Asp.
Comput. 19(2), 191–203 (2007)

16. Katz, S.: Faithful translations among models and specifications. In: Oliveira, J.N.,
Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 419–434. Springer, Heidelberg
(2001)

17. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)

18. Leavens, G.T., Kiniry, J.R., Poll, E.: A jml tutorial: Modular specification and
verification of functional behavior for java. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, p. 37. Springer, Heidelberg (2007)

19. McMillan, K.L.: The SMV System. Carnegie Mellon University (1998-2001),
http://www.cs.cmu.edu/~modelcheck/smv.html

20. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

21. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992)

22. Pantelic, V., Jin, X.-H., Lawford, M., Parnas, D.L.: Inspection of concurrent sys-
tems: Combining tables, theorem proving and model checking. In: Arabnia, H.R.,
Reza, H. (eds.) Software Engineering Research and Practice, pp. 629–635. CSREA
Press (2006)

23. Queille, J.-P., Sifakis, J.: Specification and verification of concurrent systems in
cesar. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS,
vol. 137, pp. 337–351. Springer, Heidelberg (1982)

24. Robby, E.R., Dwyer, M.B., Hatcliff, J.: Checking jml specifications using an exten-
sible software model checking framework. STTT 8(3), 280–299 (2006)

102 B. van Gastel et al.

25. Shankar, N.: Combining theorem proving and model checking through symbolic
analysis. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 1–16.
Springer, Heidelberg (2000)

26. Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal 30(3) (March 2005)

27. Tews, H., Weber, T., Völp, M., Poll, E., van Eekelen, M., van Rossum, P.: Nova
Micro–Hypervisor Verification. Technical Report ICIS–R08012, Radboud Univer-
sity Nijmegen, Robin deliverable D13 (May 2008)

28. van Eekelen, M., ten Hoedt, S., Schreurs, R., Usenko, Y.S.: Analysis of a session-
layer protocol in mcrl2. verification of a real-life industrial implementation. In:
Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp. 182–199. Springer,
Heidelberg (2008)

29. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. 10(2), 203–232 (2003)

Using CSP||B Components:
Application to a Platoon of Vehicles�

Samuel Colin1, Arnaud Lanoix1, Olga Kouchnarenko2, and Jeanine Souquières1

1 LORIA – DEDALE Team – Nancy Université
Campus scientifique

F-54506 Vandoeuvre-Lès-Nancy, France
{firstname.lastname}@loria.fr

2 LIFC – TFC Team – University of Franche-Comté
16 route de Gray

F-25030 Besançon, France
{firstname.lastname}@lifc.univ-fcomte.fr

Abstract. This paper presents an experience report on the specification and the
validation of a real case study in the context of the industrial CRISTAL project.
The case study concerns a platoon of a new type of urban vehicles with new func-
tionalities and services. It is specified using the combination, named CSP‖B, of
two well-known formal methods, and validated using the corresponding support
tools. This large – both distributed and embedded – system typically corresponds
to a multi-level composition of components that have to cooperate. We identify
some lessons learned, showing how to develop and verify the specification and
check some properties in a compositional way using theoretical results and sup-
port tools to validate this complex system.

Keywords: formal methods, CSP||B, compositional modelling, specification,
verification, case study.

1 Introduction

This paper is dedicated to an experience report on the specification and the validation
of a real case study in the land transportation domain. It takes place in the context
of the industrial CRISTAL project which concerns the development of a new type of
urban vehicles with new functionalities and services. One of its major cornerstones is
the development, the validation and the certification of platoon of vehicles. A platoon is
a set of autonomous vehicles which have to move in a convoy – i.e. following the path
of the leader – through an intangible hooking.

Through the CRISTAL project’s collaboration, we have decided to consider each
vehicle, named Cristal in the following, as an agent of a Multi-Agent System (MAS).
The Cristal driving system perceives information about its environment before produc-
ing an instantaneous acceleration passed to its engine. In this context, we consider the

� This work has been partially supported by the French National Research Agency TACOS
project, ANR-06-SETI-017 (http://tacos.loria.fr) and by the pôle de compétitivité
Alsace/Franche-Comté CRISTAL project (http://www.projet-cristal.net).

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 103–118, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

104 S. Colin et al.

Fig. 1. A platoon of Cristals

platooning problem as a situated MAS which evolves following the Influence/Reaction
model (I/R) [1] in which agents are described separately from the environment. The
driving control concerns both a longitudinal control, i.e. maintaining an ideal distance
between each vehicle, and a lateral control, i.e. each vehicle should follow the track of
its predecessor, see Fig. 1. Both controls can be studied independently [2]. At this time,
we focus solely on the longitudinal control.

The platoon of Cristal vehicles is a mix of distributed and embedded systems. The
former are usually hard to understand and to debug as they can exhibit obscure be-
haviours. The latter require the satisfaction of safety/security/confidence requirements,
alone and when composed together. To address these problems, we reuse the CSP‖B
framework proposed by Schneider and Treharne [3] of well-established formal meth-
ods, B, an environment for the development of provably correct software [4], and CSP
(for Communicating Sequential Processes), a process algebra introduced by Hoare [5]
for modelling patterns of interactions. We motivate the use of CSP‖B by the existence
of pure B models describing the agents and vehicles behaviours [6]. By using CSP for
coordinating B machines, we aim at giving these B models the architectural, composi-
tional description they lack.

Our approach can be described as a mix between a “bottom-up” and a component-
based development. On the one hand, B machines are seen as the smallest abstract
components representing various parts of a Cristal vehicle. On the other hand, CSP is
used to put these components together, to describe higher-level compounds such as a
vehicle or a whole convoy and to make them communicate.

Our first experience with the CSP‖B platoon model is presented in a short paper [7].
Here the description of the case study involves detailing two architectural levels. We
first consider a single Cristal, then we show how to reuse it to constitute a platoon.
Later on we make the model evolve by replacing one component with several others to
separate functionalities and refine them1. This can be achieved for instance by adapters
to connect these new components within the initial architecture [8]. We follow a similar
approach, only CSP-oriented. Moreover we use previous theoretical results on CSP‖B
in an unintended way in this context.

On both the model description and its evolution, we illustrate the relevance of
CSP‖B for eliminating errors and ambiguities in an assembly and its communication

1 CSP‖B specifications discussed in this paper are available at
http://tacos.loria.fr/platoon-fmics08.zip

Using CSP||B Components: Application to a Platoon of Vehicles 105

protocols. We are convinced that writing formal specifications can aid in the process of
designing autonomous vehicles.

This paper is organised as follows. Section 2 briefly introduces the basic concepts
and existing tools on CSP‖B. Section 3 presents the specification and the verification
process of a single Cristal vehicle whereas Sect. 4 is dedicated to a platoon of vehicles.
Section 5 details a vehicle introducing new components, the engine and the location
ones. Section 6 presents related works, and Sect. 7 ends with lessons learned from this
industrial experience and some perspectives of this development.

2 Basic concepts and Tools on CSP‖B
The B machines specifying components are open modules which interact by the au-
thorised operation invocations. CSP describes processes, i.e. objects or entities which
exist independently, but may communicate with each other. When combining CSP and
B to develop distributed and concurrent systems, CSP is used to describe execution
orders for invoking the B machines operations and communications between the CSP
processes.

2.1 B Machines

B is a formal software development method used to model and reason about systems [4].
The B method has proved its strength in industry with the development of complex
real-life applications such as the Roissy VAL [9]. The principle behind building a B
model is the expression of system properties which are always true after each evolution
step of the model. The verification of a model correctness is thus akin to verifying the
preservation of these properties, no matter which step of evolution the system takes.

The B method is based on first-order logic, set theory and relations. Properties are
specified in the INVARIANT clause of the model, and its evolution is specified by the
operations in the OPERATIONS clause (see Fig. 3 for an example). The verification of
a B model consists in verifying that each operation – assuming its precondition and the
invariant hold – satisfies the INVARIANT, i.e. the model is consistent.

Support tools such as B4free (http://www.b4free.com) or AtelierB
(http://www.atelierb.eu) automatically generate Proof Obligations (POs) to
ensure the consistency. In our case study in Sect. 3 we use the B4free proof tool for
ensuring this consistency: this tool generates so-called “obvious” POs automatically
discharged and normal POs which have to be proved interactively if it was not done
automatically.

A strength of the B method is its stepwise refinement feature: the REFINEMENT of
a model makes it less indeterministic and more precise with the introduction of more
programming language-like features. Refinement can be done until the code of the op-
erations can actually be implemented in a programming language. The consistency of
a refinement must also be checked, this time by ensuring that the newly introduced
behaviour and/or data do not contradict the model they refine.

106 S. Colin et al.

2.2 Communicating Sequential Processes (CSP)

CSP allows the description of entities, called processes, which exist independently but
may communicate with each other. Thanks to dedicated operators it is possible to de-
scribe a set of processes as a single process, making CSP an ideal formalism for build-
ing a hierarchical composition of components. CSP is supported by the FDR2 model
checker (http://www.fsel.com). This tool is based on the generation of all the possi-
ble states of a model and the verification of these states against a desired property. We
used it for our case study in Sect. 3 and 4.

The denotational semantics of CSP is based on the observation of process be-
haviours. Three kinds of behaviours [10] are observed and well suited for the expression
of properties:

– traces, i.e. finite sequences of events, for safety properties;
– stable failures, i.e. traces augmented with a set of unperformable events at the end

thereof, for liveness properties and deadlock-freedom;
– failures/divergences, i.e. stable failures augmented with traces ending in an infinite

loop of internal events, for livelock-freedom.

Each semantics is associated with a notion of process refinement denoted:

– �T for traces refinement. This refinement is based on the equality of execution
traces.

– �SF for stable failures refinement. It is based on traces equality and failures equal-
ity, i.e. traces ending in a deadlock must be the same in the abstract process and its
refinement.

– �FD for failures/divergences refinement. It is based on traces, failures and diver-
gences equality, i.e. traces ending in an infinite loop must also be equal in the ab-
stract process and its refinement. It is the strongest form of refinement.

2.3 CSP‖B Components

In this section, we sum up the works by Schneider and Treharne on CSP‖B. The reader
interested in theoretical results is referred to [3,11,12]; for case studies, see for exam-
ple [13,14].

Specifying CSP controllers. In CSP‖B, the B part is specified as a standard B machine
without any restriction, while a controller for a B machine is a particular kind of CSP
process, called a CSP controller, defined by the following (subset of the) CSP grammar:

P ::= c ? x ! v → P | ope ! v ? x → P | b & P
| P1 � P2 | if b then P1 else P2 | S(p)

The process c ? x ! v → P can accept input x and output v along a communication
channel c. Having accepted x, it behaves as P.

A controller makes use of machine channels which provide the means for controllers
to synchronise with the B machine. For each operation x ← ope(v) of a controlled ma-
chine, there is a channel ope ! v ? x in the controller corresponding to the operation

Using CSP||B Components: Application to a Platoon of Vehicles 107

call: the output value v from the CSP description corresponds to the input parameter
of the B operation, and the input value x corresponds to the output of the operation. A
controlled B machine can only communicate on the machine channels of its controller.

The behaviour of a guarded process b & P depends on the evaluation of the boolean
condition b: if it is true, it behaves as P, otherwise it is unable to perform any events.
In some works (e.g. [3]), the notion of blocking assertion is defined by using a guarded
process on the inputs of a channel to restrict these inputs: c ? x & E(x) → P.

The external choice P1 � P2 is initially prepared to behave either as P1 or as P2,
with the choice made on the occurrence of the first event. The conditional choice
if b then P1 else P2 behaves as P1 or P2 depending on b. Finally, S(p) expresses a
recursive call.

Assembling CSP‖B components. In addition to the expression of simple processes,
CSP provides operators to combine them. The sharing operator P1 ‖E P2 executes P1
and P2 concurrently, requiring that P1 and P2 synchronise on the events into the sharing
alphabet E and allowing independent executions for other events. When combining a
CSP controller P and a B machine M associated with P, the sharing alphabet can be
dropped ((P ‖α(M) M) ≡ P ‖ M) as there is no ambiguity.

We also consider an indexed form of the sharing operator ‖i
Ei

P(i) which executes
the processes P(i) in a sharing manner. It is used to build up a collection of similar
controlled machines which exchange together.

Verifying CSP‖B components. The verification process to ensure the consistency of
a controlled machine (P‖M) in CSP‖B consists in verifying the following conditions:

1. the M machine consistency is checked using the B4Free proof tool;
2. the P controller deadlock-freedom in the stable-failures model is checked with the

FDR2 model-checking tool;
3. the P controller divergence-freedom is checked with FDR2;
4. the divergence-freedom of (P‖M) can be deduced by using a technique based on

Control Loop Invariants (CLI):

– P is translated into a B machine BBODYP using the rewriting rules of [11];
– a CLI is added to BBODYP;
– the BBODYP machine consistency checking is performed with B4Free;
– by way of [12, Theorem 1], we deduce the divergence-freedom of (P‖M);

5. by way of [3, Theorem 5.9] and the fact that P is deadlock-free, we deduce the
deadlock-freedom of (P‖M) in the stable failures model.

This verification process can be generalised to achieve the consistency checking of a
collection of controlled machines ‖i

Ei
(Pi ‖Mi):

1. we check the divergence-freedom of each (Pi ‖Mi) as previously;
2. by way of [3, Theorem 8.1], we deduce the divergence-freedom of ‖i

Ei
(Pi‖Mi);

3. we check the deadlock-freedom of ‖i
Ei

(Pi) with FDR2;
4. by way of [3, Theorem 8.6], we deduce the deadlock-freedom of ‖i

Ei
(Pi ‖Mi).

108 S. Colin et al.

Fig. 2. Architectural view of a Cristal

MODEL Vehicle
VARIABLES

speed, xpos
OPERATIONS

speed0← getSpeed = BEGIN speed0 := speed END ;
xpos0← getXpos = BEGIN xpos0 := xpos END ;
setAccel(accel) =
PRE accel ∈ MIN_ACCEL..MAX_ACCEL
THEN

ANY new_speed
WHERE new_speed = speed + accel
THEN

IF (new_speed > MAX_SPEED)
THEN

xpos := xpos + MAX_SPEED ‖ speed := MAX_SPEED
ELSE

IF (new_speed < 0)
THEN

xpos := xpos − (speed × speed) / (2 × accel)
‖ speed := 0

ELSE
xpos := xpos + speed + accel / 2 ‖ speed := new_speed

END
END

END
END

END

Fig. 3. The Vehicle B model

REFINEMENT CtrlVehicle_ref
VARIABLES

xpos_csp, speed_csp, cb
INVARIANT

xpos_csp ∈ Positions_csp
∧ speed_csp ∈ Speeds_csp
∧ cb = 0
OPERATIONS
CtrlVehicle =

BEGIN
CHOICE

BEGIN
xpos_csp← getXpos ;
speed_csp← getSpeed ;
ANY accel_csp WHERE

accel_csp ∈ Accels_csp
THEN

setAccel(accel_csp); cb := 0
END

END
OR

BEGIN
speed_csp← getSpeed ;
xpos_csp← getXpos;
ANY accel_csp WHERE

accel_csp ∈ Accels_csp
THEN

setAccel(accel_csp); cb := 0
END

END
END

END
END

Fig. 4. B rewriting of
CtrlVehicle

CtrlVehicle =
(getXpos ? xpos→ getSpeed ? speed→ vehicleInfo ! xpos ! speed→

vehicleAccel ? accel → setAccel ! accel → CtrlVehicle)
�
(getSpeed ? speed→ getXpos ? xpos→ vehicleInfo ! xpos ! speed→

vehicleAccel ? accel → setAccel ! accel → CtrlVehicle)

Fig. 5. The CtrlVehicle CSP controller

Using CSP||B Components: Application to a Platoon of Vehicles 109

3 Specifying a Single Cristal

As depicted in Fig. 2, in a first approximation, a Cristal vehicle is composed of two
parts: the vehicle and its driving system which controls the vehicle. Each part is itself
built upon a B machine controlled by an associated CSP process.

3.1 The Vehicle

Specifying the vehicle. The vehicle is a behavioural component reacting to a given
acceleration for speeding up or slowing down. It is built upon a Vehicle B ma-
chine that describes its inner workings, i.e. its knowledge of speed and location as
well as how it updates them w.r.t. a given acceleration, as illustrated in Fig. 3. The
speed← getSpeed() and xpos ← getXpos() methods capture data from the vehicle.
The setAccel(accel) method models how the vehicle behaves when passed on a new
instantaneous acceleration.

The B machine is made able to communicate by adding a CSP controller, CtrlVehicle,
depicted in Fig. 5. It schedules the calls to its various methods. The speed and the lo-
cation are passed on to the controller through getSpeed ? speed and getXpos ? xpos
channels corresponding to invocations of the homonymous methods of the B machine to
retrieve the speed and the location of the vehicle. Then, information about speed and lo-
cation is sent to requesting components through vehicleInfo ! xpos ! speed. Similarly,
the controller receives new instantaneous acceleration orders through vehicleAccel ?
accel and passes them on through setAccel ! accel to the B machine.

The whole vehicle component with communication facilities is then defined as a
parallel composition of the Vehicle machine and its CtrlVehicle controller.

Verifying the vehicle. We follow the verification process given Sect. 2.3 to ensure the
consistency of (CtrlVehicle ‖Vehicle):

– the Vehicle B machine consistency is successfully checked using B4Free (11 obvi-
ous POs + 10 normal POs, 2 of them have been proved interactively)

– the CtrlVehicle controller deadlock-freedom and its divergence-freedom are suc-
cessfully checked with FDR2 (6 states and 7 and transitions2 have to be checked);

– Figure 4 illustrates the B rewriting of CtrlVehicle. Its CLI is actually as simple
as the
 predicate modulo the typing predicates. This rewriting is shown consis-
tent with B4Free (11 obvious POs + 7 normal POs), then (CtrlVehicle ‖Vehicle) is
divergence-free;

– we automatically deduce the deadlock-freedom of (CtrlVehicle ‖Vehicle).

3.2 The Driving System

Specifying the driving system. The driving system (CtrlDrivingSystem(mode)‖Driving
System) is built up in a similar way. A DrivingSystem B machine models the decision
system: it updates its perceptions and decides for an acceleration passed on to the phys-
ical vehicle later on.

2 Verifications with FDR2 took place on a Macbook Core 2 Duo 2GHz with 1 GB of RAM.

110 S. Colin et al.

DrivingSys_percept(mode) =
((mode == SOLO) &
vehicleInfo ? myXpos ? mySpeed→ hciSpeed ! mySpeed→ DrivingSys_act(mode))
�
((mode == LEADER) &
vehicleInfo ? myXpos ? mySpeed→ hciSpeed ! mySpeed → comOut ! mySpeed ! myXpos→
DrivingSys_act(mode))
�
((mode == FOLLOWER) &
vehicleInfo ? myXpos ? mySpeed→ comIn ? preSpeed ? preXpos→ hciSpeed ! mySpeed→
setPerceptions! myXpos ! mySpeed ! preXpos ! preSpeed→ comOut ! mySpeed ! myXpos→
DrivingSys_act(mode))
�
((mode == LAST) &
vehicleInfo ? myXpos ? mySpeed→ comIn ? preSpeed ? preXpos→ hciSpeed ! mySpeed→
setPerceptions! myXpos ! mySpeed ! preXpos ! preSpeed→ DrivingSys_act(mode))

DrivingSys_act(mode) =
((mode == SOLO) ∨ (mode == LEADER) &
hciAccel ? accel → vehicleAccel ! accel → DrivingSys_percept(mode))
�

((mode == FOLLOWER) ∨ (mode == LAST) &
getInfluences ? accel → vehicleAccel ! accel → DrivingSys_percept(mode))

CtrlDrivingSystem(mode) = DrivingSys_percept(mode)

Fig. 6. The CtrlDrivingSystem(mode) CSP Controller

Communications are managed by a CtrlDrivingSystem CSP controller shown Fig. 6.
It has four running modes corresponding to different uses of a Cristal: SOLO, LEADER
of a platoon of Cristals, FOLLOWER of another Cristal into a platoon, and LAST vehicle
of a platoon.

In the SOLO mode, the controller requests Cristal speed from the vehicle via vehicle
Info ? myXpos ? mySpeed so as to make the HCI displays it (hciSpeed ! mySpeed). It
also receives an acceleration from the human driver passed on through hciAccel ? accel
and sends this desired acceleration to the vehicle through vehicleAccel ! accel.

The LEADER mode is very similar to the SOLO mode. The only difference consists
in additional sending of the Cristal information to the following Cristal via comOut !
mySpeed ! myXpos.

The FOLLOWER mode uses the DrivingSystem B machine: information required by
the machine to compute an accurate speed are obtained from the vehicle (vehicleInfo ?
myXpos ? mySpeed) and from the leading Cristal (comIn ? preSpeed ? preXpos). Once
data are obtained, they are passed on to the B machine through the setPerceptions()
method and sent to the following Cristal via comOut ! mySpeed ! myXpos. Otherwise,
the acceleration is obtained by a call to the getInfluences() method, and the result is
passed on to the vehicle via vehicleAccel ! accel.

The LAST mode is very similar to the FOLLOWER mode. The only difference is that
the last vehicle does not send its data to another one.

Verifying the driving system. Using the verification process given Sect. 2.3, the
CtrlDrivingSystem(mode)‖DrivingSystem driving system is shown divergence-free and
deadlock-free:

Using CSP||B Components: Application to a Platoon of Vehicles 111

– the DrivingSystem B machine is consistent (24 obvious POs + 1 normal PO);
– for each mode, the CtrlDrivingSystem(mode) CSP controller is deadlock-free and

divergence-free (4-4 states-transitions for the SOLO mode, 5-5 for the LEADER
mode, 7-7 for the FOLLOWER mode and 6-6 for the LAST mode);

– the B rewriting of CtrlDrivingSystem(mode) is consistent (23 obvious POs + 30
normal POs with 2 POs proved interactively).

3.3 The Cristal(mode) Assembly

Specifying the assembly. As illustrated Fig. 2, a Cristal is defined as the parallel com-
position of a vehicle and its associated driving system, expressed in CSP by:

Cristal(mode) =(CtrlVehicle ‖ Vehicle)
�

{∣∣∣ vehicleInfo,
vehicleAccel

∣∣∣
}
(CtrlDrivingSystem(mode) ‖ DrivingSystem)

Verifying the assembly. Cristal (mode) is shown consistent following the verification
process given in Sect. 2.3:

– (CtrlVehicle ‖Vehicle) and (CtrlDrivingSystem(mode)‖DrivingSystem) are di-
vergence-free, hence Cristal (mode) is also divergence-free;

– Cristal (mode) is deadlock-free as a consequence of the deadlock-freedom of
(CtrlVehicle ‖CtrlDrivingSystem(mode)) checked with FDR2 (8-9 states-transitions
for the SOLO mode, 9-10 for LEADER, 11-12 for FOLLOWER, 10-11 for LAST).

Checking a safety property. A safety property we are interested in, states that per-
ception and reaction should alternate while the Cristal runs, i.e. the data are always
updated (vehicleInfo) before applying an instantaneous acceleration to the vehicle
(vehicleAccel). This property is captured by the following CSP process:

Property = vehicleInfo ? xpos ? speed→ vehicleAccel ? accel→ Property

We need to show that the Cristal meets this property. For that, we first successfully
check with FDR2 that there is a trace refinement between the CSP part of Cristal (mode)
and Property, i.e. Property �T CtrlVehicle ‖CtrlDrivingSystem(mode). Then, by apply-
ing [3, Corollary 7.2], we obtain that Property �T Cristal (mode), i.e. the property is
satisfied by the Cristal (mode). The verification with FDR2 involved the same figures
for states-transitions as for the assembly verification above.

4 Specifying a Platoon of Cristals

Once we dispose of a correct model for a single Cristal (mode), we can focus on the spec-
ification of a platoon as presented Fig.7. We want the various Cristals to avoid going stale
when they move in a platoon. This might happen because a Cristal waits for information
from its leading one, i.e. we do not want the communications in the convoy to deadlock.

112 S. Colin et al.

Fig. 7. A Platoon of four Cristals

Cristal_p(pos,max) =
if (pos == 1)
then (Cristal (LEADER) [[comOut← com.pos]])
else if (pos == max)

then (Cristal (LAST) [[comIn← com.(pos−1)]])
else (Cristal (FOLLOWER) [[comIn← com.(pos−1), comOut← com.pos]])

Fig. 8. Cristal_p(pos,max)

Specifying the assembly. From the CSP||B specification of a generic Cristal (mode)
given in the previous section, we first define a Cristal occupying the position pos into
a platoon of max vehicles, as presented Fig. 8: if the Cristal is at the first position,
it runs on the LEADER mode, if it is at the last position, it runs on the LAST mode,
otherwise, it runs on the FOLLOWER mode. The communication channels are renamed
by com.pos/com.pos−1, so that the comOut channel of one Cristal matches with the
comIn channel of the following Cristal.

A platoon of max Cristals is defined as an assembly of max Cristal_p(pos,max) syn-
chronised on {| com.pos|}, as illustrated Fig. 7 for four vehicles:

Platoon(max) =

pos∈{1..max}�

{|com.pos|}

(Cristal_p(pos,max))

Table 1. Checks of the CSP
parts of Platoon(max)

states transitions time
Platoon(2) 45 95 0
Platoon(3) 225 700 0
Platoon(4) 1,125 4,625 0
Platoon(5) 5,625 28,750 0
Platoon(6) 28,125 171,875 0
Platoon(7) 140,625 1,000,000 2s
Platoon(8) 703,125 5,703,125 14s
Platoon(9) 3,515,625 32,031,250 1m27s
Platoon(10) 17,578,125 177,734,375 8m09s
Platoon(11) 87,890,625 976,562,500 3h01m56s

Verifying the assembly. To check the consistency
of Platoon(max), we follow the verification process
presented in Sect. 2.3. Since each Cristal is proved
divergence-free, Platoon(max) is divergence-free.

We have to consider the parallel composition of the
CSP parts of all the Cristals. Table 1 shows results for the
considered number of vehicles into the checked platoon.
The verification becomes more time-consuming starting
from about 11 vehicles. However, starting from four ve-
hicles, the number of vehicles does not change the com-
munication modes because it is all what we need to check
all kinds of intercommunications: between a leader and a
follower, between two following vehicles and between a follower and the last vehicles.

FDR2 checks that this assembly is deadlock-free, hence Platoon(max) is deadlock-
free. Consequently, this verification process validates the safety property introduced at
the beginning of Sect. 4 saying that the communications, expressed through renaming,
should not deadlock.

Using CSP||B Components: Application to a Platoon of Vehicles 113

Fig. 9. The Vehicle2 component

MODEL Location(er)
OPERATIONS
p_xpos← xposSensor(xpos) =
PRE xpos ∈ N

THEN
ANY xx WHERE xx ∈ N

∧ xpos − xpos × er / 100 ≤ xx
∧ xx ≤ xpos + xpos × er / 100

THEN
p_xpos := xx

END
END

END

Fig. 10. The Location B
model

5 Detailing (CtrlVehicle(mode)‖Vehicle)

The definition of the vehicle part presented in Sect. 3.1 is very general. In order to detail
information about the vehicle engine and its location, reflecting separation of concerns
inside the (CtrlVehicle (mode)‖Vehicle) component, we make the model presented in
Fig. 2 evolve. This evolution introduces new components as illustrated in Fig. 9. They
correspond to the following design choices:

1. Now the Vehicle B machine represents the “real” physical vehicle.
2. For compatibility purpose with the rest of the system, the CtrlVehicle is preserved

without any modifications.
3. Two new B components are added, modelling two sensors and an actuator, intro-

ducing a loss of precision to represent the sensor and actuator effects:
– The B Location machine show Fig. 10 represents an abstract location system

able to determine the geographic location of the physical vehicle. It perceives
the “real” location and returns an approximated value through
p_xpos← xposSensor(xpos) (with an error of er%). It might be implemented
later on by a GPS system, for instance.

– The B Engine machine is introduced to model a speed sensor on the phys-
ical vehicle and an acceleration actuator. It senses the “real” speed, returns
an approximated value through p_speed← speedSensor(speed) and applies a
decided acceleration order through accel ← accelActuator(d_accel).

4. Three new CSP controllers must be introduced to control the new B machines and
to manage communications, i.e. perceptions on the physical world and exchanges
between the machines.

5.1 Three New CSP controllers

Specifying CtrlPhysical. This controller manages the perceptions on the real vehicle.
It calls the speed← getSpeed() and xpos← getXpos() B methods – to accurate the
“real” speed and xpos – and sends these data on phyXpos ! xpos and phySpeed ! speed.

114 S. Colin et al.

It receives a decided acceleration through phyAccel ? accel, then it calls the method
setAccel(accel) .

CtrlPhysical =
(getSpeed ? speed→ phySpeed ! speed→ getXpos ? xpos→

phyXpos ! xpos → phyAccel ? accel→ setAccel ! accel→ CtrlPhysical)
�
(getXpos ? xpos→ phyXpos ! xpos→ getSpeed ? speed→

phySpeed ! speed → phyAccel ? accel→ setAccel ! accel→ CtrlPhysical)

Specifying CtrlLocation. This controller manages the B Location machine. It per-
ceives the “real” location on phyXpos ? xpos and calls p_xpos← xposSensor(xpos)
to pass them on to the Location component. It sends the perceived location through
xposOut ! p_xpos.

CtrlLocation =
phyXpos ? xpos→ xposSensor ! xpos ? p_xpos→ xposOut ! p_xpos→ phyAck→ phyAck→ CtrlLocation

Specifying CtrlEngine. This controller is in charge of the Engine B machine, i.e. the
speed sensor and the acceleration actuator. A speed perception consists in receiving the
“real” speed on phySpeed, passing it on to the B machine by calling the p_speed←
speedSensor(speed) method, and sending the perceived speed through speedOut !
p_speed. An acceleration setting consists in receiving the decided acceleration on
accelIn ? d_accel, passing them on to Engine by calling accel ← accelActuator(d_ac-
cel) and sending it to the real vehicle through phyAccel ! accel.

CtrlEngine =
phySpeed ? speed→ speedSensor ! speed ? p_speed→ speedOut ! p_speed→ phyAck→
accelIn ? d_accel→ accelActuator ! d_accel ? accel → phyAccel ! accel→ phyAck→ CtrlEngine

In our first model, speed and location perceptions are done before acceleration is
applied. Now, with the separation of concerns introduced by the two components Lo-
cation and Engine, it would be possible for location perception to be realised after an
acceleration setting, for instance. In order to ensure this, CtrlEngine and CtrlLocation
are synchronised through phyAck.

Verifying the new components. We successfully establish the consistency of (CtrlPhy
sical ‖Vehicle), (CtrlEngine‖Engine) and (CtrlLocation ‖ Location) using B4Free and
FDR2 by following the verification process presented in Sect. 2.3.

5.2 The Vehicle2 Assembly

Vehicle2 is defined as an assembly of the previously detailed components, synchronised
on their common channels:

Vehicle2 =

⎛
⎜⎜⎜⎝

�
{∣∣∣∣

phyAccel,
phySpeed,
phyXpos

∣∣∣∣
}

⎛
⎝(CtrlEngine ‖ Engine)

�

{|phyAck|}

(CtrlLocation ‖ Location)

⎞
⎠

(
CtrlPhysical

�
Vehicle

)

⎞
⎟⎟⎟⎠
[[

accelIn← setAccel,
xposOut← getXpos,
speedOut← getSpeed

]]

Some channels have to be renamed to match those of the CtrlVehicle controller.

Using CSP||B Components: Application to a Platoon of Vehicles 115

Verifying that Vehicle2 refines Vehicle. The goal of the Vehicle component evolution
is to retain the initial architecture, i.e. we want to replace Vehicle into Cristal (mode) by
Vehicle2 and prove that the already established properties are still valid, among which:

– the deadlock-freedom of the whole vehicle (Sect. 3.1);
– the fact that perceptions and actions alternate (Sect. 3.3);
– the deadlock-freedom of the whole convoy (Sect. 4).

Hence Vehicle2 must externally show the same traces as Vehicle and should not in-
troduce new deadlocks. Proving that Vehicle2 refines Vehicle in the stable failures
semantics suffices for ensuring that. Indeed, the stable failures refinement preserves
safety properties (because it implies trace refinement), liveness properties and deadlock-
freedom [10].

We unfortunately face a problem. Vehicle is a B model and Vehicle2 is an assembly of
CSP controllers and B machines: there is no manner to check this kind of refinement. To
solve this problem, our proposal consists in lifting the refinement checking to an upper
level, where refinement is well-defined. In a nutshell, we thus have to prove that the
(CtrlVehicle ‖Vehicle) component is refined by the (CtrlVehicle ‖Vehicle2) component
in the stable failures model which is denoted by:

(CtrlVehicle||Vehicle)\α(Vehicle)�SF (CtrlVehicle||Vehicle2)\α(Vehicle)

where α(Vehicle) ≡ {|getXpos,getSpeed,setAccel|}.
PROOF:
ASSUME:

CtrlVehicle2 =

⎛
⎜⎜⎜⎜⎜⎝

�
⎧⎨
⎩

∣∣∣∣∣∣
phyAccel,
phySpeed,
phyXpos

∣∣∣∣∣∣

⎫⎬
⎭

⎛
⎝CtrlEngine

�

{|phyAck|}

CtrlLocation

⎞
⎠

CtrlPhysical

⎞
⎟⎟⎟⎟⎟⎠

[[
accelIn← setAccel,
xposOut← getXpos,
speedOut← getSpeed

]]

(CtrlVehicle2 is the CSP part of Vehicle2)
1. (CtrlVehicle ‖Vehicle) \ α(Vehicle) �SF (CtrlVehicle‖CtrlVehicle2)\ α(Vehicle)
PROOF:

1.1. CtrlVehicle \ α(Vehicle) �SF (CtrlVehicle‖CtrlVehicle2) \ α(Vehicle)
(verification carried out by FDR2 – 6 states and 7 transitions)

1.2. (CtrlVehicle ‖Vehicle) \ α(Vehicle) �SF CtrlVehicle \ α(Vehicle)
PROOF:

1.2.1. traces(((CtrlVehicle ‖Vehicle) \ α(Vehicle) = traces(CtrlVehicle \ α(Vehicle))
(definition of traces, hiding of internal channels)

1.2.2. failures((CtrlVehicle ‖Vehicle) \ α(Vehicle)) = failures(CtrlVehicle \ α(Vehicle)) = /0
(deadlock-freedom verified by FDR2 – 32 states and 48 transitions, [3, theorem 5.9])

1.2.3. (CtrlVehicle ‖Vehicle) \ α(Vehicle) �SF CtrlVehicle \ α(Vehicle)
(1.2.1, 1.2.2, definition of �SF)

1.3. (CtrlVehicle ‖Vehicle) \ α(Vehicle) �SF (CtrlVehicle‖CtrlVehicle2)\ α(Vehicle)
(1.1, 1.2, transitivity of �SF)

2. (CtrlVehicle ‖CtrlVehicle2) \ α(Vehicle) �SF (CtrlVehicle‖Vehicle2) \ α(Vehicle)
PROOF:

2.1. CtrlVehicle2 \ α(Vehicle) �SF Vehicle2 \ α(Vehicle)
([3, corollary 8.7] applied to controllers of Vehicle2)

2.2. (CtrlVehicle ‖CtrlVehicle2) \ α(Vehicle) �SF (CtrlVehicle‖Vehicle2) \ α(Vehicle)
(2.1, monotonicity of �SF w.r.t. ‖ and hiding)

3. (CtrlVehicle ‖Vehicle) \ α(Vehicle) �SF (CtrlVehicle‖Vehicle2) \ α(Vehicle)
(1, 2, transitivity of �SF)

116 S. Colin et al.

As (CtrlVehicle ‖Vehicle) \ α(Vehicle) �SF (CtrlVehicle‖Vehicle2) \ α(Vehicle) is
true, all the properties we wanted to preserve from Vehicle to Vehicle2 are still true:
the deadlock-freedom of a vehicle, the deadlock-freedom of the whole convoy as well
as the alternation of perceptions and actions. In conclusion, we can replace Vehicle by
Vehicle2 without having to check the properties again.

6 Related Works

In addition to works on CSP‖B mentioned in Sect. 2, we would like to cite [15], where
the authors present a formal framework for verifying distributed embedded systems.
An embedded system is described as a set of concurrent real time functions which
communicate through a network of interconnected switches involving messages queues
and routing services. It presents an abstraction-based verification method which consists
in abstracting the communication network by end-to-end timed channels. Proving a
given safety property “requires then (1) to prove a set of proof obligations ensuring the
correctness of the abstraction step (i.e. the end-to-end channels correctly abstract the
network), and (2) to prove [this property] at the abstract level”. The expected advantage
of such a method lies on the ability to overcome the combinatorial explosion frequently
met when verifying complex systems. This method is illustrated by an avionic case
study.

As a comparison point, in [3] Schneider & Treharne illustrate their use of CSP‖B
with a multi-lift system that can be seen as a distributed system using several instances
of a lift, minus the fact that the interactions of the lifts are actually centralised in a
dedicated dispatcher. Our goal is very similar, but in contrast to [3], we want to avoid
relying on a centralised, or orchestrating, controller.

Similar works exist on structured development with the B method using decompo-
sition, hence in a more “top-down” approach, and refinement. For instance, Bontron
& Potet [16] propose a methodology for extracting components out of the enrichments
brought by refinement. The extracted components can then be handled to reason about
them so as to validate new properties or to detail them more. The interesting point is
that their approach stays within the B method framework: this means that the mod-
elling of component communication and its properties has to be done by using the B
notation, which can quickly get more cumbersome than an ad-hoc formalism like CSP.
Abrial [17] introduces the notion of decomposition of an event system: components are
obtained by splitting the specification in the chain of refinements into several specifi-
cations expressing different views or concerns about the model. Attiogbé [18] presents
an approach dual to the one of Abrial: event systems can be composed with a new
asynchronous parallel composition operator, which corresponds to bringing “bottom-
up” construction to event systems. In [19], Bellegarde & al. [19] propose a “bottom-up”
approach based on synchronisation conditions expressed on the guards of the events.
The spirit of the resulting formalism is close to that of CSP‖B. Unfortunately, it does
not seem to support message passing for communication modelling.

As stated in the introduction, this paper is an evolution of [7]. More precisely, in ad-
dition to a more detailed explanation of the specification process we followed with our
model, we exploited the renamings of channels so as to give a fitter way for instanciating

Using CSP||B Components: Application to a Platoon of Vehicles 117

and assembling several Cristals. We also illustrated a novel use of CSP‖B theoretical
results: Indeed, theorems about refinement or equivalences of CSP‖B components are
usually used for easing verification by allowing one to re-express a CSP controller into
a simpler one. We used these results to show how to insert new behaviours by splitting
up a controller/machine compound without breaking previously verified properties.

7 Conclusion

With the development of a real case study, a platoon of a new type of urban vehicles
in the context of the industrial CRISTAL project, we address the importance of for-
mal methods and their utility for highly practical applications. Our contribution mainly
concerns methodological aspects for applying known results and tool supports (FDR2
and B4Free). We show how to use the CSP‖B framework to compositionally validate
the specifications and prove properties of component-based systems, with a precise
verification process to ensure the consistency of a controlled machine (P‖M) and its
generalisation to a collection of controlled machines ‖i

Ei
(Pi ‖Mi).

These formal specifications form another contribution of this work. Indeed, having
formal CSP‖B specifications help – by establishing refinement relations – to prevent in-
compatibility among various implementations. Moreover, writing formal specifications
help in designing a way to manage the multi-level assembly.

This work points out the main drawback of the CSP‖B approach: at the interface
between the both models, CLIs and augmented B machines corresponding to CSP con-
trollers are not automatically generated. However, this task requires a high expertise
level. In our opinion, the user should be able to conduct all the verification steps auto-
matically. Automation of these verification steps could be a direction for future work.

On the case-study side, to go further, we are currently studying new properties such
as the non-collision, the non-unhooking and the non-oscillation: which ones are ex-
pressible with CSP‖B, which ones are tractable and verifiable? This particular perspec-
tive is related to a similar work by the authors of CSP‖B dealing with another kind of
multi-agent system in [14]. So far our use of CSP‖B for the platooning model reaches
similar conclusions. This nonetheless raises the question of which impact the expression
of more complex emerging properties does have on the model.

Further model development requires checking other refinement relations. It also in-
cludes evolutions in order to study what happens when a Cristal joins or leaves the
platoon, and which communication protocols must be obeyed to do so in a safe man-
ner. We also plan to take into account the lateral control and/or perturbations such as
pedestrians or other vehicles.

References

1. Ferber, J., Muller, J.P.: Influences and reaction: a model of situated multiagent systems. In:
2nd Int. Conf. on Multi-agent Systems, pp. 72–79 (1996)

2. Daviet, P., Parent, M.: Longitudinal and lateral servoing of vehicles in a platoon. In: Proceed-
ing of the IEEE Intelligent Vehicles Symposium, pp. 41–46 (1996)

3. Schneider, S.A., Treharne, H.E.: CSP theorems for communicating B machines. In: Formal
Aspects of Computing, Special issue of IFM 2004 (2005)

118 S. Colin et al.

4. Abrial, J.R.: The B Book. Cambridge University Press, Cambridge (1996)
5. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs

(1985)
6. Simonin, O., Lanoix, A., Colin, S., Scheuer, A., Charpillet, F.: Generic Expression in B of the

Influence/Reaction Model: Specifying and Verifying Situated Multi-Agent Systems. INRIA
Research Report 6304, INRIA (2007)

7. Colin, S., Lanoix, A., Kouchnarenko, O., Souquières, J.: Towards Validating a Platoon of
Cristal Vehicles using CSP||B. In: Meseguer, J., Roşu, G. (eds.) AMAST 2008. LNCS,
vol. 5140, pp. 139–144. Springer, Heidelberg (2008)

8. Lanoix, A., Hatebur, D., Heisel, M., Souquières, J.: Enhancing dependability of component-
based systems. In: Abdennahder, N., Kordon, F. (eds.) Ada-Europe 2007. LNCS, vol. 4498,
pp. 41–54. Springer, Heidelberg (2007)

9. Badeau, F., Amelot, A.: Using B as a high level programming language in an industrial
project: Roissy VAL. In: Treharne, H., King, S., Henson, M.C., Schneider, S. (eds.) ZB 2005.
LNCS, vol. 3455, pp. 334–354. Springer, Heidelberg (2005)

10. Roscoe, A.W.: The theory and Practice of Concurrency. Prentice Hall, Englewood Cliffs
(1997)

11. Treharne, H., Schneider, S.: Using a Process Algebra to Control B OPERATIONS. In: 1st
International Conference on Integrated Formal Methods (IFM 1999), pp. 437–457. Springer,
New York (1999)

12. Schneider, S., Treharne, H.: Communicating B Machines. In: Bert, D., Bowen, J.P., Henson,
M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp. 416–435. Springer,
Heidelberg (2002)

13. Evans, N., Treharne, H.E.: Investigating a file transfer protocol using CSP and B. Software
and Systems Modelling Journal 4, 258–276 (2005)

14. Schneider, S., Cavalcanti, A., Treharne, H., Woodcock, J.: A layered behavioural model of
platelets. In: 11th IEEE International Conference on Engieerging of Complex Computer Sys-
tems, ICECCS (2006)

15. Carcenac, F., Boniol, F.: A formal framework for verifying distributed embedded systems
based on abstraction methods. Int. J. Softw. Tools Technol. Transf. 8(6), 471–484 (2006)

16. Bontron, P., Potet, M.-L.: Automatic Construction of Validated B Components from Struc-
tured Developments. In: Bowen, J.P., Dunne, S., Galloway, A., King, S. (eds.) B 2000, ZUM
2000, and ZB 2000. LNCS, vol. 1878, pp. 127–147. Springer, Heidelberg (2000)

17. Abrial, J.R.: Discrete System Models, Version 1.1 (2002)
18. Attiogbé, C.: Communicating B Abstract Systems, Research Report RR-IRIN 02.08 (2002)

(updated July 2003)
19. Bellegarde, F., Julliand, J., Kouchnarenko, O.: Synchronized parallel composition of event

systems in B. In: Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) B 2002 and ZB
2002. LNCS, vol. 2272, pp. 436–457. Springer, Heidelberg (2002)

Formal Verification of the Implementability of

Timing Requirements

Xiayong Hu, Mark Lawford�, and Alan Wassyng�

Software Quality Research Laboratory,
Department of Computing and Software McMaster University,

Hamilton, Canada L8S 4K1
huxy@mcmaster.ca, lawford@mcmaster.ca, wassyng@mcmaster.ca

Abstract. There has been relatively little work on the implementability
of timing requirements. We have previously provided definitions of funda-
mental timing operators that explicitly considered tolerances on property
durations and intersample jitter. In this work we identify three environ-
mental assumptions and compare the implementability of a Held For
operator in each of them, formalizing this analysis in PVS. We show how
to design a software component that implements the Held For operator
and then verify it in PVS. This pre-verified component is then used to
guide the design of more complex components and to decompose their
design verification into simple inductive proofs as demonstrated through
the implementation of a timing requirement for an example application.

1 Introduction

Specifying, implementing and verifying real-time requirements for embedded
software systems can be a difficult and time consuming task. Hence real-time
systems have become an active area of research in the formal methods commu-
nity. The extensive survey of formal methods for the specification and verifica-
tion of real-time systems in [1] contains references to over 200 publications. The
overwhelming majority of the cited works are dedicated to the specification and
validation of real-time requirements. Despite this intensity of research, relatively
little work has been done on formally modeling timing tolerances.

Implicit in many of the formal models of timing requirements is the assump-
tion that the real-time system implementing the timing requirements contin-
uously monitors its inputs and can instantaneously react to the occurrence of
an “event” (a significant change in the inputs). Due to their clock driven na-
ture, computer control systems must typically sample some set of inputs and
then update a set of outputs. Models that consider the sampling required for a
computer controlled implementation of system requirements will often make the
simplifying assumption that all samples are uniformly spaced and sufficiently
fast to guarantee system response.

� Supported by the Natural Sciences and Engineering Research Council of Canada.

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 119–134, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

120 X. Hu, M. Lawford, and A. Wassyng

Practical implementations have to worry about sampling rates, schedulability,
computation time, latency, and jitter, all of which involve tolerances in some form
when interfacing a physical plant and a software control system.

Motivated by our work on the Darlington Nuclear Generating Station Shut-
down Systems software redesign project [2] and the difficulties and effort involved
with the verification of timing requirements on that project, we began studying
timing requirements with tolerances. In [3] we justified the use of several differ-
ent types of tolerances that must be fully specified at the requirements level in
order to properly deal with the timing tolerances that are inherent in the system
implementation. These included tolerances on functional timing requirements
(FTRs), and tolerances on performance timing requirements (PTRs) that allow
for deviation from the idealized behaviour specified by the requirements models.
By modeling these requirements, we presented Implementability Results which
allow some timing requirements to be verifiably implemented at a significantly
lower CPU bandwidth than normally assumed.

In this paper we investigate different environmental timing assumptions and
present the implementability results for each of them. This can provide detailed
answers to questions that are of interest to real-time system engineers. For ex-
ample, nowadays, with cheap, high performance chips, more and more industry
implementations take the “easy” approach, which is to use chips with high sam-
pling rates to achieve the PTR. An obvious question to ask is: “Is it always
necessary to sample at fast sampling rates and is it safe to assume that sampling
faster is the best way to implement the system?” Another important question is:
“The timing environment has been changed, how do I know my implementation
will still work for the new timing environmental assumption?”

In order to formally provide answers to the above questions, we refined the
model and formalized the analysis of the Held For operator of [3] in the PVS1

theorem prover. Held For is an operator that describes “sustained behaviour”’
with tolerances on the timing duration. For example, (signal ≥ setpoint)
Held For (300±50ms) specifies that the result shall be true if (signal ≥ setpoint)
is true for (300±50ms). Now consider an environmental timing assumption that
the software “knows” the exact timing of the sample instances. For this assump-
tion, we provide a full formal proof of necessary and sufficient conditions for
when it is possible to construct a discrete implementation of such a requirement,
with duration d and tolerances of [d− δL, d + δR]. The implementation may use
nonuniformly spaced samples, as long as the intersample spacing is bounded. As
a result of the formalization in PVS, we discovered a missing boundary case in
the original theorem statement of [3]. The implementability results under two
new environments are also formally verified and presented. Also, by compar-
ing the results in different environments we can predict the implementability of
real-time timing requirements under new environmental assumptions.

We provide an intermediate representation of the Held For requirement on the
implementation’s sampled signals, that we use to verify an implementation model
of the Held For requirement via a two step process. Once the implementation has

1 Files available at http://www.cas.mcmaster.ca/~lawford/papers/FMICS08.html

Formal Verification of Implementability of Timing Requirements 121

been verified in PVS, we can verify the implementation of any specific requirement
by simply instantiating the PVS theorems with appropriate values. Thus the ver-
ification is reduced to a standard untimed verification on the remainder of the
requirement’s functionality. We demonstrate this process with a simple Delayed
Trip System (DTS) example in Section 5.

1.1 Related Work

Recent work addresses the issue of timing tolerances required to verify imple-
mentations of requirements modeled as timed automata with ASAP semantics
[4,5]. De Wulf, et al, consider the case of implementing a continuous-time con-
troller with a discrete-time system, assuming that there is a delay Δ associated
with the controller’s reaction to the environment. The implementation (e.g., C
code on a BrinkOS platform) can be generated from the controller’s automata.

The assumption of zero-time for computational action in the model language
is impossible to ensure on the target platform in the implementation language [9].
Thus the predictable design approach introduced an ε-hypothesis to fill the gap
between the physical domain and the software domain [10]. This ε-hypothesis
requires the model and its realization to have the same observable execution
sequence. Also, time deviations between activations of corresponding actions in
the model and realization should be less than ε seconds.

The approaches with global tolerances (e.g, reaction delay parameter Δ in [4]
and ε-hypothesis in [10]) define a global constraint as the constant upper bound
of the delay during implementation. However, in most industrial requirements,
it is typical that different timing requirements need different tolerances. Our
approach replaces a very conservative global tolerance by including tolerances
on each individual timing requirement. We have found that this may significantly
reduce unnecessary load on the target platform. This is illustrated by the Delayed
Trip System example in Section 5.

Most research based on the platform-independent idea will plug in another
layer between the high level requirements and coding implementation, e.g, “pro-
gram generation” in the Giotto approach [8] and in the POOSL model [9,10].
These approaches cannot determine the feasibility of an implementation on a
target platform until the scheduling stage is finalized. In the case of the gener-
ation of an unimplementable result, the designer has to improve the hardware
performance or relax the timing requirements, both of which are problematic. In
our approach, the implementability of the system is predictable in the first stages
of analysis, avoiding unnecessarily complex implementation and verification.

The remainder of this paper is organized as follows: Section 2 presents the
preliminary work in [3] and a two step Systematic Design Verification (SDV)
procedure. Section 3 introduces four different environmental assumptions and
shows the relationship between the implementability results under each of them.
An estimation approach is also provided, which allows one to estimate or even
precisely predict the implementability of the timing properties in a new environ-
ment. Sections 4 and 5 present the approach to refine and implement the high
level timing requirements (e.g., Held For), through an Implementation Template

122 X. Hu, M. Lawford, and A. Wassyng

(e.g., a pre-verified timer design). An example is provided to demonstrate how
the implementation and verification work has been efficiently reduced. Conclu-
sions and future work are discussed in Section 6.

2 Preliminaries

2.1 Functional and Performance Timing Requirements

We differentiate between Functional Timing Requirements (FTRs) and Perfor-
mance Timing Requirements (PTRs). FTRs are timing requirements that are
directly related to the required behavior of the application. PTRs are really
timing tolerances that we specify so that the application does not have to ad-
here to the idealized behavior described by the requirements model. For more
background on PTRs and FTRs, readers are referred to [3].

Definition of the Held For operator with tolerance. Held For is a com-
mon FTR which specifies a condition must be sustained over a particular time
duration. A formal definition of the Held For operator was specified in [3] as
shown in Fig. 1.

(Condition) Held For (d: R
>0, δL, δR : R

≥0) :bool
Initially: duration = any value in [d − δL, d + δR], Event start time−1 = 0,
Condition−1 = FALSE

duration Event start time

(Condition = TRUE) & (Condition−1 = FALSE)
Any value in

[d − δL, d + δR]
tnow

(Condition = FALSE) OR (Condition−1 = TRUE) No Change No Change

Held For

Condition = TRUE
tnow− Event start time≥ duration TRUE
tnow− Event start time< duration FALSE

Condition = FALSE FALSE

Fig. 1. Formal Definition of “(Condition) Held For (d, δL, δR)”

There are a number of important points to emphasize. i) Duration is measured
from when the event started in the physical domain. It does not make sense to
define timing requirements with reference to when events are detected. ii) Many
different implementations are valid. The behavior between [d−δL, d+δR] is not
deterministic. iii) Even though we have introduced tolerances into the require-
ment, Held For is a FTR and still describes idealized behavior understood within
the constraints of the requirements model. For instance, it does not take into
account that processing time is not infinitely small, and it makes no reference
to how often the application samples the values of the sensor.

Formal Verification of Implementability of Timing Requirements 123

As one of the PTRs introduced in [3], the Response Allowance (RA) for a
controlled-monitored variable pair specifies an allowable processing delay. The
RA is measured from the time the event actually occurred in the physical domain,
until the time the value of the controlled variable is generated and crosses the
application boundary into the physical domain.

The Timing Resolution (TR) for a monitored-controlled variable pair, can be
thought of as the minimum duration event involving those variables that must
be detected by the software [3].

2.2 Requirements Refinement and SDV Procedure Overview

In this section we provide an overview of our verification process in a two step ap-
proach based on the Systematic Design Verification (SDV) procedure introduced
in [11]. In the first step, a pseudo-SRS2 is created and verified as a refinement of
the high level requirements. In the second step, we verify that the Software De-
sign Description (SDD) is in compliance with the requirements for the behavior
as specified in the pseudo-SRS.

To ensure the pseudo-SRS is a correct refinement, we must verify the pseudo-
SRS based on all the timing requirements that are specified in the high level re-
quirements. Let pseudo-REQ and REQ denote the pseudo-SRS state transition
function and the high level Software Requirements Specification, respectively.
The proof obligation of our first verification step can be formalized as:

pseudo-REQ ⊆ REQ

We restrict the pseudo-SRS to be a functional refinement of the high level
requirements. The second step of the verification process is the SDV procedure
based on a modified 4 variable model [11,12].

pseudo-REQ

SOF

IN OUT

M

O

C

I

Fig. 2. Modified Commutative Diagram for 4 Variable Model

In Fig. 2, pseudo-REQ represents the pseudo-SRS state transition function
mapping the monitored variables M to the controlled variables represented by
C. SOF represents the SDD state transition function mapping the behavior of

2 Imagine a version of the Software Requirements Specification (SRS) that is decom-
posed so that the data flow of the reorganized SRS is the same as that of the software
design. This reorganized SRS is known as the “pseudo-SRS” [2].

124 X. Hu, M. Lawford, and A. Wassyng

the implementation input variables (represented by I) to the behavior of the soft-
ware output variables (represented by O). The mapping IN models hardware
functionality and relates the specification’s monitored variables to the imple-
mentation’s input variables. Similarly, the mapping OUT also models hardware
functionality, and relates the implementation’s output variables to the specifica-
tion’s controlled variables. The resulting proof obligation:

pseudo-REQ = OUT ◦ SOF ◦ IN (1)

is illustrated by the solid lines in the commutative diagram of Fig. 2, which ver-
ifies the functional equivalence of the pseudo-SRS and SDD by comparing their
respective one step transition functions [13]. Here ◦ is used to denote functional
composition.

Through this two step SDV procedure, the high level requirements are con-
nected with the low level implementation. In each of the steps, the verification
can be formally conducted (e.g., by PVS). In later sections, we demonstrate this
approach and provide the reader with an example.

2.3 Sample Instances

Let Sample be a possible sequence of sample times and Sample(n) be the time
of the (n + 1)-th sample (n ∈ N). Sample is assumed to satisfy the bounded
jitter constraint, where Tmin and Tmax are the minimum and maximum sample
intervals over the complete range of sample intervals, respectively.

Sample(0) = 0 ∧ ∀n : Sample(n + 1) − Sample(n) ∈ [Tmin, Tmax].

We then also assume that the first sample point happens when t = 0, which
is Sample(0) = 0. Note that when Tmax=Tmin, the problem is simplified to a
fixed sample interval scenario, which is discussed in [14] for Held For without
tolerances.

In the example shown in Fig. 3, we assume Tmin = 10 and Tmax = 20. The
first sample Sample(0) occurs when t = 0, and the interval between any two
consecutive sample points is in the range [10, 20], e.g., Sample(6)− Sample(5) =
85−70 = 15. Further details on the example in Fig. 3 can be found in Section 3.1.

Tmax
Tmin

Sample(1) (2) (3) (4) (5) (6) (7)

10 20 30 40 50 60 70 80 90 100

t

0

d+ R
d- L

Initial Event Occur time
setpoint

Fig. 3. An Example of Decision Points

Formal Verification of Implementability of Timing Requirements 125

3 Environmental Assumptions and Their Impact on
Implementability

We have shown in [3] that the implementability results of the Held For operator
with tolerance are determined by the interaction between the FTRs (e.g., dura-
tion tolerances of the Held For operator, δL and δR) and PTRs (the upper and
lower bound of sample intervals: Tmin and Tmax).

In this section, we show feasibility analyses to answer the questions listed in
Section 1. We first formally analyze the implementability results under three
different environmental assumptions. By comparing the results across the envi-
ronments, we develop an estimation approach based on the relationship between
the environments. Finally we show that it is possible to estimate the range or
even precisely predict the implementability results for a new environment.

3.1 Environmental Assumptions

We consider four different implementation environments which govern how we
recognize a sustained event like the Held For operator. They are the Omniscient,
the Perfect Clock, the Imperfect Clock and the No Clock environments. We limit
the scope of the analysis by assuming the implemented system will refresh the
output at each sample point, which is a polling based rather than interrupt
driven setting.

Perfect Clock: This environment provides the value of the condition only at
sample instances and we know the exact timing of samples by using a perfect
real valued clock. We can take actions (e.g., produce outputs) on the events only
at sample times.

To properly state the environment conditions for implementation, we define
the predicate Feasible(d) as a function of the sustained condition’s nominal dura-
tion d and assume that the other parameters, δL, δR, Tmin and Tmax, are fixed.
The feasibility function of the Perfect Clock environment is defined as follows.

Definition 1. Feasible PerfectClock(d) : bool = ∀Sample : ∀n : ∃nd :
∀(t|Sample(n) < t ≤ Sample(n + 1)) : d− δL ≤ Sample(nd)− t ≤ d + δR

In the function above t represents the event start time and nd is the index
of the sample where we will make our decision. It is known from earlier work
[3] that if the system behavior is specified in the form of (Condition)Held For
(d, δL, δR), the final decision as to whether Held For generates TRUE or FALSE
based on the sampled values, cannot be made until we are sure that a time period
with length d − δL has elapsed since the event occurred in the physical domain
(i.e. d − δL ≤ Sample(nd) − t). The decision also must be made before d + δR
has elapsed since the event occurred.

To explain this, we introduce an input signal and the duration with tolerances
to the example in Fig. 3. The initial event (when the signal goes above the
setpoint) occurs between Sample(1) and Sample(2). It is not hard to find that all
the sample points up to and including Sample(5) are too early for us to determine

126 X. Hu, M. Lawford, and A. Wassyng

the value of the Held For operator, and all the sample points from Sample(7)
onwards are too late for us to make the decision. Only when t = Sample(6), is
it the right sample for us to make the decision.

Omniscient: This environment provides full read access to the timing of the
events that happen in the physical domain. In this environment, we know the
exact time of each event when the condition becomes TRUE or FALSE. However,
we can only take actions on these events at sample times. The difference in
comparison to the Perfect Clock environment is the relaxation of the existence
requirement for the decision point. For any t between Sample(n) and Sample(n+
1), a different decision sample point Sample(nd) is acceptable. Putting this all
together we can find the feasibility function in the Omniscient environment.

Definition 2. Feasible Omniscient(d) : bool = ∀Sample : ∀n :
∀(t|Sample(n) < t ≤ Sample(n + 1)) : ∃nd : d − δL ≤ Sample(nd) − t ≤ d + δR

Imperfect Clock: This environment is the same as in the Perfect Clock en-
vironment but with access to an imperfect clock (e.g. finite precision, bounded
drift, etc). We leave as future work, the formalization of possible subcases that
are associated with different imperfect clock assumptions. At the end of this
section we will apply our estimation approach to this environment, which al-
lows us to predict the implementability without having to perform complicated
feasibility analyses and verification.

No Clock: Under this environmental assumption, our access to the timing
of the events becomes very limited. The exact time of samples is not exposed
even in the software domain. Our knowledge is only that each sample interval
is between Tmin and Tmax and we also know the number of samples since the
condition became TRUE. In this case we have no recourse in our implementation
but to simply count the number of samples since we first detected the event. In
this case we need a “count” value nd that will work under any possible bounded
sample spacing and actual time of occurrence of the event. Let Sample(n+nd) be
the decision sample point, which is the ndth sample point since Sample(n). Then
we have the definition of the feasibility function in the No Clock environment as
follows:

Definition 3. Feasible NoClock(d) : bool = ∃nd : ∀Sample : ∀n :
∀(t|Sample(n) < t ≤ Sample(n + 1)) : d − δL ≤ Sample(n + nd) − t ≤ d + δR

3.2 Latest Environment Based Feasibility Analyses

Manual analysis in [3] shows that the only way that we can ensure the feasibility
is to make sure that we have at least two sample points inside that interval
[d − δL, d + δR]. After the recent PVS formal verification work, it turns out
this is a necessary condition, but it is not sufficient. In this section, we will
demonstrate how manual analysis with Fig. 4 provides a neat roadmap to guide
us to the major results and how PVS formal verification captured a missing case
in the manual analysis.

Formal Verification of Implementability of Timing Requirements 127

δL + + δR
d − δL d + δR

(δL + + δR)R)

2

Case 1Case 1

Case 2Case 2

Case 3Case 3

Always 2 samples in the rangeAlways 2 samples in the range

Sometimes 2 samples in the rangeSometimes 2 samples in the range

Never 2 samples in the rangeNever 2 samples in the range

Fig. 4. Sample Points in the Duration Interval

Case 1: 0 < Tmax ≤ (δL + δR)/2. In this case, we can guarantee there are
always at least two sample points in the time interval [d− δL, d + δR] in Fig. 4,
based on which we can ensure the implementability of Held For. Theorem 1 is
proved for both the Perfect Clock and Omniscient environments.

Theorem 1. Assume Tmax ≤ (δL + δR)/2. Then

Feasible PerfectClock(d) ∧ Feasible Omniscient(d)

In the No Clock environment, implementability cannot be assumed. To under-
stand this new result, shown in Theorem 2, we consider the two extreme cases,
when the sample intervals are always Tmin or Tmax. For the Tmin case, the first
sample that is guaranteed to be on the right side of d − δL is

⌈
d−δL
Tmin

⌉
+ 1. If

k =
⌈

d−δL
Tmin

⌉
+ 1, then it is obvious that for feasibility in the Tmax case, we must

have that k × Tmax cannot be to the right of d + δR.

Theorem 2. Assume Tmax < (δL + δR)/2. Then
((⌈

d − δL

Tmin

⌉
+ 1

)
× Tmax ≤ d + δR ⇔ Feasible NoClock(d)

)

Case 2: (δL+δR)/2 < Tmax ≤ (δL+δR). It may happen that the hardware
platform is not fast enough for us to arrange a sample interval that always works
as defined in Case 1. Alternatively, we might be interested in operating at a
slower sample rate in order to conserve power. In Case 2, two sample points will
be in the time interval [d − δL, d + δR] under certain conditions, which guides
us to identify the necessary and sufficient conditions to implement Held For.

Let Kmin =
⌊

d−δL
Tmax

⌋
and Kmax =

⌊
d−δL
Tmin

⌋
, then the feasibility result for Case

2 is given by the following theorem:

128 X. Hu, M. Lawford, and A. Wassyng

Theorem 3. Assume (δL + δR)/2 < Tmax ≤ δL + δR ∧ Tmin �= Tmax. Then

Tmin ≥ d − δL

Kmin + 1
∧ (Kmin + 2) × Tmax ≤ d + δR ⇔ Feasible PerfectClock(d)

We note that in [3] the conjunct Tmin ≥ d−δL
Kmin+1 was incorrectly stated as

Kmin = Kmax. During the course of formalizing the results of [3] in PVS, we
identified a missing boundary condition which is also feasible under Case 2. The
missing boundary case resulting in the new statement shown in Theorem 3 is
when Kmax = Kmin+1 and Kmax×Tmin = d−δL. This is when equality holds in
the new conjunct (i.e. Tmin = d−δL

Kmin+1). While the latter condition restricts the
application of this boundary case in practice, for the completeness of our results,
this scenario needs to be considered to obtain the correct necessary and sufficient
conditions for Case 2 under the Perfect Clock and No Clock environmental
assumptions.

Case 3: Tmax > (δL + δR). In Case 3, there is at most one sample point in
the range of [d − δL, d + δR] (shown in Fig. 4). Therefore, it is not possible to
implement the Held For operator.

Theorem 4. Assume Tmax > δL + δR. Then

¬Feasible PerfectClock(d) ∧ ¬Feasible NoClock(d) ∧ ¬Feasible Omniscient(d)

3.3 Comparing the Feasibility Results in Different Environments

In this section, we provide an overview and comparison of the feasibility results
in the three environments: Perfect Clock, No Clock and Omniscient.

To compare the results we introduce the following two feasibility conditions.

Condition 1 :
(⌈

d − δL

Tmin

⌉
+ 1

)
× Tmax ≤ d + δR

Condition 2 : Tmin ≥ d − δL

Kmin + 1
∧ (Kmin + 2) × Tmax ≤ d + δR

Table 1 provides the comparison of the feasibility results and other important
facts in each environment. The column headings of the table are Environments,
Case 1, Case 2, Case 3, Event Visibility and Clock Readable. The Environments
column lists the environments. The Imperfect Clock case will be discussed at the
end of this section. Columns Case 1-3 list the necessary and sufficient conditions
of the feasibility function for that case in the different environments. Event
Visibility specifies in which domain we can access the timing of any physical
event. The final column of the table is Clock Readable, indicating whether the
clock is accessible in the environment. Taking the Perfect Clock environment as
an example, here is the approach we used to fill in the values in this comparison
table.

Formal Verification of Implementability of Timing Requirements 129

Table 1. Comparison of Implementability Results

Environments Case 1 Case 2 Case 3 Event Visibility Clock Readable

Omniscient TRUE TRUE FALSE Physical Domain Y ES
Perfect Clock TRUE Condition 2 FALSE Software Domain Y ES
Imperfect Clock ??? Condition 2 FALSE Software Domain Y ES
No Clock Condition 1 Condition 2 FALSE Software Domain NO

We filled in TRUE for Case 1 because we do not require any additional
condition to attain feasibility for Case 1. For Case 2 and Case 3, the values
are Condition 2 and FALSE respectively, based on Theorem 3 and Theorem 4.
We set Event Visibility to “Software Domain” because we will not be able to
observe any event in the physical domain until the next sample point occurs in
the software domain. Based on our discussion in Section 3.1, the value for Clock
Readable should be Y ES.

We can now discuss the comparisons contained in Table 1. At one extreme, the
Omniscient environment assumes that the time of the event is instantaneously
reported to the software domain and the controller can calculate and produce
the output simultaneously. The idealization embodied by this assumption allows
us to design the implementation of the Held For operator in a simpler way
than any practical capability will allow. In Case 2, this environment does not
require any feasibility condition. On the other hand, the No Clock assumption
completely forbids access to the clock during the implementation process, which
increases the difficulty of the implementation. Therefore, even in Case 1, an
implementation is not always feasible. In Case 3, the Held For operator is not
implementable under any of the three environmental assumptions.

Note that the difficulty of the implementation of the Held For operator in-
creases as we progress down Table 1. The following states this more formally.

Theorem 5. Feasible NoClock(d) =⇒ Feasible PerfectClock(d)∧
Feasible PerfectClock(d) =⇒ Feasible Omniscient(d)

The relationship between the feasibility functions under different environmental
assumptions determines the difficulty of implementing Held For in those envi-
ronments. For example, Feasible NoClock(d) =⇒ Feasible PerfectClock(d), so
we find that for any of the Cases 1-3, the condition to implement Held For is
always equivalent or more restricted under the No Clock environmental assump-
tion than under the Perfect Clock environmental assumption. Now we consider
the possible Imperfect Clocks described in Section 3.1. The information available
to the implementation in this environment falls in between the Perfect Clock and
No Clock cases. Since the latter two scenarios have the same necessary and suf-
ficient conditions in Case 2, we can conclude that Condition 2 is necessary and
sufficient for any imperfect clock environment! For Case 1 the Imperfect Clock
case shows ??? since the precise feasibility function may depend upon what clock
imperfections are considered, but it should be no stronger than Condition 1.

130 X. Hu, M. Lawford, and A. Wassyng

4 Implementation of the Held For Operator

In this section, we briefly describe an implementation of the Held For operator
with tolerance in the Perfect Clock environment and refer the reader to [17]
for a more detailed account. We refine our model of time to a discrete time
model that assumes arbitrarily small clock ticks, which allows us to apply a
straightforward inductive proving approach to verify the implementation of the
Held For operator.

The Held For operator defined in Fig. 1 specifies the tolerance on the duration
of the sustained window, and it leads to indeterminism in the implementation of
the system. In particular, if the Condition has been sustained for an interval that
is in the range [d− δL, d + δR), then the current value of the Held For operator
can be either TRUE or FALSE. Based on the first step in Section 2.2, we can
refine the requirements of the Held For operator to a deterministic subset of
the high level requirements that matches our implementation’s behaviour at the
sampling points. This is done by defining the Held_For_S operator as follows:

Held_For_S(P,duration,Sample)(ne):bool=
EXISTS(n0|Sample(ne)-Sample(n0) >= duration):
FORALL (n: nat | n0 <= n AND n <= ne): P(Sample(n))

When this operator defined on sample indexes is lifted to the arbitrarily fast
clock tick level of the requirements in the natural way, it can be shown to be
a refinement of the original Held For operator under an appropriate PTR as-
sumption [17].

4.1 Timer Implementation of Held For S

Timer S and TimerUpdate Functions. To implement the Held_For_S op-
erator, we can design a timer that updates its value at every sample instance.
In Fig. 5, the Timer_S PVS function updates its value through a TimerUpdate
function, by passing the following information: the condition at both the current
and last sample instances, the pre-set timeout value, the current value of the
timer and the elapsed time since the last update of the timer.

Then the TimerUpdate function will update the timer by returning the latest
value.

In our design, we pass the values of the current and last sample instances,
P(Sample(ne)) and P(Sample(ne-1)), to TimerUpdate as the first and second
parameters, CurrentPP and PreviousPP. The TimerUpdate function will reset
the Timer to 0 when any of them is FALSE. When both of them are TRUE,
TimerUpdate will update the Timer function by adding the elapsed time (step)
to the previous Timer value. If the previous value has exceed the TimeOut value,
the TimerUpdate function will do nothing but return the previous value to avoid
an eventual overflow error.

We can then verify that an appropriately defined predicate on the current in-
put value and the PVS function Timer_S is an implementation of the Held_For_S
function.

Formal Verification of Implementability of Timing Requirements 131

TimerUpdate(CurrentPP, PreviousPP, TimeOut, PreviousTimerValue, step): tick =
TABLE

%+-----------------------------+------------------------------++
|[PreviousTimerValue < TimeOut| PreviousTimerValue >= TimeOut]|

%-----------------------------+-----------------------------+------------------------------++
| CurrentPP AND PreviousPP | PreviousTimerValue + step | PreviousTimerValue ||
%-----------------------------+-----------------------------+------------------------------++
|NOT(CurrentPP AND PreviousPP)| 0 | 0 ||
%-----------------------------+-----------------------------+------------------------------++
ENDTABLE

Timer_S(P, Sample, TimeOut)(ne): RECURSIVE tick =
TABLE
%--------+--++
| ne = 0 | TimerUpdate(P(Sample(ne)), FALSE, TimeOut, 0, 0)
%--------+--++
| ne > 0 | TimerUpdate(P(Sample(ne)), P(Sample(ne - 1)),

TimeOut, Timer_S(P, Sample, TimeOut)(ne - 1), Sample(ne) - Sample(ne - 1)) ||
%--------+--++
ENDTABLE

MEASURE ne

Fig. 5. TimerUpdate and Timer S Functions

TimerGeneral_S1: THEOREM Held_For_S(P, timeout - delta_L, Sample)(n+1)

IFF (P(Sample(n + 1)) AND Timer_S(P,Sample,timeout-delta_L)(n) +

Sample(n+1)-Sample(n)>=timeout-delta_L)

The Timer_S design yields a relatively easy implementation of the Held_For_S
operator. Other equivalent implementations can be defined, and, in practice,
there could be many similar implementations using the same design pattern. Our
objective here is not to create a strict formula for software designers to follow,
but to provide a generic design pattern like Timer_S, so that designers can cus-
tomize the Timer_S design based on different situations. In the next section, we
present the DTS example. By utilizing the general theorem TimerGeneral_S1,
a large amount of the verification work is saved by proving the equivalence of
the customized timer implementation to the original Timer_S implementation.

5 Example: Delayed Trip System with Tolerances

We now revisit the Delayed Trip System (DTS) [16] which was implemented
and verified in [14] - but without explicitly considering timing tolerances. A
modified Software Requirement Specification (SRS) for the DTS with explicit
tolerances is shown at the top of Fig. 6. In this version, the requirements are
specified with the Held For operator with tolerances. If the condition PP has
held for timeout1, the relay must be open. When the power drops below PT
or the pressure becomes lower than DSP, the relay must not close until after
another time period of timeout2. The bottom portion of Fig. 6 presents part of
the PVS for the Software Design Description (SDD) of the DTS, the function
RelayUpdate. With the help of the pre-verified TimerGeneral_S1 theorem, we

132 X. Hu, M. Lawford, and A. Wassyng

Result
Condition relay

(PP) Held For(timeout1,δL1,δR1) TRUE
(¬ [(PP) Held For (timeout1, δL1, δR1)]) Held For (timeout2, δL2, δR2) FALSE

¬ (PP) Held For(timeout1,δL1,δR1) ∧
¬ (¬ [(PP) Held For (timeout1, δL1, δR1)]) Held For (timeout2, δL2, δR2) No Change

where PP (t) = Power(t) ≥ PT ∧ Pressure(t) ≥ DSP

SDD_State: TYPE =

[# Relay: Relay_State, Timer1: tick, Timer2: tick,

PreviousInput1: bool, PreviousInput2: bool #]

RelayUpdate(timeout1, timeout2, CurrentPP, S, step): Relay_State =

TABLE

%--+-------++

| CurrentPP&(Timer1(S)+step>=timeout1) |OPEN ||

%--+-------++

| NOT(CurrentPP&Timer1(S)+step>=timeout1)&Timer2(S)+step>=timeout2|CLOSED||

%--+-------++

| NOT(CurrentPP&Timer1(S)+step>=timeout1)&

NOT (Timer2(S)+step>=timeout2) |Relay(S)||

%---+--------++

ENDTABLE

Fig. 6. The SRS (top) and SDD (bottom) for the DTS with Tolerances

can clearly identify the functional behaviour of the DTS mapping from SRS to
SDD tables. For example, the (PP)Held For(timeout1,. . .) in the first row is
implemented by Timer1 and current condition CurrentPP (as shown in the first
lines of both tables). Similarly, Timer2 (with its current condition) implements
the Held For (with timeout2), as shown in the seconds line of both tables.

Both of the Timer functions call the TimerUpdate function to update them-
selves. Function RelayUpdate updates the current output of the relay, based on
the timeout1 and timeout2, the current condition PP and step (as introduced
for TimerUpdate). Here the variable S is of record type SDD_State. It stores the
system state - the status of the Relay, values of Timer1 and Timer2 and the in-
put conditions of each timer at the previous sample time, PreviousInput1 and
PreviousInput2. These last two fields are passed to the TimerUpdate function
applications as PreviousPP parameters, in order to determine whether the timer
should add a step increment or perform a reset.

Note that the Held For operator with duration timeout1 has tolerance set-
tings δL1 and δR1 and another Held For operator with duration timeout2 has
its own tolerance settings δL2 and δR2. This may better fit a real-world engi-
neering specification, where timeout1 and timeout2 may differ by more than an
order of magnitude. In this case it typically would not make sense for the timing
requirements to share a single global tolerance. For example, we may want time-
out1=300±2 seconds and timeout2=2±0.1 seconds. This provides an example

Formal Verification of Implementability of Timing Requirements 133

in which the requirements of the system do not fit into a global tolerance model
(e.g, the reaction delay parameter Δ of the Almost ASAP semantics in [4] and
ε-hypothesis in [10]). Instead of performing a scheduling check in the final stage
[8,10], our approach can also determine whether further work on an implementa-
tion is worthwhile as soon as the timing requirements have been specified (based
on the feasibility analyses discussed in Section 3.2).

We have shown (in the complete PVS source code) how to reuse this result to
reduce the verification work of the customized timer components, through the
TimerGeneral_S1 theorem. This general theorem requires more than 16 lemmas
and 600 PVS commands to complete. This one time effort can benefit other going
forward. In the DTS example, 51% of the total PVS prover commands used in
the verification are eliminated by repeated instantiations of this theorem. More
details on the DTS example are available in [17].

6 Summary

In this paper, we expand the scope of our feasibility analyses to explicitly in-
clude environmental assumptions. Our latest results show that implementability
of timing requirements (e.g., Held For operator) is determined by both the im-
plementation environment and the interaction of the timing requirements. Now
we are in a position to answer the questions we proposed in Section 1.

“Is it always necessary to sample at fast sampling rates and is it safe to assume
that sampling faster is the best way to implement the system?” The latest feasi-
bility analyses show that sampling faster is not always the only option and also
not always the correct choice in implementing real-time systems. The feasibility
analyses show that it is still possible to implement the Held For operator when
Tmax > (δL + δR)/2 , which provides an alternative solution to the designer of
real-time systems, when coping with hardware limitations. On the other hand,
the results of Case 1 in the No Clock environment show that it is not always
safe to assume implementability when Tmax ≤ (δL + δR)/2.

“The timing environment has been changed, how do I know my implementa-
tion will still work for the new timing environmental assumption?” This could
be easily determined since we have the implementability results for different en-
vironments. Further, if the target environment is altered for a particular timing
requirement, the relationships between feasibility functions under different en-
vironmental assumptions can help us estimate the implementability results for
the new environment.

We have introduced a pre-verified Implementation Template, which benefits
real-time software in two respects. First, it allows domain experts to specify
different tolerances for each functional timing requirement, instead of a global
tolerance for the timing behavior on the target system. Second, it helps to sim-
plify and reduce the effort required in both the implementation and verification
stages.

134 X. Hu, M. Lawford, and A. Wassyng

References

1. Wang, F.: Formal verification of timed systems: A survey and perspective. Pro-
ceedings of the IEEE 92(8), 1283–1307 (2004)

2. Wassyng, A., Lawford, M.: Lessons learned from a successful implementation of
formal methods in an industrial project. In: Araki, K., Gnesi, S., Mandrioli, D.
(eds.) FME 2003. LNCS, vol. 2805, pp. 133–153. Springer, Heidelberg (2003)

3. Wassyng, A., Lawford, M., Hu, X.: Timing tolerances in safety-critical software.
In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp.
157–172. Springer, Heidelberg (2005)

4. De Wulf, M., Doyen, L., Raskin, J.F.: Almost asap semantics: From timed models
to timed implementations. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS,
vol. 2993, pp. 296–310. Springer, Heidelberg (2004)

5. De Wulf, M., Doyen, L., Markey, N., Raskin, J.F.: Robustness and implementabil-
ity of timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and
FTRTFT 2004. LNCS, vol. 3253, pp. 118–133. Springer, Heidelberg (2004)

6. Abadi, M., Lamport, L.: An old-fashioned recipe for real time. ACM Transactions
on Programming Languages and Systems 16(5), 1543–1571 (1994)

7. Shankar, N.: Verification of real-time systems using PVS. In: Courcoubetis, C. (ed.)
CAV 1993. LNCS, vol. 697, pp. 280–291. Springer, Heidelberg (1993)

8. Henzinger, T.A., Kirsch, C.M., Sanvido, M.A., Pree, W.: A Giotto-based helicopter
control system. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002.
LNCS, vol. 2491, pp. 46–60. Springer, Heidelberg (2002)

9. Florescu, O., Voeten, J., Huang, J., Corporaal, H.: Error estimation in model-
driven development for real-time software. In: Forum on specification and Design
Languages, pp. 228–239 (2004)

10. Huang, J., Voeten, J., Florescu, O., van der Putten, P., Corporaal, H.: Predictabil-
ity in real-time system development. In: Advances in Design and Specification
Languages for SoCs, pp. 123–139. Kluwer Academic Publishers, Dordrecht (2005)

11. Lawford, M., Hu, X.: Right on time: Pre-verified software components for con-
structuion of real-time systems. Technical Report 8, Software Quality Research
Lab, McMaster University, Hamilton, ON, Canada (2002)

12. Parnas, D.L., Madey, J.: Functional documents for computer systems. Science of
Computer Programming 25(1), 41–61 (1995)

13. Lawford, M., McDougall, J., Froebel, P., Moum, G.: Practical application of func-
tional and relational methods for the specification and verification of safety critical
software. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 73–88. Springer,
Heidelberg (2000)

14. Hu, X.: Proving real-time properties of embedded software systems. M.Sc., Dept.
of Computing and Software, McMaster University, Hamilton, ON, Canada (2002)

15. Website, N.L.P.L.O.:
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

16. Lawford, M., Wonham, W.: Equivalence preserving transformations of timed tran-
sition models. IEEE Trans. Automatic Control 40(7), 1167–1179 (1995)

17. Hu, X.: Proving Implementability of Timing Properties with Tolerance. Ph.D.,
Dept. of Computing and Software, McMaster University, Hamilton, ON, Canada
(2008)

Dynamic Event-Based Runtime Monitoring of

Real-Time and Contextual Properties�

Christian Colombo1, Gordon J. Pace1, and Gerardo Schneider2

1 Department of Computer Science, University of Malta, Malta
2 Department of Informatics – University of Oslo, Oslo, Norway
{ccol002,gordon.pace}@um.edu.mt, gerardo@ifi.uio.no

Abstract. Given the intractability of exhaustively verifying software,
the use of runtime-verification, to verify single execution paths at run-
time, is becoming popular. Although the use of runtime verification is
increasing in industrial settings, various challenges still are to be faced
to enable it to spread further. We present dynamic communicating au-
tomata with timers and events to describe properties of systems, imple-
mented in Larva, an event-based runtime verification tool for monitoring
temporal and contextual properties of Java programs. The combination
of timers with dynamic automata enables the straightforward expression
of various properties, including replication of properties, as illustrated in
the use of Larva for the runtime monitoring of a real life case study —
an online transaction system for credit card. The features of Larva are
also benchmarked and compared to a number of other runtime verifica-
tion tools, to assess their respective strengths in property expressivity
and overheads induced through monitoring.

1 Introduction

As software systems grow bigger and more complex, and as they influence our
lives in more frequent and direct ways, the need for their validation similarly
grows. Over the past decades, program validation has become an increasingly
important and active research area striving towards certified code with the ul-
timate holy grail of providing a guarantee of the absence of errors from a given
system. Though testing and simulation have been the most widely-used tech-
niques in industry, formal methods have started playing a more important role
in program validation. Static analysis and model checking techniques have been
improved, but still require expertise to apply on large complex systems, and usu-
ally fail to scale up to real-life systems. To address the problem of intractability,
an alternative approach which has been developed is that of runtime verifica-
tion, in which the desired properties are only checked at runtime on the active
execution path. Properties are written in a formal logic and then transformed
into a runtime monitor which is instrumented with the system to be monitored.

� The research work disclosed in this publication is partially funded by Malta Gov-
ernment Scholarship Scheme grant number ME 367/07/29.

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 135–149, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

136 C. Colombo, G.J. Pace, and G. Schneider

Subsequently, the runtime monitor observes the system while it is running, and
triggers an appropriate response if a system property is violated. The main issue
is a trade off between the expressivity of the logic and the overhead created on
the monitored system.

Although the overhead induced through the monitors is undoubtedly crucial
in certain application areas, indicating that the expressivity of the logic should
be constrained so as to ensure effective monitors, the logic should be able to
handle certain features to ensure its utility in a practical setting: (1) tempo-
ral aspects, including (i) consequentiality — e.g. ‘authentication happens before
data access’, and (ii) real-time — e.g. ‘a transaction takes no more than 30 sec-
onds to execute’; (2) Contextual aspects — the possibility of monitoring objects
either globally, grouped according to their container or individually, e.g. ‘every
account (in a given banking system) must belong to a registered user’, or ‘a bank
transfer (corresponding to a given user) may only be performed without any
charge if both accounts are registered (in European countries)’; (3) Exceptions
— monitoring the exceptional cases in the execution of a program. Although
the application domain clearly determines which type of properties one would
need to monitor, ideally all the above should be expressible in the logic used for
property specification.

In this paper we present dynamic communicating automata with timers and
events to handle the above-mentioned aspects when describing properties of
systems, and their implementation for runtime-verification in the tool Larva.
Larva has been used in a real-life case study, consisting of a Java program
which forms part of a software dealing with credit card transactions. Moreover,
we compare our tool with a number of state-of-the-art runtime verification tools1:
Java-MOP, Java-MaC, Hawk, ConSpec, and Lola.

The paper is organised as follows. In the next section we introduce dynamic
automata with timers and events (DATEs) as the underlying property specifica-
tion logic, and how monitors can be constructed directly from such structures,
as implemented in the tool Larva. In section 3, we then present the application
of Larva on a credit card transaction systems, and in section 4 we compare it
to other tools.

2 Event-Based Runtime Monitoring

As argued in the introductory section, the expressivity of the logic in which to
express properties is crucial. In this section we present a theory of communicating
automata with events and timers used to express properties, and the construction
of monitors from such properties — the basis of our tool Larva.

2.1 Dynamic Automata with Events and Timers

The underlying logic we will use to define the specification properties of the sys-
tem is based on communicating symbolic automata with timers, with
1 We would like to thank Irem Aktug, Johan Linde, Grigore Roşu, Feng Chen, Oleg

Sokolsky and César Sanchez for their assistance in benchmarking their tools.

Dynamic Event-Based Runtime Monitoring 137

event-triggered transitions. Events can be visible system actions (such as method
calls or exception handling), timer events, channel synchronisation (through
which different automata may synchronise) or a combination thereof.

Definition 1. Given a set systemevent of events which are generated by the
underlying system and may be captured by the runtime monitor, a set of timer
variables timer, and a set of channels, a composite event made up of system
events, channel synchronisation, a timeout on a timer, a choice between two
composite events (written e1 +e2) or the complement of a composite event (writ-
ten e), is syntactically defined as follows:

event ::= systemevent | channel? | timer @ δ | event + event | event

We say that a basic event x (which can be a system event, a channel synchroni-
sation or a timeout event) will fire a composite event expression e (written x � e)
if either (i) x matches exactly event e; or (ii) e = e1 + e2 and either x � e1 or
x � e2; or (iii) x is a system event and e = e1, and x �� e1.
The notion of firing of events can be extended to work on sets of events. Given a
set of basic events X, a composite event e will fire (written X � e) if either (i) e
is a basic event expression, and for some event x ∈ X, x � e; or (ii) e = e1 + e2

and either X � e1 or X � e2; or (iii) X contains at least one system event and
e = e1, and for all x ∈ X, x �� e1.

The semantics of the complement of an event is constrained to fire when at
least one system event fires, so as to avoid triggering whenever a timer event or
channel communication happens, thus making such events to depend solely on
the underlying system, hence increasing compositionality. This constraint can
be relaxed without affecting the results in this paper.

Since we require real-time properties, we will introduce timers (ranging over
non-negative real numbers), whose running may be paused or reset. The config-
uration of a finite set of timers determines the value and state of these timers.

Definition 2. The configuration of timers (written CT) is a function from
timers to (i) the value time recorded on the timer; and (ii) the state of the
timer (running or paused). Timer resets, pauses and resumes are functions from
a timer’s configuration to another changing only the value of one timer to zero
(in the case of a reset), or the state of one timer (in the case of pause or re-
sume). A timer action (written TA) is the (functional) composition of a finite
number of resets, pauses and resumes.

Based on events and timers, we define symbolic timed-automata — similar to
integration automata [1], but more expressive than Alur and Dill’s Timed Au-
tomata [3] (since we enable reset, pause and resume actions on timers). Unlike
integration automata, the automata we introduce have access to read and modify
the underlying system state. In practice this can be used to access and modify
variables making the transitions more symbolic and enumerative in nature.

Properties of a given system will be expressed as communicating timed-
automata. These automata will have access to read and modify the state of
the underlying system.

138 C. Colombo, G.J. Pace, and G. Schneider

Definition 3. A symbolic timed-automaton running over a system with state
of type Θ is a quadruple 〈Q, q0, →, B〉 with set of states Q, initial state q0 ∈ Q,
transition relation →, and bad states B ⊆ Q. Transitions will be labelled by (i)
an event expression which triggers them; (ii) a condition on the system state
and timer configuration which will enable the transition to be taken; (iii) a timer
action to perform when taking the transition; (iv) a set of channels upon which
to signal an event; and (v) code which may change the state of the underlying
system:

Q × event × (Θ × CT → Δ = Δ × TA× 2channel × (Θ → Θ) × Q

We will assume that a total ordering < exists on the transitions to ensure de-
terminism.

The behaviour of an automaton M upon receiving a set of events consists of (i)
choosing the highest priority transition which fires with the set of events and
whose condition is satisfied; (ii) performing the transition (possibly triggering
a new set of events); and (iii) repeating until no further events are generated,
upon which the automaton waits for a system or timeout event.

Definition 4. For a symbolic timed-automaton M = 〈Q, q0, →, B〉, we say
that a set of system scheduled events X, system state θ ∈ Θ, timer configura-
tion T and state q (in which M currently resides), performs a step to X ′, θ′

and q′, with timer update t′ (written (X, θ, q) ⇒T
t′ (X ′, θ′, q′)) if q /∈ B and

(q1, e, c, t, O, f, q2) be the largest (in terms of <) transition in → such
that: (i) q = q1; (ii) X � e; (iii) c(θ, T), and the following hold: (i) t′ = t;
(ii) q′ = q2; (iii) θ′ = f(θ); (iv) X ′ = O. If no such transition exists, we write
(X, θ, q) ⇒T

id (∅, θ, q).
The notion of automata performing a step can be extended over to a vector of
automata communicating via broadcast channels. Given a vector of n automata
M̄ = 〈M1, M2, . . . Mn〉, in states q̄ = 〈q1, q2, . . . qn〉 and with shared timers in
state T , we write that (X, θ0, q̄) ⇒T

t′ (X ′, θn, q̄′) if (i) for each 1 ≤ i ≤ n,
(X, θi−1, qi) ⇒T

ti
(X ′

i, θi, q
′
i); (ii) t′ = tn−1◦tn−2◦ . . . ◦t1; (iii) X ′ = X ′

1 ∪ X ′
2 ∪

. . . ∪ X ′
n.

Note that the order of execution is set by the order of the automata, once again
to avoid non-determinism. Clearly, as in any programming with side-effects, the
management of actions on the transitions must be carefully handled. Also note
that the timer actions are accumulated so as to evaluate all conditions with the
same initial timestamps.

The notions of symbolic timed-automata can be lifted to work on dynamic
networks of symbolic timed-automata, in which we enable the creation of new
automata during execution in a structured manner — referred to as Dynamic
Automata with Events and Timers (DATE) in the rest of the paper.

Definition 5. A DATE M is a pair (M̄0, ν) consisting of (i) an initial set of
automata M̄0; and (ii) a set of automaton constructors ν of the form:

event × (Θ × CT → Δ = Δ × (Θ × CT → Automaton)

Dynamic Event-Based Runtime Monitoring 139

Each triple (e, c, a) ∈ ν triggers upon the detection of event e, with the state and
timer configurations satisfying condition c, and creating an automaton using
function a. The triggered automata in time configuration T , with events X, in
system state θ (written tr(T, X, θ)) is defined to be:

tr(T, X, θ) def= {a(θ, T) | (e, c, a) ∈ ν, X � e, c(θ, T)}.

Finally, the events created by the transition can themselves trigger new
transitions.

Definition 6. The configuration of a DATE consists of (i) the state of the
timers; (ii) the state of the underlying system; and (iii) the state of the currently
running automata — a vector of a state for each automaton in the network.
A DATE is said to perform a full-step from configuration (T, θ, q̄) to configura-
tion (T ′, θ′, q̄′), upon receiving a set of system actions X, (written (T, θ, q̄) |⇒X

(T, θ′, q̄′)) if for some number n:

(X0, θ0, q̄0) ⇒T
t1 (X1, θ1, q̄1) ⇒T

t2 . . . (Xn, θn, q̄n) ⇒T
tn+1

(∅, θn+1, qn+1),

where: (i) q̄0 = q, θ = θ0 and θ′ = θn+1; (ii) the final state of the timer is
updated according to the timer’s accumulated actions: T ′ = (tn+1◦tn◦ . . . t1)(T);
and (iii) the automata are updated as required by DATE triggers q′ = qn+1 ⊕⋃

i tr(T, Xi, θi).
Such a step is called an accepting full-step, if no bad states appear in the inter-
mediate state vectors.

Clearly, not all situations can perform a full-step — even a single automaton may
create events on channels which trigger another transition indefinitely. To resolve
the problem of livelock, we must ensure that there is no mutual dependency over
the set of automata.

Definition 7. The output channels of an automaton M , written out(M), is
the union of all output channels on the transitions in M . Similarly, the input
channels of M , written in(M), are the channels appearing on the event label of
transitions in M . The dependency relation between channels for an automaton
M , written dep(M) is defined to be in(M) × out(M).
A DATE structure M̄ is said to be loop-free if, for any channel c, (c, c) /∈
(
⋃

i dep(Mi))∗.

The following result states that only loop-free automata can perform a full-step.

Proposition 1. Given a loop-free collection of automata M̄ in states q̄, set of
system events X and system state θ, there exist states q̄′, system state θ′ and
timers T such that (T, θ, q̄) |⇒X (T ′, θ′, q̄′).

Example 1. Consider a system where one needs to monitor the number of succes-
sive bad logins and the activity of a logged in user. By having access to badlogin,
goodlogin and interact events, one can keep a successive bad-login counter and
a clock to measure the time a user is inactive. Fig. 1(a) shows the property that

140 C. Colombo, G.J. Pace, and G. Schneider

interact\\t.reset();

goodlogin

\\t.reset();

t@30*60

logged out

bad logins

badlogin\\c++;

badlogin

\c>=2

logged in

inactive

logout\\c=0;

interact\\t.reset();

goodlogin

\\t.reset();

logged out

badlogin\\c++;

badlogin\c>=2

\c=0;blockUser();

logged in

logout\\c=0;

t@30*60\\logout();c=0;

Fig. 1. (a) An automaton monitoring the bad logins occurring in a system; (b) The
same automaton with recovery actions

allows for no more than two successive bad logins and 30 minutes of inactivity
when logged in, expressed as a DATE. Upon the third bad login or 30 minutes of
inactivity, the system reverts to a bad state. In the figure, transitions are labelled
with events, conditions and actions, separated by a backslash. It is assumed that
the bad login counter is initialised to zero.

Fig. 1(b) shows how actions can be used to remedy the situation when possible,
instead of going to a bad state. For example, after too many bad logins, one can
block the user from logging in for a period of time, and upon 30 minutes of
inactivity when logged in, the user may be forced to logout.

2.2 Constructing Monitors from DATEs

These automata can be used to express properties, and can then be directly and
automatically implemented as runtime-monitors for an underlying system. This
transformation has been implemented in the system Larva which embodies the
implementation of these properties in an automatic manner.

System Events: As the underlying system events Larva uses method calls,
invocation of exception handlers, exception throws and object initialisations.

Actions: Actions which are performed on the system state upon each transition
are essentially programs which can access code and data from the original
program. Note that the model we have used performs the action without
triggering any other transition directly. In Larva this is emulated by ensur-
ing that system events (eg. method calls) are masked from the automaton
triggers when called as actions. Furthermore, as shown in the example from
the previous section, unless mitigating a problem which arose, it is usually
sufficient to constrain actions to access only data local to the automaton. For
this purpose, Larva provides the means to have code local to an automaton.

Dynamic triggers: Dynamic triggers are used in Larva to enable multiple
instances of a property. The property shown in Fig. 1 must be replicated
for each user attempting to login to the system, in order to make it useful.
For this purpose, Larva enables properties to be replicated for multiple
instances of an object — written foreach object { property }. Upon

Dynamic Event-Based Runtime Monitoring 141

capturing events in the property, the system checks whether it is a new object
(using object equality, or a user provided mechanism) and if so creates a new
automaton.

Context information: Various properties use nesting of the replicating mech-
anism — each bank client may have a number of accounts, upon which a
number of transactions may take place. Properties about transactions must
thus be created for each and every transaction created, but each must have
access to its context — the account and client it belongs to. Giving repli-
cated properties access to these inherited values, enables concise and clear
properties to be expressed.

Invariants: Furthermore, various objects in the system are expected to satisfy
invariants — once set, the ID of a transaction may not change throughout its
lifetime. To enable this, Larva also enables such properties to be expressed,
and which are checked upon the arrival of each event. Internally, this is done
by creating an implicit transition from each state which sends the automaton
to a bad state should the condition not be satisfied.

Real-time: Larva provides a clock/stopwatch construct that can trigger events
after particular time intervals, implemented as Java threads using wait op-
erations. The main drawback of this approach is that it may not be totally
accurate due to the Java thread-scheduling mechanism.

Larva uses aspect-oriented programming techniques [9] to capture events. Upon
running the monitored system, the underlying automata are created and ini-
tialised. Through the use of aspect-oriented programming techniques, whenever
an event is captured, control is passed back to the DATE , which performs a
full-step, performing any timer actions and new timer events scheduled as nec-
essary before returning control to the system to proceed. If the system reaches
a bad state in any of the properties, appropriate action is taken to terminate or
remedy the situation as specified by the user.

Example 2. To illustrate the use of Larva, consider the monitoring of a sim-
plified banking system, in which one might want to ensure that there should
never be more than five users in the bank and that a deletion does not occur
when there are no users. By identifying the system events, corresponding to the
method calls in the target system, an automaton is constructed, to specify the
properties desired. In Fig. 2 we show the automaton used for monitoring the
adding and deleting of users, together with the equivalent Larva code2.

Furthermore, one may have properties which must hold for every user in a
bank, or possibly properties which should hold for each account owned by each
user. Larva enables the specification of such properties using the foreach con-
struct — instances of the properties (automata) appearing within the construct
are created for each instance of the class. Furthermore, since when nesting the
construct, the properties inside inner replicators have access to the contextual
information (the instance of the outer iterator) under which they appear. In this
2 The Larva system, including further documentation and examples, is available from
http://www.cs.um.edu.mt/~svrg/Tools/LARVA

142 C. Colombo, G.J. Pace, and G. Schneider

allUsers

deleteUser

\userCnt==1

\userCnt--;

deleteUser

ok

too many

addUser\\userCnt++;

deleteUser\\userCnt--;

allUsers

addUser

\userCnt>5

start

bad delete

addUser

\\userCnt++;

\\userCnt=0;

GLOBAL {

VARIABLES {

int userCnt = 0;

}

EVENTS {

addUser() = {*.addUser()}

delUser() = {*.deleteUser()}

allUsers() = {User u.*()}

}

PROPERTY users {

STATES {

BAD { toomany baddel }

NORMAL { ok }

STARTING { start }

}

TRANSITIONS {

start -> ok [addUser()\\userCnt++;]

start -> baddel [delUser()\\]

...

ok -> ok [delUser()\\userCnt--;]

ok -> ok [allUsers()]

}

}

}

Fig. 2. The automaton and Larva code of Example 2

case, not only the account, but also the user to whom the account belongs will
be known without explicitly invoking Java code each time. Invariants of the in-
stances of the class may also be specified directly, for example, to ensure that the
account number never changes. The following code illustrates these concepts.

FOREACH (User u) {

...

FOREACH (Account a) {

INVARIANTS

{ String accID = a.getID(); }

PROPERTY

{ ... }

}

}

3 Case Study

During its development, Larva was used on an real-life system handling credit
card transactions. The complexity of this system lies not only in the size of the

Dynamic Event-Based Runtime Monitoring 143

underlying code, which although not exceptionally large, has over 26,000 lines of
code, but also in the strong security implications and communication required
among various components (including third party systems, such as banks). The
system is designed to hold sensitive information of thousands of people — a
single leak of sensitive information could undermine the confidence of the users
in the system, leading to drastic financial losses. Furthermore, the system has
real-time issues and is required to be able to handle over 1000 transactions per
minute.

The system is composed of two parts, one handling the transactions and their
database and the other handles the communication to the respective bank or en-
tity which is involved in the transaction. These will be referred to as the transac-
tion handling system and the processor communication system respectively. The
whole system will be referred to as the transaction system.

A number of different classes of properties, as described below, were verified
at runtime using Larva on the system.

Logging of credit card numbers: During the development of the original
transaction system, credit card numbers were logged for testing purposes.
This is however, not in line with standard practice of secure handling of
credit card numbers. These logging instances were manually removed from
the code. However, to ensure that no instances escaped the developers’ at-
tention, a simple verification check to ensure that no data resembling a credit
card number is ever logged.

Transaction execution: Transactions are processed by going through a num-
ber of stages, including authorisation, communication with the user inter-
face, insertion of the transaction in the database and communication with
the commercial entity involved in the transaction, the stages taken depend
on which classification the transaction falls under. Designing properties to
ensure that during its lifetime, all transactions go through the proper stages
was straightforward, especially since the automata-based property language
used in Larva corresponds closely to the concept of stages, or modes in
which a transaction resides.

Authorisation transactions: Authorisation transactions have to be checked
to ensure that all the stages are processed in the correct order, keeping
certain values unchanged — for instance, one must make sure that the ID
of the transaction is never accidentally changed. Furthermore, other checks
such as ensuring that transaction amounts are not changed after being set
were also necessary.

Backlog: A particular feature of the system under scrutiny was a process called
backlogging — if communication with a bank or a commercial entity fails,
the request is retried a number of times after a given delay. The transaction
handling system with backlogs can become rather complex, and properties
were identified to ensure that the backlog process is performed for the ex-
pected number of times or until the transaction is approved.

Given the nature of the system, with different components and transactions
communicating and synchronising their behaviour, it was difficult to measure the

144 C. Colombo, G.J. Pace, and G. Schneider

overhead of the monitoring system for the case study. The case study, however,
was essential to identify features necessary for the use of runtime verification
on real-life case studies. The need for context-information and invariants arose
directly from this experience.

4 Comparison of Larva with Other Related Tools

In this section we compare Larva with various other runtime-verification tools
on a number of criteria, including both in terms of expressivity and overheads
induced.

4.1 Related Tools

ConSpec [2] is inspired by PSLang, but restricted to mobile devices with limited
resources. A contract is defined for each application and upon installation on
a device, the contract is checked against the user’s policies. If the application’s
contract does not comply with the user’s policies, the application cannot be
installed on the device. In other cases, where the application’s contract cannot
be definitively checked before installation, a runtime monitor is inlined to the
application.

Java-MOP [5] is a monitoring-oriented development environment combining
the specification and the implementation of a system. It goes further than run-
time verification in that it not only specifies properties to detect violations and
raise exceptions, but the violation handling mechanism is itself part of the design
of the system’s functionality. Hence, the monitoring is not simply an extra check
on top of the system but an integral part of the system’s design. An appealing
feature of Java-MOP is that it can be extended with different logics including
FTLTL, PTLTL, ERE and Jass.

The Monitoring and Checking (MaC) architecture [11] intends to bridge the
gap between specification and implementation. It has two different specification
languages: the Primitive Event Definition Language (PEDL) and Meta Event
Definition Language (MEDL) allowing for a clear separation between the defini-
tion of the primitive events of a system and the system properties. An implemen-
tation of the Monitoring and Checking architecture for Java is Java-MaC [10],
which enables automatic instrumentation to have access to the system events.
Instrumented programs send an event stream to the event recogniser and to iden-
tify higher-level activities, which are in turn processed by the runtime checker
to raise an alarm if any of the specified properties are violated.

Hawk [6] is programming-oriented extension of the rule-based Eagle logic.
Eagle [4,8] is a runtime verification tool comprising a rule-based language and
an interpreter for it, supporting future and past time logics, interval logics,
extended regular expressions, state machines, real-time and data constraints and
statistics. It is implemented as a Java library allowing rule parameterisation.
Transitions carry a condition (on the input of the state machine but also on the
variables which constitute the underlying system) and an action on the variables

Dynamic Event-Based Runtime Monitoring 145

of the state. Furthermore, the rules expressed in Eagle, can be either maximal
or minimal fixpoint semantics, allowing for more flexibility in expressing weak
and strong versions of the same operators.

Lola [7] is a synchronous language which allows the user to specify the prop-
erties of a program in past and future LTL. The advantage of Lola is that as a
synchronous language it guarantees bounded memory to perform online moni-
toring, but differs from most other synchronous languages in that it is able to
refer to future values in a stream. Lola allows the user to collect statistics at
runtime and to express numerical queries.

4.2 The Benchmark

A Java program representing a bank processing a number of transactions for a
number of users has been developed to experiment with the use of the different
systems. The bank system has a database which is used to simulate communi-
cation and time delays in the system. When a transaction is executed there are
three possible results: success, failure and exception. Upon a failure, the trans-
action is successively retried for another four times. No retries are performed
in case of an exception. Note that the intention of the benchmark case study is
primarily to compare property specification and monitoring.

We have identified a number of classes of properties, and concrete examples
for the bank processing system, to compare and contrast the use of the different
tools.

Scope: The type of scope which can be specified. Types of scope include object
(obj.), session (sess.) — one run of the application, multisession — current
and previous runs, global — all running applications of a system. This is
used to specify on which level the property is verified. For example if the
scope is ‘object’ then the property will be verified for each individual object.

Exceptions: Exception handling and throwing in an application usually repre-
sent important events in a system. This aspect represents whether or not the
user can express properties which include exception throwing and handling.

Real-time: Real-time refers to whether or not the monitored properties can
include real-time. This means that the verification system is able to trigger
checks at particular time intervals and compare clock values upon particular
system events.

Invariants: We use the term invariants to refer to inbuilt mechanisms in the
verification system to monitor the changing of values of variables. The pur-
pose is to be able to verify that certain variables only change when they are
supposed to do so.

Feedback: It refers to the capability of the monitoring system to return feed-
back to the target system. This usually takes the form of a mitigation action
in case a violation is found. In other cases this may be limited to stopping
the program’s execution (denoted by Stop. in Table 1).

Conditions: This refers to the ability to filter events by applying a condition
on the parameters and/or monitoring variables.

146 C. Colombo, G.J. Pace, and G. Schneider

Table 1. Expressivity features of various tools

Tool Larva ConSpec Java-MOP Java-MaC Hawk Lola

Scope Sess./Obj. �a Sess./Obj. Sess. Sess. Sess.

Exceptions � � × × × ×
Temporal Logics × × � × � �
Real-Time � × × �b �c ×
Mobile Application Policies × � × × × ×
Invariants � × � � × ×
Feedback � Stop. � � × ×
Conditions � � �d � × ×
Numerical Queries × × × × × �

a in specification it supports all the mentioned scopes but currently only session is
supported

b restricted (cannot trigger clock events)
c can be extended to support real-time
d restricted to implementing conditions in violation/validation handling method

Temporal logics: It represents the fact that the tool supports specification
written in temporal logics such as LTL.

Mobile application policies: We refer to the ability of defining a security
policy which can be partially verified before runtime if the application also
specifies its policy. Verifying applications for mobile devices require the mon-
itoring system to be as lightweight as possible.

Numerical queries: This refers to explicit support to expressing numerical
queries about statistics of the program being verified.

Table 1 shows which tool have explicit support for the aspect being considered.
Note that the meaning of the scope object is sometimes referred to as class. In the
case of Larva, the same object need not necessarily be the same instance, but
be equated through the (optional) use of a user-provided equality method. One
advantage of this approach is that when monitoring objects which are serialised
and de-serialised, the object before serialisation will still be considered the same
as the object afterwards (even though they are not the same instance).

Although with its own limitations, Larva can express a number of interesting
classes of properties, not all of them expressible directly in the other tools. Two
limitations of Larva are that it cannot support different temporal logics (Hawk,
Java-MOP and Lola do have this capability), and it is not suitable for security
of mobile devices (in which ConSpec excels).

4.3 Performance of Larva

Five tests have been built for the evaluation of the performance of Larva in
terms of overheads. Test 0 executes a number of transactions but does not violate
any of the given properties. Subsequently, Test 1 violates the invariant property

Dynamic Event-Based Runtime Monitoring 147

Table 2. Larva overheads when with the benchmark example

Test Reference Number 0 1 2 3 4

System without Monitoring

time(ms) 4 4 6303 3 9

memory(Kb) 23 23 23 70 161

System with Monitoring

time(ms) 123 120 6395 161 176

memory(Kb) 453 209 160 467 434

System with Monitoring without Clocks

time(ms) 55 60 n/a n/a 36

memory(Kb) 432 477 n/a n/a 378

Table 3. Statistics obtained when trying
Test 0 on variations of the benchmark

Test Variation Normal Time
Cons.

Big
Obj.

Many
Obj.

System without Monitoring

time(ms) 4 4722 4874 53849

memory(Kb) 23 23 260 2384

System with Monitoring

time(ms) 123 5321 5458 65153

memory(Kb) 453 418 458 3509

Table 4. The benchmark applied to
various tools. (∗ — no logging, no
clocks)

Test Ref. No. 0 1 4 0 1 4

Larva∗ ConSpec

time(ms) 27 23 30 7 n/a n/a

memory(Kb) 91 136 208 54 n/a n/a

Java-MOP Java-MaC

time(ms) 23 23 52 7 n/a n/a

memory(Kb) 174 173 312 26 n/a n/a

by trying to change the transaction amount. Test 2 violates the property that a
retry should occur within two seconds. Test 3 violates the property the a user
cannot have more than five transactions. Finally, Test 4 violates the property
that upon an exception the transaction is not retried.

Table 2 shows statistics for the benchmark when the five tests were run under
three different configurations: (i) without monitors; (ii) with monitors for all the
properties; (iii) removing the monitors which include clocks with the purpose of
investigating the impact of clocks on the monitoring system.

Although the resources required for the program to run without monitors as
compared to when it was run with monitors seems huge, the overhead is linear
in the size of the automaton used to describe the properties. In fact, increasing
the size of the system with regards to the required memory and processing time
preserves the complexity as shown in Table 3, in which Test 0 is used.

The first experiment was to increase the processing time which the system
without monitors require to complete the execution. One should notice how the
increase from 4722 to 5321 milliseconds is relatively much smaller than that
from 4 to 123 milliseconds. In the second experiment the memory required by
each object was increased. In this case the total memory used was 458 kilobytes
which is very close to the memory initially used for the initial experiment (453
kilobytes).

148 C. Colombo, G.J. Pace, and G. Schneider

In order to investigate the real relationship between the size of the monitor-
ing system and the monitored system, the number of monitored objects was
increased by a factor of 10. The results obtained substantiate the intuition that
the size of the monitor is linear with respect to the number of monitored objects.

It is difficult to have a true and fair comparison of the tools, since they do
not all have the same expressive power and not all monitors were implementable
on all tools. For instance, none of the other tools handle real-time properties.
Another issue is that Larva issues a report regarding the status of the monitor-
ing system which is not done by other tools. Removing code and properties to
enable common ground comparison between the tools, the results obtained are
shown in Table 4. Note that Hawk and Lola are not in Table 4 since we did not
have access to the tools. The results concerning their expressiveness were based
on descriptions of the tools from papers and personal communication.

The most similar tool to Larva is undoubtedly Java-MOP since it can im-
plement the same properties in a very similar fashion and both Larva and
Java-MOP use AspectJ as the underlying framework. Compared together, the
statistics show that there is little difference. ConSpec is restricted to security
properties on mobile devices so the extent of the comparison is limited. To give
an idea of resources used by ConSpec, we implemented the property which limits
the number of users rather than the number of transactions per user. This ex-
plains why the time and memory required were much less than Larva and Java-
MOP. Finally, with Java-MaC, it is again difficult to compare the results since
none of the properties could be implemented directly. Furthermore, Java-MaC
uses a different technology — transmiting the event stream to other applica-
tions running simultaneously. These factors explain the difference in the amount
of resources used.

5 Conclusions

Runtime verification has been widely used in various different contexts and for
widely different systems. Automatically instrumenting code managing verifica-
tion from properties gives various advantages. However, the need for a sufficiently
expressive logic to be able to specify the system properties succinctly and clearly
is essential for confidence in the overall monitoring process. In this paper, we have
introduced dynamic communicating automata with timers and events (DATE)
to describe properties of systems which need to be checked for different instances
of a class. We have also presented Larva, a runtime verification implementa-
tion of this logic. The combination of timers with dynamic automata enables
the straightforward expression of various properties, as illustrated in the use of
Larva for the runtime monitoring of a real-time transaction system.

Larva performs well in comparison to state-of-the-art runtime verification
tools, and in terms of expressivity it comprises a set of features not presented as
a whole in other tools.

So far the main limitation of Larva is that it does not support the specifi-
cation using different temporal logics. This is however not a drawback since the

Dynamic Event-Based Runtime Monitoring 149

underlying automata theory of Larva are highly expressive, and we are currently
implementing a translation from LTL and Duration Calculus to DATEs.

Further Work. We consider that Larva to be mature enough to be used in
the development phase to monitor programs were performance is not crucial,
even if the overheads induced have been shown to be reasonable. Real-time
properties are fragile under slowing down (by introducing monitors) or speeding
up (by removing them), which makes runtime verification even more challenging.
We are currently building a theoretical framework for the analysis of real-time
properties to ensure they are invariant up to slowing down (or speeding up) the
system. Larva is being extended with this analysis to enable more confidence
in the instrumentation and deinstrumentation of real-time properties.

References

1. Bouajjani, A., Lakhnech, Y., Robbana, R.: From duration calculus to linear hybrid
automata. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939. Springer, Heidelberg
(1995)

2. Aktug, I., Naliuka, K.: Conspec: A formal language for policy specification. In:
FLACOS 2007, Oslo, Norway, October 2007, pp. 107–109 (2007)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

4. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004)

5. Chen, F., Roşu, G.: Java-mop: A monitoring oriented programming environment
for java. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
546–550. Springer, Heidelberg (2005)

6. D’Amorim, M., Havelund, K.: Event-based runtime verification of java programs.
SIGSOFT Softw. Eng. Notes 30(4), 1–7 (2005)

7. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: Lola: Runtime monitoring of synchronous
systems. In: TIME 2005, pp. 166–174. IEEE Computer Society Press, Los Alamitos
(2005)

8. Goldberg, A., Havelund, K.: Automated runtime verification with eagle. In:
MSVVEIS (2005)

9. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.,
Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

10. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-mac: A run-time
assurance approach for java programs. Formal Methods in System Design 24(2),
129–155 (2004)

11. Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assurance
based on formal specifications. In: Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications (1999)

Can Flash Memory Help in Model Checking?�

Jǐŕı Barnat1, Luboš Brim1, Stefan Edelkamp2, Damian Sulewski2,
and Pavel Šimeček1

1 Masaryk University Brno, Czech Republic
2 Technische Universität Dortmund, Germany

Abstract. As flash media become common and their capacities and
speed grow, they are becoming a practical alternative for standard me-
chanical drives. So far, external memory model checking algorithms have
been optimized for mechanical hard disks corresponding to the model of
Aggarwal and Vitter [1]. Since flash memories are essentially different,
the model of Aggarwal and Vitter no longer describes their typical behav-
ior. On such a different device, algorithms can have different complexity,
which may lead to the design of completely new flash-memory-efficient
algorithms. We provide a model for computation of I/O complexity on
the model of Aggarwal and Vitter modified for flash memories. We dis-
cuss verification algorithms optimized for this model and compare the
performance of these algorithms with approaches known from I/O effi-
cient model checking on mechanical hard disks. We also give an answer,
when the usage of flash devices pays off and whether their further evolu-
tion in speed and capacity could broaden a range, where new algorithms
outperform the old ones.

1 Introduction

There are numerous computational tasks that require to generate and process
that huge amount of data that cannot be simply kept in internal memory. Un-
fortunately, it is not acceptable in terms of performance to rely on the standard
memory virtualization techniques provided by the operating system, and special-
ized algorithms must be devised to efficiently manipulate data stored externally.
These are the so called I/O efficient or external-memory algorithms [2].

I/O efficient algorithms reflect physical properties of external memory devices,
i.e. they are designed to minimize expensive random accesses to data in favor
of their block processing. However, likewise all the PC components, also the
external memory devices are being continuously developed and their properties
are improving in time. Recently, flash memory based external memory devices
became widely used as the so called solid state disks (SSDs). Unlike its mag-
netic counterpart, SSD does not rely on physical movements of the head(s) to
access the data. Therefore, the access time is much smaller for a solid state disk
� This work has been partially supported by the Grant Agency of Czech Republic grant

No. 201/06/1338, the Academy of Sciences grant No. 1ET408050503, and DFG grant
No. ED 74/4-1.

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 150–165, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Can Flash Memory Help in Model Checking? 151

compared to the magnetic one. For example, the speed of random reads for a
solid state disk build with NAND flash memory lies roughly at the geometric
mean of the speeds of random access memory (RAM) and magnetic hard drive
(HDD) [3]. The only factor limiting solid state disks from being massively spread
is the cost of the device if expressed per stored bit. The cost per stored bit is
still significantly higher for SSDs than for magnetic disks. However, the cost per
bit is definitely subject to change in the future.

I/O efficient algorithms have been studied also in the context of formal verifi-
cation, model checking [4] in particular, as one of the techniques to fight the well
known state explosion problem. In this paper we focus on enumerative on-the-fly
LTL model checking, which is the standard option for analyzing software sys-
tems. Our goal is to consider a simple question that comes up with the advent of
solid state disks. Namely, if it is meaningful to design new I/O algorithms for LTL
model checking that would take advantage of the fast random reads of a solid
state disk, or if it is satisfactory to apply the existing I/O efficient LTL model
checking algorithms even for SSDs whose characteristics differ significantly from
the characteristics of the traditional magnetic disks.

To answer the question we design several techniques to implement an SSD
efficient graph traversal procedure, namely we discuss several variants of hash-
ing mechanism that is used by the Nested DFS algorithm to efficiently identify
already generated states during the graph traversal. We also report on a prelimi-
nary experimental comparison of newly suggested SSD efficient and the standard
I/O efficient techniques, and discuss the impact of possible technology improve-
ments that may come in the future.

The paper is organized as follows. In Section 2 we briefly recall the standard I/O
efficient techniques used for enumerative external memory LTL model-checking.
In Section 3 we state the differences between the standard magnetic and new solid
state disks. In Section 4 we describe several SSD efficient hashing techniques, and
we show in Section 5 how these can be used to design SSD efficient Nested DFS
algorithm. Section 6 report on our experimental evaluation of both the SSD and
I/O efficient techniques. Finally, in Section 7 we conclude the paper and plot what
impact may have possible future technological improvements.

2 I/O Efficient Model Checking with Mechanical Disks

LTL model checking problem can be reduced to the problem of accepting cycle
detection in the graph [4]. In the context of enumerative LTL model checking,
the graph to be searched for the presence of an accepting cycle is generated
on-the-fly meaning that if a graph traversal algorithm needs to proceed to an
immediate successors t of a state s, it computes state t from the state vector
of s. To prevent re-visiting of already explored states, all states that have been
processed are stored in memory, hence, if a state is generated it is first checked
against the set of stored states to learn whether it is a new state or has been
visited before. In the context of I/O efficient algorithms, this check is referred
to as the duplicate detection.

152 J. Barnat et al.

Due to the huge number of states, their large size, and the speed of generat-
ing them, the memory demands while analyzing systems rise rapidly. In order to
release memory, states stored in the set of visited states have to be fully or par-
tially flushed to the external memory. Under this circumstances a check whether
a state has been visited may involve I/O operation as not only the states stored
in memory, but also the states stored on external memory device must be con-
sidered. This however renders a standard graph traversal algorithm inefficient as
the I/O operation is in orders of magnitude slower than a single or several reads
from the internal memory.

2.1 Graph Traversal

The core technique that gave birth to I/O efficient algorithms is the so called
delayed duplicate detection [5,6,7,8] whose idea is to postpone the individual
checks against the set of visited states and perform them together in a group
amortizing thus the cost of I/O operations per a single check.

There are other techniques that have significant impact on the performance
of an I/O efficient graph traversal algorithm. For example, it is possible to per-
form hash compaction or compression of states to be stored which results in
less amount of data to be transferred between external and internal memory.
Another quite successful improvement builds upon using a Bloom filter main-
tained in main memory in order to reduce unnecessary I/O operations. Also
simple partitioning of states stored on external memory may have impact on the
performance of an I/O efficient graph traversal procedure. For more details on
these techniques we kindly refer the reader to [9].

As mentioned above, an important aspect of an I/O efficient algorithm is that
the data stored on external memory is accessed in blocks. While the clever imple-
mentation techniques aim at reducing the number of I/O operations, or reducing
the amount of data being transferred, there is also possibility to improve the per-
formance of an I/O efficient algorithm by simple improving the performance of
an I/O operation. For example, by connecting two identical external memory
devices into a mirror RAID array we can achieve almost double bandwidth that
the block of data may be read with from the external memory device. Note that
this approach basically improves bandwidth only while does not influence the
latency, i.e. the time needed to read the first bit.

Similarly, it is possible to reduce time needed for solving the problem if in-
stead of the serial I/O efficient algorithm working over a single external device
a parallel I/O efficient algorithm is used utilizing multiple external memory de-
vices. This is, however, possible only if the algorithm involved allows parallel
processing, which is, for example, the case of breadth-first search, but is not the
case of depth-first search [10].

2.2 LTL Model Checking

For accepting cycle detection there is a space efficient optimal algorithm called
Nested Depth-First Search [11]. Unfortunately, the algorithm becomes rather

Can Flash Memory Help in Model Checking? 153

Table 1. Characteristics of solid state and hard disk drives

HDD SSD

Read Bandwidth 65 MB/s 72 MB/s

Write Bandwidth 60 MB/s 70 MB/s

Random Read Access Time 11 ms 0.1 ms

Random Write Access Time 11 ms 5 ms

inefficient, as soon as states to be stored cannot be maintained in the main
memory [10,12].

Recently, three different I/O efficient algorithms for solving the LTL model
checking problem have been published [12,13,14]. In [12] the authors suggested to
avoid the DFS-based accepting cycle detection by the reduction of the problem to
the problem of testing reachability relation [15,16] whose I/O efficient solution
was further improved by using the directed A* search and parallelism. Since
the reduction to the reachability relation testing may result in up to quadratic
increase in the space complexity, this algorithm should be rather viewed as a
tool for bug hunting.

A new I/O efficient algorithm for LTL model checking was given in [13]. The
algorithm avoids the expensive increase in the space complexity, but does not
work on-the-fly, which means that the full state space must be generated and
stored on external memory device before it is checked for the presence of an
accepting cycle. This disadvantage makes the algorithm quite inefficient in the
cases an error can be discovered quickly using some on-the-fly algorithm. Finally,
the algorithm given in [14] is both on-the-fly and linear in the space requirements
with the respect to the size of the state space.

3 From Mechanical to Solid State Disks

Mechanical hard disks have been around for quite a long time, and they have
provided us with reliable service over these years. This is about to change with
the advent of Solid State Disks (SSD). A solid state disk is electrically, mechan-
ically and software compatible with a conventional (magnetic) hard disk drive.
The difference is that the storage medium is not magnetic (like a hard disk) or
optical (like a CD) but solid state semiconductor (NAND flash) such as bat-
tery backed RAM, EEPROM or other electrically erasable RAM-like chip. In
last years, NAND flash memories outpaced DRAM in terms of bit-density [17]
and the market with SSDs continues to grow. This provides faster access time
than a disk, because the data can be randomly accessed and does not rely on a
read/write interface head synchronising with a rotating disk. We list a typical
data transfer bandwidth and access time for both magnetic and solid state disk
in Table 1.

It became the standard to measure the analytical complexity of an I/O effi-
cient algorithm using the complexity model by Aggarwal and Vitter [1]. However,

154 J. Barnat et al.

for solid state disk, the model is no more valid, since it does not cover the dif-
ferent access times for random read and write operations. For solid state disks,
we propose to extend the model of Aggarwal and Vitter with a penalty factor p
for random write operations.

4 I/O Efficient Graph Traversal with Solid State Disks

We observe that random read operations on SSDs are substantially faster than
on mechanical disks, while other parameters are similar. Therefore, it appears
natural to ask, whether it is necessary to employ delayed duplicate detection
(DDD) known from the current I/O efficient graph algorithms, or it is possi-
ble to build an efficient SSD algorithm using the standard immediate duplicate
detection (IDD), hashing in particular.

First, we study direct access to the solid state disk without exploiting RAM
usage. This implies both random read and random write operations. The imple-
mentation serves as a reference, and can be scaled to any implicit search with a
visited state space that fits on the solid state disk.

Next, we compress the state in internal memory to include the address on
secondary memory only. For this case states are written sequentially to the back-
ground memory in the order of generation. For resolving hash synonyms, states
lookup random reads are needed. Even though linear probing shows performance
deficiencies for internal hashing, for block-wise strategies, it is the apparent can-
didates. Alternative hashing strategies can reduce the number of random reads.

The third option fosters flushing the internal hash table to the external device,
once it becomes full. In this case, full state vectors are stored internally. For
large amounts of background memory and small vector sizes, large state spaces
can be looked at. Usually the exploration process is suspended while flushing the
internal hash table. We observe different trade-offs for the amount of randomness
for background readings and writing, which mainly depend on increasing the
locality of the access.

4.1 Hashing

The general setting (see Fig. 1) is a background hash table Hb kept on the
SSD, which can hold m = 2b entries. As said, SSDs prefer sequential writes and
sequential read, but can cope with an acceptable number of random reads. We
additionally assume a foreground hash table Hf with m′ = 2f entries. The ratio
between fore- and background is, therefore, r = 2k = 2b−f . Collisions especially
on the background hash table can yield additional burden. As chaining requires
overhead for storing and following links, we are left with open addressing and
adequate probing strategies.

As linear probing finds elements through sequential scanning, it is I/O effi-
cient. The efficiency analysis goes back to Knuth [18]. For a load factor of α
a successful search requires about 1/2 (1 + 1/(1 − α)) accesses on the average,
while an unsuccessful search requires about LPα = 1/2

(
1 + 1/(1 − α)2

)
accesses

Can Flash Memory Help in Model Checking? 155

Hf

Hb

u

v

w

x

y

u

v

x

y

z

RAM SSD

w

Fig. 1. Fore- and Background Memory, such as RAM and SSD

on the average. For a hash table that is filled up to α = 50% we have less than
three states to look at on the average, which easily fit into the I/O buffer. Given
that random access is slower than sequential access, this implies that unless the
hash table becomes filled, linear probing with one I/O per lookup per node is
an appropriate option for SSD-based hashing.

4.2 Mapping

The simplest method to apply SSDs in graph search is to store each node at its
background hash address in a file, and – if occupied – to apply conflict resolution
strategy on disk. By their large seek times, this option is clearly infeasible for
HDDs, but it does apply to some extent to SSDs. Nonetheless, besides extensive
use of random writes that operate block-wise and are, thus, expected to be slow,
one problem of the approach is the initialization time, incurred by erasing all
existing data stored in background memory.

Hence, we apply a refinement to speed-up search. With one additional bit-
vector array kept in RAM, we denote, whether or not a position is already
occupied. This limits initialization time to reset all bits in main memory, which is
much faster. Moreover, this saves lookup time in case of hashing a new state with
an unused table entry. Viewed differently, one can think of a Bloom filter [19],
with conflict resolution on disk. Figure 2 (left) illustrates the approach. The
bit-vector occupied memorizes, whether the address on the SSD is in use or not.

The extra amount of RAM additionally limits the size of the search spaces to
be processed. In search practice with a full state vector of several bytes to be
stored in the background memory, however, investing one bit per state in RAM
does not harm much, given that the ratio between main and external memory
remains moderate. The only limit for the exploration is imposed by the number
of states that can be stored on the solid state disk, which we assume to be
sufficiently large.

156 J. Barnat et al.

Hf

Hb

u

v

x

y

z

RAM SSD

woccupied
0
1

1

1
0

1

1

1

0

0

Hf

Hb

u

v

x

y

z

RAM
SSD

w

occupied
1
0

0

0
0

1

0
1

0

a

d

c

b

e

sort

Fig. 2. External hashing without and with merging

For analyzing the approach, let n be the number of nodes and e be the number
of edges in the state space graph that are looked at. Without occupied vector
requires e lookup and n insert operations. Let B is the size of a block (amount
of data retrieved, or written with one I/O operation) and |s| be the length of a
state. As long as LPα · |s| ≤ B, at most two1 blocks are read for each lookup2.
For LPα · |s| > B no additional random read access is necessary. After the
lookup, an insert operation results in one random write. This results in a flash
I/O complexity of O(e + pn). Using the occupied vector, the number of read
operations reduces from e to n, assuming that no collisions take place.

As the main bottleneck of the approach is random writing to the background
memory, as another refinement we can additionally employ a foreground hash
table as a write buffer. Due to numerous insert operations, the foreground hash
table will once become filled, and then has to be flushed to the background, which
incurs writes and subsequent reads. One option that we call merging is to sort
the internal hash table wrt. to the external hash function before flushing. If the
hash functions are correlated, the sequence is already presorted, by means that
the number of inversions inv(Hf) = |{(i, j) | hf (si) < hf (sj)∧ hb(si) > hb(sj)}|
is small. If inv(Hf) = O(m′) and given that we use an algorithm that exploits
presorting3, we obtain a linear time sorting algorithm. While flushing we now
have a sequential write (due to the linear probing strategy), such that the total
worst-case I/O time for flushing is bounded by the number of flushes times the
efforts for sequential writes. Figure 2 (right) illustrates the approach. As we are
able to exploit sequential data processing, updating the background hash table

1 when linear probing arrives at the end of the table, an additional seek to the start
of the file is needed.

2 at our system B = 4, 096 bytes, and |s| ≈ 40 bytes.

3 e.g. adaptive sort that runs in time m′ + m′ log
(

1 +
inv(Hf)

m′

)
.

Can Flash Memory Help in Model Checking? 157

RAM

SSD

read

insert

write

Fig. 3. Updating Tables in Hashing with Linear Probing while Merging

corresponds to a scan (Figure 3). Blocks are read into the RAM and merged
with the internal information and then flushed back to SSD.

4.3 Compressing

State compression is a common option in LTL model checking. There are lossless
compression strategies like FSM compaction [20], as well as lossy compression
strategies like bit-state hashing [21] or hash compaction [22]. For the sake of
completeness, in this paper we avoid lossy hash methods as they imply partial
state space coverage.

Probably the best lossless compression ratio is obtained using practical perfect
hash function [23,24]. Perfect hashing corresponds to an one-to-one mapping of
some set S to {1, . . . , |S|}. Different off-line algorithms [25] have been developed
that include perfect hash functions for what has been coined to the term semi-
external LTL model checking. We do not apply perfect hashing at all, as for the
construction of perfect hash functions, set S has to be known, which contradicts
the purpose of on-the-fly model checking.

Instead we store all state vectors in a file on the external storage device, and
substitute the state vector by its relative file pointer position. For an external
hash table of size m this requires �log m� bits per entry, that is m�logm� bits
in total. Figure 4 illustrates the approach with arrows denoting the position on
external memory. An additional bit-vector occupied is no longer needed.

This strategy also results in e lookups and n insert operations. Since the or-
dering of states on the SSD does not necessarily correlate with the order in main
memory, the lookup of states due to linear probing induces multiple random
reads. Hence, the amount of individual blocks which have to be read is bounded
by LPα · e. In contrast, all insert operations are performed sequentially, utilizing
a cache of B bytes in memory. Subsequently this approach performs O(LPα · e)

158 J. Barnat et al.

Hf

Hb

u

v
x

y
z

RAM SSD

w

Fig. 4. State Compressing

random reads to the SSD. As long as LPα < 2 this approach performs less ran-
dom read operations then mapping. By using another internal hashing strategy,
e.g. cuckoo hashing [26] one reduces the number of lookups to at most 2. As
sequential writing of n states of s bytes requires n|s|/B I/Os, the total flash-
memory I/O complexity is O(LPα · e + n|s|/B).

4.4 Flushing

The above approaches either require significant time to write data according to
hb, or request significant sizes of foreground memory. There are further trade-offs
that we will consider next.

One first solution that we call padding is to append the entire foreground
hash table as it is to the existing data on the background table. Hence, the
background hash function can be roughly characterized as hb(s) = i ·m′ +hf (s),
where i denotes the current number of flushes, and s the state to be hashed.

Writing is sequential, and conflict resolution strategy is inherited from the
internal memory. For several flushing reading a state for answering membership
queries becomes involved, as the search for one state incurs up to r many table
lookups. Conflict resolution may lead to an even worse performance. For a mod-
erate number of states that exceed RAM resources only by a very small factor,
however, the average performance is expected to be good. As far as all states
can reside in main memory no access to the background memory is needed.

We can safely assume that load factor α is small enough, so that the extra
amount of work due to linear probing is transparent by using block accesses.
Again e lookups and n insert operations are performed. Let ei be the number
of successors generated in stage i, i ∈ {0, . . . , r − 1}. For stage 0 no access to
the background table is needed. For stage i, i > 0, at most O(i · ei) blocks have
to be read. Together with the sequential write of n elements (in r rounds) this
results in a flash memory complexity of O(n|s|/B + rp +

∑
0≤i<r i · ei) I/Os.

Can Flash Memory Help in Model Checking? 159

Hf

Hb

u

v

x

y
z

RAM SSD

w

occupied
1
1

0

1
0

1

1
1

0

a

d

c

b

e

Hf

Hb

u

v

x

y

z

RAM SSD

w

occupied
0
1

1

1
0

1

1

1

0

0

a

d

c

b

e

0

Fig. 5. Padding and slicing

An illustration is provided in Figure 5 (left). The entire foreground hash table
has been flushed once, while the maximum number of flushes is set to 3.

The obvious alternative is to slice the background hash table such that hb(s)
becomes hf (s) · r + i. An illustration is provided in Figure 5 (right); situation
after one flush, and, again, at most 3 flushes are assumed.

The disadvantage of processing the entire external hash table during flushing
is compensated by the fact that the probing sequences in the hash tables can
now be searched concurrently. For the lookup we use a Boolean vector of size i
that monitors if an individual probing sequence has terminated with an empty
bucket. If all probing sequences fail, the query itself has failed.

5 I/O Efficient Model Checking with Solid State Disks

In Section 4 various implementations of graph traversal with SSD are shown. It is
apparent that some of them are less I/O efficient, but have lower demands on the
internal memory (mapping and flushing strategies), while others allocate more
of RAM, but perform much less I/O operations in the ordinary case (compress
strategy).

On the basis of these graph traversals, it is relatively easy to construct LTL
model checking algorithms. Nested DFS, as introduced above, can be imple-
mented with two independent hash tables. To save space it is, however, recom-
mended to use one hash table for storing the states and one internal bit-vector
array flagged to memorize if a state has been visited in the second depth-first
search.

With the above hashing schemes, we arrive at full flexibility in applying imme-
diate duplicate detection in Nested DFS. Table 2 summarizes the hash functions
applied and the amount of memory required for the different hashing strategies in

160 J. Barnat et al.

Table 2. Trademarks for different hash strategies for on-the-fly LTL model checking
algorithm. Upper two lines give an overview of hash functions, lower three lines show
a space complexity in bits for different levels in memory hierarchy.

Mapping Compressing Padding Slicing

hf – hdmod m hdmod m hdmod m
hb hdmod m hdmod m i · m′ + hdmod m′ (hdmod m) · r + i

RAM 2m m + m�log m� 2m + m′ × |s| 2m + m′ × |s|
SSD m × |s| m × |s| m × |s| m × |s|
HDD maxi |Openi| × |s| maxi |Openi| × |s| maxi |Openi| × |s| maxi |Openi| × |s|
m = 2b, m′ = 2f , hd is hash function in DiVinE [27], m is the size of background hash
table (in the number of elements), |s| is state vector size (measured in bits), Openi is
the number of states in the search frontier in iteration i.

LTL model checking. Note that there are recent refinements to Nested DFS [28]
that are faster, but need more bits.

6 Experimental Evaluation

We implemented our algorithms in DiVinE (DIstributed VerIficatioN Environ-
ment) [27], including only part of the library deployed with DiVinE, namely state
generation and internal storage. For the implementation of external-memory
container and for algorithms for efficient sorting and scanning we use STXXL
(Standard Template Library for Extra Large Data Sets) [29]. Models are taken
from the BEEM library [30].

For the first set of experiments we used a Desktop PC with AMD Athlon
CPU (32 bit) a SATA HDD of 280 GB with 13.8 ms seek time and about 61.5
MB/s for sequential reading and a 32 GB 3.5” SATA high-speed flash memory
solid state disk (HAMA), which has 0.14 ms seek time and scales to about 93
MB/s for sequential reading.

To confirm the theoretical results we check the Rether-4 protocol from the
BEEM library (Fig. 6). The plot shows Nested DFS runs with different imme-
diate duplicate detection strategies. All experiments, aside from the mapping
strategy, were stopped after 40,000s (this strategy was stopped after 1,800s due
to its obvious lack of performance). The mapping strategy is the worst one be-
cause of numerous random writes. We use padding as a flushing strategy. As
linear probing is used to store the positions of the saved states, we observe an
increased number of read operations as the internal hash table becomes filled.
Compress strategy appears to perform the best, which corresponds to its I/O
complexity without any penalties for random write operations. The difference
between compress and compress (stack on hdd) is the location of the stack file.
In the first case, it was located on the SSD, in the second it was on a separate
HDD. We observe that having the stacks stored on a second hard disk gives
another speed-up of about 30% for the state space traversal.

The motivation for use of SSDs was to exploit fast random access to them.
Now, we compare new algorithms designed for SSDs to traditional I/O efficient

Can Flash Memory Help in Model Checking? 161

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

0 5000 10000 15000 20000 25000 30000 35000 40000

st
at

es

time (in seconds)

mapping
padding
compress
compress (stack on hdd)

Fig. 6. Comparing the three strategies on the Rether-4 model

algorithms, which we run on SSDs too. To get a fair picture about both ap-
proaches, we perform a reachability analysis in breadth first order. As a novel
approach we run BFS with immediate duplicate detection and compression strat-
egy (Compress BFS). As a traditional approach we run a standard external BFS
with delayed duplicate detection after each level (External BFS).

First, the state space of the Szymanski (5 prop4) model was generated using
both approaches. The plot in Fig. 7 demonstrates the dependency in expanding
speed between the Compress BFS and the BFS layer size, while the expanding
time per layer remains almost the same for External BFS. This is due to the
fact, that in delayed duplicate detection the time of level generation is mostly
determined by the size of the visited states set, which is completely passed for
each BFS layer. Thus, in large search depth, immediate duplicate detection saves
much time, compared to delayed duplicate detection.

Therefore, it is apparent that results strongly depend on a structure of
a state space. Provided that I/O complexity of External BFS is O((e/m +
#layers)(n|s|/B) [13], it is clear that its I/O complexity is highly dependent
on the number of BFS layers, while the I/O complexity of Compress BFS is
not. This can be demonstrated on the model Rether-2, with 552 BFS layers (see
Fig. 8). While External BFS performs poor on this model, Compress BFS fin-
ishes in several minutes. The new approach can also benefit from a small number
of back edges and various heuristics helping to recognize duplicates with no read-
ing from disk. This is a case of model Train-Gate, where the amount of random
reads was only 30 million, even though the state space has 50 million states, due
to the fact that duplicates were typically found in internal buffers (only 8 MB
large) before flushing to disk. Model MCS is an example, where External BFS
performs better – the state space has relatively low number of BFS levels (90).

162 J. Barnat et al.

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160
0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

tim
e

pe
r

la
ye

r
(in

 s
ec

)

BFS layer

states per layer
external BFS

BFS compression

Fig. 7. Comparing Compress BFS to External BFS on the Szymanski 5 prop4 model.
The right axis, together with the crossed plot shows the size of each layer. The remain-
ing curves shows time per layer for the different approaches.

Train-Gate

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0 2000 4000 6000 8000 10000 12000

st
at

es

time (in seconds)

External BFS
Compress BFS

MCS

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 0 10000 20000 30000 40000 50000

st
at

es

time (in seconds)

External BFS
Compress BFS

Rether-2

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 5000 10000 15000 20000 25000 30000 35000 40000

st
at

es

time (in seconds)

External BFS
Compress BFS

Models used for testing
(number of all states and
absolute state space size):

States Size

MCS 120 · 106 4.8 GB
Train-Gate 50 · 106 3.2 GB
Rether-2 31 · 106 2.8 GB

Fig. 8. Comparison of External BFS and Compress BFS

Can Flash Memory Help in Model Checking? 163

From the I/O complexities of both algorithms and from our measurements it
follows that External BFS has to slow down the exploration faster than Com-
press BFS with increasing portion of the state space explored. Thus, Compress
BFS can often outperform it from some BFS level due to its linearity in I/O
complexity. The moment, when Compress BFS outperforms External BFS de-
pends to high extent on numerous platform and input specific factors: state space
structure (number of BFS layers, portion of back edges), bandwidth, access time,
file system, implementation (we did not implemented heuristics from [14] or [9]).
Even though it is not easy to predict, whether or from which point of explo-
ration Compress BFS outperforms External BFS, the main impact of behaviour
of both algorithms is that there can be a threshold, from which Compress BFS
outperforms External BFS on a given input and so algorithms for SSDs like
Compress BFS are practical.

7 Conclusions

We have contributed several new approaches to hashing applied to SSDs. The
most important observation is with the advent of SSD technology, immediate
duplicate detection becomes tractable, offering much more flexibility for the
choice of the exploration strategy. Monitoring CPU performance, we observed
hashing strategies preserve ratios of 50% or more, suggesting that I/O waits are
present, but not thrashing. With SSDs random access time decreasing, SSDs will
likely become fast enough to rise the CPU usage to 100% making the SSD fully
transparent to the user4.

Compression, the best performing strategy, requires substantial main memory,
which according to current ratios of space between RAM and SSDs is still no
bottleneck. Although we have tested DFS and BFS, non heuristic algorithms,
our SSD hashing strategies can also be applied to heuristic approaches, e.g. A*
to rise the amount of states that can be visited. Using SSDs as a shared external
storage device for cluster computers will result in an even higher throughput,
even for random reads, giving a better possibility for parallel processing.

Directly compared to standard I/O algorithms, for a given model there can be
a threshold in state space exploration, from which these new approaches pay off
due to their linearity in size of state space – at least for the compress approach.
Traditional I/O efficient algorithms are not linear, but they have good constant
factors which allow them to outperform new approaches on many inputs. If the
bandwidth of SSDs will grow faster, traditional I/O algorithms pay off. If the
access time of SSDs will decrease faster than their bandwidth, the importance
of new approaches will increase.

Due to easiness of parallel disk connection, large capacities of SSD are possi-
ble5 . Nevertheless, prices for SDDs are still high. Fortunately, in last years they
decrease reasonably as the market with flash memories grows.
4 According to Dell, current prices for 32GB RAM are 6 times higher than for 32GB

SSDs.
5 E.g. StorgeSpire – 1 TB SDD array by Solid Data

(http://www.soliddata.com/products/storagespire).

164 J. Barnat et al.

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Commun. ACM 31(9), 1116–1127 (1988)

2. Sanders, P., Meyer, U., Sibeyn, J.F.: Algorithms for Memory Hierarchies. Springer,
Heidelberg (2002)

3. Min, S.L., Nam, E.H., Lee, Y.H.: Evolution of NAND flash memory interface.
In: Choi, L., Paek, Y., Cho, S. (eds.) ACSAC 2007. LNCS, vol. 4697, pp. 75–79.
Springer, Heidelberg (2007)

4. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

5. Korf, R.: Best-First Frontier Search with Delayed Duplicate Detection. In: AAAI
2004, pp. 650–657. AAAI Press / The MIT Press (2004)

6. Korf, R., Schultze, P.: Large-Scale Parallel Breadth-First Search. In: AAAI 2005,
pp. 1380–1385. AAAI Press / The MIT Press (2005)

7. Munagala, K., Ranade, A.: I/O-Complexity of Graph Algorithms. In: SODA 1999,
Philadelphia, PA, USA, pp. 687–694. Society for Industrial and Applied Mathe-
matics (1999)

8. Stern, U., Dill, D.L.: Using Magnetic Disk Instead of Main Memory in the Murphi
Verifier. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 172–183. Springer,
Heidelberg (1998)

9. Hammer, M., Weber, M.: To Store Or Not To Store Reloaded: Reclaiming Memory
On Demand. In: Brim, L., Haverkort, B.R., Leucker, M., van de Pol, J. (eds.)
FMICS 2006 and PDMC 2006. LNCS, vol. 4346, pp. 51–66. Springer, Heidelberg
(2007)

10. Barnat, J.: Distributed Memory LTL Model Checking. PhD thesis, Faculty of In-
formatics, Masaryk University Brno (2004)

11. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Form. Methods Syst. Des. 1(2-3),
275–288 (1992)

12. Edelkamp, S., Jabbar, S.: Large-Scale Directed Model Checking LTL. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 1–18. Springer, Heidelberg (2006)

13. Barnat, J., Brim, L., Šimeček, P.: I/O Efficient Accepting Cycle Detection. In:
Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 281–293.
Springer, Heidelberg (2007)

14. Barnat, J., Brim, L., Šimeček, P., Weber, M.: Revisiting Resistance Speeds Up I/O-
Efficient LTL Model Checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 48–62. Springer, Heidelberg (2008)

15. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. Electr.
Notes Theor. Comput. Sci. 66(2) (2002)

16. Schuppan, V., Biere, A.: Efficient Reduction of Finite State Model Checking to
Reachability Analysis. International Journal on Software Tools for Technology
Transfer (STTT) 5(2–3), 185–204 (2004)

17. Kim, K., Choi, J.H., Choi, J., Jeong, H.S.: The future prospect of nonvolatile
memory. In: 2005 IEEE VLSI-TSA International Symposium on VLSI Technology
(VLSI-TSA-Tech), pp. 88–94 (2005)

18. Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, vol. 3.
Addison Wesley, Reading (1973)

19. Bloom, B.: Space/time trade-offs in hashing coding with allowable errors. Commu-
nication of the ACM 13(7), 422–426 (1970)

Can Flash Memory Help in Model Checking? 165

20. Holzmann, G.J., Puri, A.: A minimized automaton representation of reachable
states. International Journal on Software Tools for Technology Transfer 2(3), 270–
278 (1999)

21. Holzmann, G.J.: An analysis of bitstate hashing. Formal Methods in System De-
sign 13(3), 287–305 (1998)

22. Stern, U., Dill, D.L.: Combining state space caching and hash compaction. In:
Methoden des Entwurfs und der Verifikation digitaler Systeme, 4. GI/ITG/GME
Workshop, pp. 81–90. Shaker Verlag, Aachen (1996)

23. Botelho, F.C., Pagh, R., Ziviani, N.: Simple and space-efficient minimal perfect
hash functions. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS,
vol. 4619, pp. 139–150. Springer, Heidelberg (2007)

24. Botelho, F.C., Ziviani, N.: External perfect hashing for very large key sets. In:
CIKM 2007: Proceedings of the sixteenth ACM Conference on information and
knowledge management, pp. 653–662 (2007)

25. Edelkamp, S., Sanders, P., Simecek, P.: Semi-external LTL model checking. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 530–542. Springer,
Heidelberg (2008)

26. Pagh, R., Rodler, F.F.: Cuckoo hashing. In: Meyer auf der Heide, F. (ed.) ESA
2001. LNCS, vol. 2161, pp. 121–133. Springer, Heidelberg (2001)

27. Barnat, J., Brim, L., Černá, I., Moravec, P., Ročkai, P., Šimeček, P.: DiVinE – A
Tool for Distributed Verification (Tool Paper). In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 278–281. Springer, Heidelberg (2006)

28. Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer,
Heidelberg (2005)

29. Dementiev, R., Kettner, L., Sanders, P.: STXXL: Standard template library for
XXL data sets. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669,
pp. 640–651. Springer, Heidelberg (2005)

30. Pelánek, R.: BEEM: Benchmarks for Explicit Model Checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

From Informal Requirements to Property-Driven
Formal Validation

Alessandro Cimatti, Marco Roveri, Angelo Susi, and Stefano Tonetta

Fondazione Bruno Kessler
Istituto per la Ricerca Scientifica e Tecnologica

{cimatti,roveri,susi,tonettas}@fbk.eu

Abstract. Flaws in requirements may have severe impacts on the subsequent
phases of the development flow. However, an effective validation of requirements
can be considered a largely open problem.

In this paper, we propose a new methodology for requirements validation,
based on the use of formal methods. The methodology consists of three main
phases: first, an informal analysis is carried out, resulting in a structured version
of the requirements, where each fragment is classified according to a fixed taxon-
omy. In the second phase, each fragment is then mapped onto a subset of UML,
with a precise semantics, and enriched with static and temporal constraints. The
third phase consists of the application of specialized formal analysis techniques,
optimized to deal with properties (rather than with models).

1 Introduction

Most of the efforts in formal methods have historically been devoted to comparing a de-
sign against a set of requirements. The validation of the requirements themselves, how-
ever, has often been disregarded, and it can be considered a largely open problem, which
poses several challenges. First, requirements are often written in natural language, and
may thus contain a high degree of ambiguity. Despite the progresses in Natural Lan-
guage Processing techniques, the task of understanding a set of requirements cannot
be automatized, and must be carried out by domain experts, who are typically not fa-
miliar with formal languages. Second, the informal requirements often express global
constraints on the system-to-be (e.g. mutual exclusion), and, in order to retain a direct
connection with the informal requirements, the formalization cannot follow standard
model-based approaches, but must be complemented with more suitable formalisms
such as temporal logics. Third, the formal validation of requirements suffers from the
lack of a clear correctness criterion (which in the case of design verification is basically
given by the availability of high-level properties). Finally, the expressiveness of the lan-
guage used in the formalization may go beyond the theoretical and/or practical capacity
of state-of-the-art formal verification.

In this paper, we present a new methodology for the validation of requirements, that
is based on formal methods. The main phases are the following. In the first phase, the in-
formal requirements are split into basic fragments, which are classified into categories,
and the dependency relationships among them are identified. During this informal in-
spection analysis, the natural language is disambiguated, and easy-to-detect flaws are

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 166–181, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

From Informal Requirements to Property-Driven Formal Validation 167

discovered. In the second phase, each requirement fragment is formalized according to
the categorization. The target formalism is a visual language such as UML, syntacti-
cally restricted in order to guarantee a formal semantics, and enriched with a highly-
controlled natural language, to allow for expressing static and temporal constraints. In
the third phase, an automatic formal analysis is carried out over the modeled require-
ments, using a number of advanced, complementary techniques. In particular, it is pos-
sible to carry out consistency checking, to verify whether some required properties are
entailed, and whether the requirements are compatible with selected scenarios. Within
this setting, diagnostic information is provided by means of traces, inconsistent cores,
property vacuity, and scenario coverage.

The paper is structured as follows. In Section 2, we overview the methodology.
In Section 3 and 4, we describe the informal analysis phase and the formalization phase.
In Section 5, we present the procedures underlying the verification phase. In Section 6
we describe the support tools. In Section 7 and 8, we discuss the proposed methodol-
ogy and the related work. Finally, in Section 9, we draw some conclusions and outline
directions for future work.

2 Overview of the Methodology

We propose a novel methodology that addresses the issue of formalizing and validating
a requirements specification written in an informal language.

Our approach builds on the use of the Unified Modeling Language (UML) to for-
malize the requirements, and on the use of a Controlled Natural Language (CNL) [30],
based on a subset of the Property Specification Language (PSL) [21], to formalize the
set of constraints on the requirements model. The set of UML concepts and artifacts
we use in our approach represents a subset of the UML 2 concepts and diagrams de-
scribed in the OMG UML 2 metamodel specification documents [1]. The subset of PSL
our CNL builds on is the one that mixes Linear Time temporal Logic (LTL) [28] with
Regular Expressions [4].

Our methodology consists of the the following three main steps:

M1 Informal Analysis Phase. It consists of the categorization and structuring of the
informal requirement fragment described in the requirements document to produce
categorized requirement fragments;

M2 Formalization Phase. The categorized requirement fragments are described trough
the set of concepts and diagrams in UML, and additional constraints in the defined
CNL to produce formalized requirement fragments;

M3 Formal Validation Phase. It consists of the identification of a subset of the formal-
ized requirement fragments (together with the definition of a series of validation
problems) for an automatic validation analysis.

Each step of the methodology is supported by a specific tool. In the following sections,
we detail the methodology in terms of the associated sub-phases, artifacts, and modeling
concepts. The categories of requirement fragments are detailed together with the steps
for the analysis and structuring of the requirements. The methodology is presented using
as running example a simple elevator control system specification.

168 A. Cimatti et al.

Table 1. Requirement fragments categories

Requirement fragments conditions Requirement
fragment
category

Does the requirement fragment define a particular concept in the domain? Glossary
Does the requirement fragment introduce some system’s modules and describe
how they interact?

Architecture

Does the requirement fragment describe the steps a particular module performs
or the states where the module can be?

Functional

Does the requirement fragment describe the messages some modules exchange? Communication
Does the requirement fragment describe some constraints on the behaviors of
system-to-be?

Behavioral

Does the requirement fragment describe some constraints on the environment? Environmental
Does the requirement fragment describe a possible scenario of the domain? Scenario
Does the requirement fragment describe an expected property of the domain? Property
Is the requirement fragment a note in the specifications that does not add any
information about the ontology or the behavior of the specified system?

Annotation

3 Informal Analysis Phase

The first activity in the methodology is the informal analysis of the set of requirements.
In this phase the requirements are first categorized on the basis of their characteris-
tics. Then, some dependencies among them are established to structure the categorized
requirement fragments. The steps for this informal categorization and analysis are:

M1.1 Isolation of the fragments that identify a requirement unit of the domain require-
ments document.

M1.2 Categorization of the informal requirement fragments.
M1.3 Creation of the dependencies among the informal requirement fragments.
M1.4 Analysis of the informal requirement fragments based on standard inspection-

based software engineering in order to identify flaws such as, e.g., recursive
definitions.

The final result of the informal analysis phase is a database of categorized requirement
fragments.

Requirement fragment categorization. We have identified nine possible categories:
Glossary, Architecture, Functional, Communication, Behavioral, Environmental, Sce-
nario, Property, Annotation. The conditions specified in Table 1 define the correspond-
ing category to be assigned to each informal requirement fragment.

The categorization helps the analyst in understanding the domain and can also be
used in the next steps of the methodology to guide the formalization by suggesting the
use of particular UML or CNL constructs.

Dependencies definition. We have identified the following three kind of dependencies
to describe the possible relationships among two requirement fragments A and B:

From Informal Requirements to Property-Driven Formal Validation 169

Table 2. Example of identified requirement fragments

R0 Elevator
R1.1 Call buttons to choose a floor
R1.2 Floor
R1.3 Key switches
R1.4 Call buttons could be key switches
R1.5 Certain floors are inaccessible unless using the key
R2.1 Elevator Door
R2.2 Door open buttons
R2.3 Door close buttons
R2.4 [Door close button] instructs the elevator [door] to close immediately
R2.5 [Door open button] instructs the elevator [door] to remain open longer

– Strong Dependency links: A cannot exist without B.
– Weak Dependency links: A can exist without B.
– Refinement links: A redefines some notions of B at a lower level of abstraction.

These dependencies are used in the formalization phase, to establish links among the
formalized counterparts, and in the formal validation phase, to identify a well formed
verification task.

3.1 Example of Informal Analysis

We start analyzing the specification of the elevator described at the
URL http://en.wikipedia.org/wiki/Elevator#Controlling_elevators.
We perform the step M1.1 of the methodology to get a set of requirement fragments. It
is reported that: A typical modern passenger elevator will have:

1. Call buttons to choose a floor. Some of these may be key switches: certain floors are
inaccessible unless using the key.

2. Door open and door close buttons to instruct the elevator to close immediately or
remain open longer.

The first sentence introduces the concept Elevator. The first item introduces the con-
cepts Floor, Button, Call button and Key. The functionality choose a floor is associated
to concept Call button. Moreover, the concept Key is associated to the Call button by
saying that certain floors are inaccessible unless using the key. The second item in the
specification introduces three new concepts: the presence of an elevator door, the door
open and door close buttons with their functionalities to instruct the elevator to close
immediately or remain open longer. We can then define the requirement fragments as
in Table 2.

In the step M1.2 we classify R1.{1-4} and R2.{1-3} as Glossary requirement frag-
ments. The R1.5 and R2.{4-5} can be classified as a Behavioral requirement fragments
(they describe constraints on the system-to-be). R1.5 can also be classified Scenario and
Property.

In the step M1.3 we recognize a Strong Dependency of the requirement R1.5 to the
requirements R1.2 and R1.3.

170 A. Cimatti et al.

4 Formalization Phase

Our methodology requires proceeding with the formalization of the categorized require-
ment fragment version of the requirements produced as artifact of the informal analysis
phase. The formalization phase consists of the following sub-activities:

M2.1 Formalize each requirement fragment identified in the informal analysis phase
by specifying the corresponding UML concepts and diagrams, and/or the CNL con-
straints.

M2.2 Link the UML elements introduced in M2.1 to the textual requirements. The
link is used for requirements traceability of the formalization against the informal
textual requirements, and to select directly from the textual requirements document
a categorized requirement fragment to validate.

We have adopted: classes and class diagrams to formalize the requirements that have
been classified as Glossary; state machines to formalize requirements classified as
Functional; sequence diagrams to represent those requirements classified as Scenar-
ios that describe the interaction among a set of objects; CNL to specify the Behavioral,
the Environmental, the Property requirements and the remaining Scenario requirements.
The selection of UML diagrams and concepts has been performed on the basis of the
expressive power of the UML concepts and on the need related to the formalization of
the UML constructs in a formal language. (See [17] for details on the underlying object
model extended with temporal constraints.)

Class diagrams. A class represents a concept in the domain. In our context, a class
is associated with: a set of class attributes representing the set of characteristics of the
concept; a set of class methods, representing actions/procedures the class can perform.
A method accepts a set of parameters in input and has a return parameter. Each attribute
and each method parameter has a type that can be primitive, e.g. Integer or Real, or
user defined, i.e., enumerative or a class defined in the UML model.

Relationships among classes represent the relations existing between domain con-
cepts. In our context we allow only for the following relationships:

– Association: it is the basic relationship that can be established among two classes.
– Aggregation: it specifies that the class belongs to a collection (another class).
– Generalization: it indicates that one class is a “superclass” of the other.

Association and Aggregation relationships are characterized by their multiplicity. This
multiplicity represents the range of the number of instances of the involved classes that
exist in the domain (0..1 zero or one instance, 0..∗ or ∗ no limit on the number of
instances, 1 exactly one instance, 1..* at least one instance, and n..m n to m instances).

State Machines. We use state machines to model the behavior of each method of a
class in the domain. In our framework we restricted the syntax of the UML 2 state ma-
chines as follows. We only allow for the following kinds of UML 2 state machine states:
initial state, that represents the entry point of the corresponding class method; final
state, that represents the return point of the corresponding class method; “simple” state,

From Informal Requirements to Property-Driven Formal Validation 171

that represents a generic state of the corresponding class method; conditional states,
that represent conditional branches in the execution of the corresponding method. A
transition of a state machine represents the conditions that determine the change of
state. Each transition is associated with a label of the form event[guard]/activity.
The meaning of the label is that the transition is performed when the event occurs and
the guard (that is a boolean predicate) is true. When the transition is fired the speci-
fied activity is performed. In our framework, the events are restricted to be only class
method calls, while the activity have to be a parallel combination of class method calls
and class attribute assignments.

Sequence Diagrams. UML sequence diagrams model the evolution of the specified
objects as a sequence of exchange of messages, focusing on the representation of their
interactions. We use sequence diagrams to model Scenarios requirements that are re-
quested/expected to happen in the domain in terms of exchange of messages. The UML
2 notation for a sequence diagram is restricted as follows: we use objects to represent
the instances of the classes involved in a given interaction; lifelines to represent the
lifetime of the objects involved in the interaction; messages are restricted to be only a
method call performed by an object to a method of another object. We also allow for
the specification of some interaction operators defined in UML 2 that specify partic-
ular configurations of messages, such as: the negation, the alternative, the option, the
parallel and the loop.

Controlled Natural Language. In order to allow for the specification of constraints
and temporal properties of the entities in the model, we extend the UML model with a
constraint language. The constraint language is a Controlled Natural Language (CNL)
[30], i.e., a well-defined subset of natural language whose grammar has been restricted
in order to be automatically processable. The language includes temporal operators as
in [25]. We proposed a CNL grammar, based on the subset of the PSL [21] logic that
mixes Linear Temporal Logic (LTL) [28] operators with Regular Expressions [4]. This
choice is motivated by the fact that this fragment, being linear time, is adapt to express
constraints on the evolution of observable events of the system. The grammar has been
defined to include enough syntactic sugar to be easily accepted and then used by non-
experts in computer science or software engineering.

We have classified the CNL constraints we use to annotate the UML concepts and
diagrams in the following five categories.

– Initial: it defines constraints that are valid initially.
– Invariant: it defines a constraint expected to be always valid over time.
– Behavior: it defines a constraint expressing admissible behaviors.
– Scenario: it describes behaviors that are expected to be admitted by the formalized

requirement fragments.
– Property: it defines behaviors that every possible admissible behavior should satisfy

(conversely, it defines a set of behaviors that are not admissible).

Example of formalization. Figure 1 represents the class diagram resulting from
the formalization of the output of the informal analysis phase for the eleva-
tor. For requirements R1.{1-3} we defined the classes Button, Call Button, Floor

172 A. Cimatti et al.

Fig. 1. The elevator class model

and Key, Door Open Button, Door Close Button, and Elevator. Door Open Button,
Door Close Button and Call Button are refinement of class Button. Requirement R1.4
is captured in the diagram by the association relationship between the two classes
Call Button and Key where is imposed, via the cardinalities at the two sides of the
relationship, that for every Call Button there could be 0 or at most 1 Key associated.
Class Floor has an attribute chosen (from R1.1) of type Boolean to indicate whether
the corresponding floor has been requested. Class Key has attribute inserted, of type
Boolean, to indicate whether the key has been inserted. Class Door as attribute is open,
of type Boolean, to indicate whether the door is open or closed. Class Door has meth-
ods close and open, from requirement fragments R2.4 and R2.5 respectively, to model
the activity of opening/closing the corresponding door. Class Button has method push
to model the press of the button.

The analysis of the categorized requirement fragments for the elevator lead to the
definition of some CNL constraints. Below we report an excerpt of the constraints clas-
sified Behavior (CB.#) necessary to formalize the elevator.

CB.1 for all Call Button b, whenever b.push(), b.floor.request()
CB.2 for all Call Button b, if b has a key, whenever b.floor.request(), b.key.inserted
CB.3 for all Door Close Button b, whenever b.push(), b.elevator.door.close()

Requirement R1.1 leads to the introduction of the constraint CB.1 to say that pushing
the button related to a floor means to request that floor. Similarly, from R1.5 it is possible
to extract the CNL constraint CB.2, that states that all call buttons that have a key are
such that if the button has been pressed, then the key has been inserted. R2.4 states
that when the door close button is pushed then the elevator door has to close. This is
formalized with by the CNL constraint CB.3. From R1.5, it is possibile to obtain also
the following constraints of type scenario (CS.#) and property (CP.#) respectively:

CS.1 there exists a Call Button b such that b has a key and in the future
b.floor.request()

CP.1 for all Call Button b, b has a key and never b.key.inserted implies never
b.floor.request()

From Informal Requirements to Property-Driven Formal Validation 173

Following the same process, other constraints have been imposed on
the model on the basis of the specification. They have not been reported
here for the sake of space. A more detailed description can be found
at http://es.fbk.eu/people/roveri/tests/fmics08.

Phase M2.2 consists in linking all the elements in the model to the textual require-
ments fragments. For example, the requirement R1.1 will be directly related to the class
Call Button via a data structure that maintains this information (such as for instance the
traceability structures provided by standard tools like IBM Rational RequisitPro and
IBM Rational Software Architect).

5 Formal Validation Phase

The validation of the formalized requirement fragments aims at improving the quality
of the requirements. This goal is achieved by performing several analysis steps, based
on the use of formal techniques, that may help to pinpoint flaws that are not trivial to
detect in an informal setting.

These steps include checks to identify inconsistencies, and to increase the confidence
that the categorized requirement fragment and its corresponding formalized counterpart
meet the design intent: for instance, a flaw may be in the fact that some desired behav-
iors have been ruled out by an over-constraining set of requirements; conversely, some
undesired behavior may have not been ruled out by under-constraining requirements.

The formal validation phase of the methodology will be accomplished as follows:

M3.1 Check the well-formedness of the formalized requirement fragments. This initial
activity aims at verifying that the formalized requirement fragments syntactically
adhere to the formal language syntax, and that all the elements mentioned have
been previously defined.

M3.2 Narrowing of the formalized requirement fragments. This phase aims at focusing
the validation to a particular subset of interest of the formalized requirement frag-
ments (e.g. to restrict the validation of the classes/functions of a specific module).
In this phase the validation expert selects a set of objects per each class.

M3.3 Formal validation of the identified formalized requirement fragments. The subset
of interest identified in M3.2 is formally analyzed to identify flaws if any.

Whenever a problem is identified in any of the above sub-phases, in order to try and
solve the identified flaw, it may be required to go back to a previous phase. We remark
that, in this phase, the domain expert responsible of the validation can specify additional
desired and undesired behaviors w.r.t. the ones already formalized in previous phases,
in order to guarantee that the design intents are captured, thus further enriching the
formalized requirement fragment.

The phase M3.3 can be further decomposed depending on the scope and on the level
of domain knowledge required to perform it. For this purpose we classify the validation
checks in Domain Independent and Domain Dependent checks. There is a third kind of
checks, aiming at further analyzing the quality of the results produced by the domain
dependent checks e.g. by performing vacuity analysis, coverage analysis and safety
analysis.

174 A. Cimatti et al.

Domain Independent Checks. These checks aim at verifying properties of the for-
malized requirement fragment that do not require any domain knowledge, i.e. logical
consistency and realizability.

Checking Logical Consistency. The formal notion of logical consistency can be intu-
itively explained as “freedom from contradictions”. It is possible that two formalized
requirement fragments mandate mutually incompatible behaviors. This check aims at
formally verifying the absence of logical contradictions in the considered formalized
requirement fragments. Consistency checking is carried out by dedicated formal verifi-
cation algorithms [16].

Checking Realizability. Realizability [29,13] intuitively amounts to checking if there
exists an open system implementing the considered formalized requirement fragments.
The variables occurring in the considered formalized requirement fragments are clas-
sified as either controllable (by the specified system), or uncontrollable (depending
on the environment). Moreover, the considered formalized requirement fragments are
partitioned in two distinct sets, the formalized requirement fragments representing
“assumptions” on the behavior of the uncontrollable variables, and the formalized re-
quirement fragments representing the “guarantee”, that must be enforced on the con-
trolled variables. The check consists in verifying the existence of an open system whose
controllable variables obey the guarantee for all possible behaviors of the uncontrol-
lable signals obeying the assumptions. Realizability is substantially more informative
than satisfiability, but also computationally more expensive [29]. Realizability check-
ing is carried out by dedicated state of the art algorithms for checking and debugging
realizability [15].

Providing Diagnostic Information. The checks for logical consistency and for realiz-
ability not only produce a yes/no answer, but they can also provide the validation expert
with diagnostic information of different forms. For instance, when consistency checking
succeeds, it is possible to produce a trace witnessing the consistency, i.e. satisfying all
the constraints in the considered formalized requirement fragments. Similarly, as out-
come of the realizability check, it is possible to generate a witness of realizability, that in
this case has the form of a Finite State Machine satisfying the considered formalized re-
quirement fragments. We notice that, if the specification is inconsistent, no behavior can
be associated to the considered formalized requirement fragments; similarly, when it is
not realizable, then no Finite State Machine can be associated. In these cases, the verifi-
cation algorithms can also generate diagnostic information. For consistency check, this
has the form of a small un-satisfiable subset of the considered formalized requirement
fragment [16], while for unrealizability check, an un-realizable [15] subset is identi-
fied. This information can be given to the domain expert, to support the identification
and the fix of the flaw. The formalized requirement fragments can be traced back to the
corresponding categorized requirement fragment, and up to the original requirements
in order to remove the identified flaw.

The fact that a given formalized requirement fragments is not consistent can be traced
back to a misinterpretation in the formalization of the corresponding categorized require-
ment fragments. In this case, the subset of the considered formalized requirement frag-
ments produced as diagnostic information needs to be revised to remove the ambiguity

From Informal Requirements to Property-Driven Formal Validation 175

that led to the misinterpretation of the original requirements. A possible explanation for
the un-realizability can also be traced back to a missing assumption on the environment.
In this case, the fix consists in revising the whole set of requirements to add the missing
assumptions.

Domain Dependent Checks. These checks aim at verifying that the considered set
of formalized requirement fragments really captures the design intent. In this case, the
formalized requirement fragments are validated against descriptions of desired and un-
desired behaviors identified by the domain expert. Desired behaviors are used to ensure
that the considered formalized requirement fragments are not too strict, and that they
have not been ruled out (scenario compatibility). Dually, undesired behaviours are used
to ensure that the considered formalized requirement fragments are not too weak, and
that they have indeed been ruled out (property checking).

Scenario compatibility. This check aims at verifying whether a set of conditions (also
called a scenario) is possible, given the constraints imposed by the considered formal-
ized requirement fragments. Intuitively, the check for scenario compatibility can be seen
as a form of simulation guided by a set of constraints. The behaviors used in this phase
can be partial, in order to describe a wide class of compatible behaviors.

The check for scenario compatibility can be reduced to the problem of checking the
consistency of the set of considered formalized requirement fragments with the con-
straint describing the scenario. Thus, if the scenario is compatible, we obtain a behavior
trace compatible with both the considered formalized requirement fragments and with
the constraint describing the scenarios. Otherwise, we obtain a subset of the considered
formalized requirement fragments that prevents the scenario to happen.

Property checking. This check aims at verifying whether an expected property is im-
plied by the considered formalized requirement fragments. This check is similar in
spirit to Model Checking [19], where a property is checked against a model. Here the
considered set of formalized requirement fragment plays the role of the model against
which the property must be verified. When the property is not implied by the specifi-
cation, a counterexample is produced. A counterexample is a behavior witnessing the
violation of the property, i.e. a trace that is compatible with the considered formalized
requirement fragment, but does not satisfy the property being analyzed.

Property checking can be reduced to the problem of checking the consistency of
the considered formalized requirement fragments with the negation of the property. If
this set is consistent, then a witness behavior compatible with the considered formal-
ized requirement fragment and satisfying the negation of the property is produced. This
behavior is a counterexample for the property. If such witness does not exist then the
property holds.

If the verification of the property fails, two causes are possible: the first one is that the
property is not correctly formalized; the second possibility is in a wrong formalization
of the informal sentences in the categorized requirement fragment that need to be dis-
ambiguated and/or corrected. An inspection of the counterexample can be carried out
in order to discriminate among the two possibilities. If the property is wrong, then it is
corrected and the check is repeated. Otherwise, the formalized requirement fragments

176 A. Cimatti et al.

has to be corrected, either by modifying the formalization or by adding additional con-
straints, until the satisfaction of the given property is achieved.

Quality of the results of Formal Validation. The previous analyses can produce di-
agnostic information in several forms (witness/counterexample behaviors). It is worth
noticing that, the fact that the formalized requirement fragment is consistent or that a
property holds can be due to some under-specification in the considered formalized re-
quirement fragment or in the property itself. Moreover, if a property fails, there can be
several reasons that can cause the failure. Thus, before starting to fix the formalized
requirement fragment it would be useful to identify all the causes of the flaw.

The first problem is tackled by performing what we called vacuity checking and
coverage checking, while the second is tackled by safety analysis.

Vacuity checking. Corresponds to checking whether a given property holds vacuosly [7].
For instance, consider the property “whenever the signal A is received, a corresponding
signal B must be issued”. If the formalized requirement fragment is such that the signal
A can never be received, then the property trivially holds (the pre-condition of the im-
plication is not satisfiable), and is thus not informative. Vacuity is typically considered
to be a flaw in a specification [7] due to missing or redundant constraints.

Coverage checking. Corresponds to checking which elements of the considered formal-
ized requirement fragment have been stimulated (covered) by a generated trace. This
check plays for scenario checking and consistency the role that vacuity plays for prop-
erties. Suppose the validation generates a trace such that a certain signal A is never
issued, and that the considered formalized requirement fragments (possibly together
with a property scenario) for which this trace has been generated is mandating that
“whenever a signal A is received, a corresponding signal B must be issued”. The trace
“trivially” satisfies the considered set of requirements, but it does not stimulate the con-
sequence of the mandating property (which is what the domain expert is interested to
see), thus the trace is not informative. The fact that a generated trace is not informa-
tive, is not a flaw per se, but it can indicate that for instance the assumptions on the
environment are under-specified or that the scenario is under-specified.

Formal safety analysis. It aims to identify all the causes leading to the violation of an
expected property. The domain expert can identify the variables of interest that are to be
considered causes of a specific violation, and advanced algorithms [6,8,9] can then be
used to gather a description of the causes, and to organize them in form of a fault tree.

Validation Loop. The above validation steps can be iterated arbitrarily, by correcting
formalized requirement fragments and/or the corresponding categorized requirement
fragments if necessary, creating new scenarios, new properties, and by analyzing dif-
ferent aspects of the requirements specification. The narrowing phase M3.2 allows the
domain experts to focus only on a subset of the formalized requirement fragments by se-
lecting specific modules and consider only some of the functions of the selected module
thus enabling for a modular validation approach. It also allows performing several kinds
of what-if analysis, in particular, it allows checking which properties and scenarios re-
main valid after adding/removing new formalized requirement fragments. Moreover, in

From Informal Requirements to Property-Driven Formal Validation 177

the narrowing phase we can ignore the requirements with low-level details and consider
the requirements at a higher level of abstraction, thus enabling for a hierarchical verifi-
cation approach. This process results in a validation loop where every check increases
the confidence of the domain expert in the correctness of the formalized requirement
fragments.

Example of validation. We applied the proposed validation loop to the Elevator ex-
ample. We selected the formalized requirement fragments described in Section 4. In the
narrowing phase (M3.2) we identified the following set of objects: one Elevator, four
Floors, four Call Buttons, one Door, one Door Open Button, one Door Close Button,
and one Key.

We first checked for the consistency of the formalized requirement fragments. We
automatically translated the class diagram and the constraints into the input language of
the model checker NuSMV [14]. The tool provided us with a witness of the example’s
consistency consisting of a loop over the initial state. This trace described the case
where the elevator is initially at the fourth floor with the door open and nothing happens.

We then verified if the model is compatible with a scenario where the elevator is
initially at the first floor, there is a request to go to the third floor, and the elevator goes
to the third floor. The tool provided us a trace witnessing the compatibility with such
scenario: the produced trace is such that it loops over requesting both first and third
floor at the same time, going to the third floor and then going back to the first floor.

Finally, we verified the scenario CS.1 and the property CP.1. The formalized re-
quirement fragments results compatible also with CS.1 and produces a trace where all
buttons have a key, and only the first and the fourth become requested. This trace seems
to contradict the assumption that we have only one key, but the point is that we did
not force the buttons not to share their keys. After adding this new assumption, we get
a new trace where only the second button has a key, and all floors become requested.
Finally, the model checker proved that there are no counterexamples with length less
than 40 time steps for property CP.1.

6 Overview of the Support Tools

Our methodology is supported by a tool chain we developed on top of standard-de-facto
industrial tools.

We used IBM Rational RequisitePro (RRP), interfaced with Microsoft Word, and
IBM Rational Software Architect (RSA), to support the informal analysis phase and
the tracebility of the link between the informal requirement fragments and their formal
counterparts. We used RSA interfaced with RRP and with the validation tool to support
the formalization phase. The developed interface allows mapping the formal model into
the input language of the validation tools. Moreover, it maps back the verification results
as to use them within RSA back to RRP to correct the possible flaws identified during
the validation phase.

The validation tool has been built on top of an extended version of the state-of-
the-art NuSMV [14] verification tool. This extension provides advanced techniques to
compile LTL and PSL properties into automata [18], and advanced abstraction based

178 A. Cimatti et al.

verification techniques [12], exploiting the MathSAT [10] SMT solver, to efficiently
deal with infinite-state components.

7 Discussion of the Approach

We discuss how the proposed methodology addresses the challenges of requirement
validation we consider most relevant for a successful adoption of formal methods in the
design flow of complex safety-critical systems.

Choice of a formalization language. The proposed methodology provides a fully for-
mal language. Every statement is associated with a formalized counterpart, that is given
unambiguous semantics. Nevertheless, the language can be used by the domain experts
because it exploits the usability of graphical languages such as UML and the closeness
of CNL to Natural Language. This way, we try to maximize the usability and expres-
siveness of the language. At the same time, we provide the automatic techniques for the
formal analysis.

Ambiguity of natural language. The proposed methodology addresses the key problem
that the informal requirement fragments are ambiguous and unstructured as follows: the
informal requirement fragments are structured and categorized by means of an informal
requirement analysis; every informal requirement fragment is linked with a precise set
of elements in the formal model; this way, if the validation phase detects some bugs,
the domain expert can easily distinguish if they are due to a wrong formalization or to
the ambiguity of the informal requirement fragment.

Incompleteness of requirements validation. New verification techniques and tools have
been developed to overcome the inadequacy of traditional tools for model checking and
design verification to validate requirements. The analysis is no longer directed on a de-
sign; rather, the properties themselves become the object of the analysis. It is possible
to check whether the specification is strict enough, by checking whether undesired be-
haviors have been indeed eliminated. Technically, this problem is reduced to checking
whether the expected property is a logical consequence of the set of requirements. Con-
versely, it is possible to check if the specification is not too strict, by checking whether
desirable behaviors have not been eliminated. This approach to requirements analysis
is described in [27] and in [23]; the RAT (Requirements Analysis Tool) has been devel-
oped [15] to this end.

Quality of the validation feedback. The formal validation phase of our methodology
tries to maximize the information the validation tools can produce in order to help
the domain expert to correct the specification or the formalization: it produces traces
animating the requirements; it can enable the diagnosis of inconsistencies by identifying
inconsistent cores; it can identify vacuous properties and uncovered requirements; it can
enable the formal safety analysis by performing Fault-Tree Analysis (FTA) and Failure
Modes and Effects Analysis (FMEA) using emerging techniques [6,9].

Complexity of the specification. The proposed methodology tackles the problem of the
specification complexity by providing a mixed property/model-based approach. This
allows handling and analyze complex system of specifications: each requirement is

From Informal Requirements to Property-Driven Formal Validation 179

encoded in a distinct piece of formalism; the methodology supports incremental and
modular approaches to the validation; and, it enables for analysis at different level of
abstraction. Most importantly, the property-based approach allows verifying the speci-
fication without the need of describing the model of the implementation. The approach
is ideal for early validation when the requirements must be verified before the imple-
mentation of the system.

8 Related Work

The problem of formalizing and analyzing a requirement specification is one of the
main challenges in Requirements Engineering.

Works such as [22] and [5] aim at extracting automatically from a natural language
description a formal model to be analyzed. However, on one hand, their target formal
languages cannot express temporal constraints over object models; on the other hand,
they miss a methodology for an adequate formal analysis of the requirements. Neverthe-
less, our methodology can benefit from mature natural language processing techniques
which are able to automatically dig out the ontology of the domain.

Several formal specification languages such as Z [31], Object-Z [11], VDM [2],
B [3], and OCL [26] have been proposed for formal model-based specification. How-
ever, all of them are not adapt for the use by requirements analysts and domain experts.
They are very expressive but require a deep background in order to write a correct for-
malization, they lack of completely automatic proof support tools, and the use of these
tools requires deep knowledge of them in order to use them efficiently. Moreover, these
languages have been designed for particular applications, and their usage for different
purposes may become awkward and difficult. For instance, they are unable to express
complex temporal constraints like, e.g., fairness.

Formal Tropos (FT) [32] and KAOS [20] are goal-oriented software development
methodologies that provide a visual modelling language that can be used to define an
informal specification. The visual modeling language is supported with annotations that
characterize the valid behaviors of the model, expressed in a typed first-order linear time
temporal logic (LTL). The main differences between the proposed approach and FT and
KAOS are in the expressiveness of the formalization language: both FT and KAOS are
limited to pure LTL and they are hardly committed to the goal representation of the
requirements.

In [24], a framework is proposed for the automated checking of requirement specifi-
cations expressed in Software Cost Reduction tabular notation, which aims at detecting
specification problems such as type errors, missing cases, circular definitions and non-
determinism. Although this work has many related points to our approach, the proposed
language is not adapt to formalize requirements that contain functional descriptions of
the system at high level of abstraction with temporal assumptions on the environment.

9 Conclusions

In this paper we have presented a methodology for the validation of a requirements
specification. The methodology first envisages an informal analysis of the requirements

180 A. Cimatti et al.

document to categorize each requirement. In the second phase, each requirement frag-
ment is formalized according to the categorization by means of UML diagrams and the
use of a Controlled Natural Language as to facilitate the use by non experts in formal
methods. In the third phase, automatic formal analysis is carried out to identify possible
flaws in the formalized requirements. The methodology is supported by a chain of tools
built on top of standard-de-facto industrial tools (like e.g. Rational RequisitePro and
Software Architect), and on an extended version of the NuSMV model checker.

The methodology and the related tools are currently under evaluation in a real-
world project that aims at formalizing and validating the European Train Con-
trol System (ETCS) specification. The project is in response to the European
Railway Agency tender ERA/2007/ERTMS/OP/01 (“Feasibility study for the for-
mal specification of ETCS functions”), awarded to a consortium composed by
RINA SpA, Fondazione Bruno Kessler, and Dr. Graband and Partner GmbH (see
http://es.fbk.eu/events/formal-etcs/ for further information on the
project). The documents under consideration contain a huge set of requirements, that
are intended to guarantee the interoperability between trackside railway systems and
trains throughout Europe. This consortium is currenlty applying the methodology, and
carrying out a training activity for domain experts. A detailed reporting of the results of
the project is the object of future activities.

Acknowledgments. We are very grateful to the European Railway Agency for issu-
ing the challenge of the ETCS formalization and validation. We thank A. Chiappini
(ERA) for his continuous encouragement and support. We thank F. Caruso, L. Mac-
chi, and B. Vittorini from RINA Spa, for their precious feedback after applying the
methodology and using the tools. P. Zurek and A. Schulz-Klingner from Dr. Graband &
Partner GmbH are also thanked for useful discussions. Finally, we thank the Provincia
Autonoma di Trento for supporting S. Tonetta (project ANACONDA).

References

1. UML Version 2.1.2., http://www.omg.org/spec/UML/2.1.2/
2. Bjorner, D., Jones, C.B. (eds.): The Vienna Development Method: The Meta-Language,

vol. 61. Springer, Heidelberg (1978)
3. Abrial, J.R.: The B-book: Assigning Programs to Meanings. C.U. Press, Cambridge (1996)
4. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers - Principles, techniques and tools. Addison-

Wesley, Reading (1986)
5. Ambriola, V., Gervasi, V.: On the Systematic Analysis of Natural Language Requirements

with CIRCE. Autom. Softw. Eng. 13(1), 107–167 (2006)
6. Banach, R., Bozzano, M.: Retrenchment, and the generation of fault trees for static, dynamic

and cyclic systems. In: Górski, J. (ed.) SAFECOMP 2006. LNCS, vol. 4166, pp. 127–141.
Springer, Heidelberg (2006)

7. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in temporal
model checking. Formal Methods in System Design 18(2), 141–163 (2001)

8. Bertoli, P., Bozzano, M., Cimatti, A.: Symbolic model checking framework for safety anal-
ysis, diagnosis, and synthesis. In: Edelkamp, S., Lomuscio, A. (eds.) MoChArt IV. LNCS,
vol. 4428, pp. 1–18. Springer, Heidelberg (2007)

9. Bozzano, M., Villafiorita, A.: The FSAP/NuSMV-SA Safety Analysis Platform. STTT 9(1),
5–24 (2007)

From Informal Requirements to Property-Driven Formal Validation 181

10. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The MathSAT 4 SMT
Solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 299–303. Springer,
Heidelberg (2008)

11. Carrington, D.A., Duke, D.J., Duke, R., King, P., Rose, G.A., Smith, G.: Object-Z: An
Object-Oriented Extension to Z. In: FORTE 1989, Amsterdam (NL), pp. 281–296 (1990)

12. Cavada, R., Cimatti, A., Franzén, A., Kalyanasundaram, K., Roveri, M., Shyamasundar,
R.K.: Computing Predicate Abstractions by Integrating BDDs and SMT Solvers. In: FM-
CAD, pp. 69–76 (2007)

13. Church, A.: Logic, arithmetic and automata. In: Proc. 1962 Int. Congr. Math., Upsala, pp.
23–25 (1963)

14. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV: A new symbolic model
checker. STTT 2(4), 410–425 (2000)

15. Cimatti, A., Roveri, M., Schuppan, V., Tchaltsev, A.: Diagnostic information for realizability.
In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 52–67.
Springer, Heidelberg (2008)

16. Cimatti, A., Roveri, M., Schuppan, V., Tonetta, S.: Boolean Abstraction for Temporal Logic
Satisfiability. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 532–546.
Springer, Heidelberg (2007)

17. Cimatti, A., Roveri, M., Susi, A., Tonetta, S.: Object models with temporal constraints. In:
SEFM (2008) (to appear)

18. Cimatti, A., Roveri, M., Tonetta, S.: Syntactic Optimizations for PSL Verification. In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 505–518. Springer, Heidelberg
(2007)

19. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge
(1999)

20. Darimont, R., Delor, E., Massonet, P., van Lamsweerde, A.: GRAIL/KAOS: an environment
for goal-driven requirements engineering. In: ICSE 1997, pp. 612–613. ACM, New York
(1997)

21. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, Heidelberg (2006)
22. Fantechi, A., Gnesi, S., Ristori, G., Carenini, M., Vanocchi, M., Moreschini, P.: Assisting

Requirement Formalization by Means of Natural Language Translation. Formal Methods in
System Design 4(3), 243–263 (1994)

23. Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P.: Specifying and
analyzing early requirements in Tropos. Requirements Engineering 9(2), 132–150 (2004)

24. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated consistency checking of require-
ments specifications. ACM Trans. Softw. Eng. Methodol. 5(3), 231–261 (1996)

25. Nelken, R., Francez, N.: Automatic Translation of Natural Language System Specifications.
In: CAV, pp. 360–371 (1996)

26. OMG. Object Constraint Language: OMG available specification Version 2.0 (2006)
27. Pill, I., Semprini, S., Cavada, R., Roveri, M., Bloem, R., Cimatti, A.: Formal analysis of

hardware requirements. In: DAC 2006, pp. 821–826 (2006)
28. Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th IEEE Symp. on Foun-

dation of Computer Science, pp. 46–57 (1977)
29. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: 16th Annual ACM Sympo-

sium on Principles of Programming Languages, pp. 179–190 (1989)
30. Schwitter, R.: Dynamic Semantics for a Controlled Natural Language. In: DEXA Workshops,

pp. 43–47 (2004)
31. Spivey, J.M.: The Z Notation: a reference manual, 2nd edn. Prentice Hall, Englewood Cliffs

(1992)
32. Susi, A., Perini, A., Giorgini, P., Mylopoulos, J.: The Tropos Metamodel and its Use. Infor-

matica 29(4), 401–408 (2005)

Automated Certification of Non-Interference

in Rewriting Logic�

Mauricio Alba-Castro1,2, Maŕıa Alpuente1, and Santiago Escobar1

1 Universidad Politécnica de Valencia, Spain
{alpuente,sescobar}@dsic.upv.es

2 Universidad Autónoma de Manizales, Colombia
malba@autonoma.edu.co

Abstract. In this paper we propose a certification technique for non-
interference of Java programs based on rewriting logic, a very general
logical and semantic framework efficiently implemented in the high-level
programming language Maude. Non–interference is a semantic program
property that prevents illicit information flow to happen. Starting from
a basic specification of the semantics of Java written in Maude, we de-
velop an information–flow extension of this operational Java semantics
which allows us to observe non-interference of Java programs. Then we
develop in Maude an abstract, finite-state version of the information-flow
operational semantics which supports finite program verification. As a
by–product of the verification, a certificate of non-interference is deliv-
ered which consists of a set of (abstract) rewriting proofs that can be
easily checked by the code consumer using a standard rewriting logic
engine.

1 Introduction

In the last decade, we have observed an increasing interest in formal methods
designed for trusting code coming from untrusted sources. Proof-carrying code
(PCC), originated by Necula [26], is a mechanism for ensuring the secure behav-
ior of programs that is useful for general software development, and particularly
advantageous for the development of mobile code. In PCC, a program contains
both the code and an encoding of an easy–to–check proof whose validity entails
compliance with a predefined security policy supplied by the code consumer.
The security certificate is automatically generated by the software producer.In
[1] we proposed an abstract PCC methodology for certifying Java source code
that is based on rewriting logic. Rewriting logic [22] is a flexible and expressive
logical framework in which a wide range of logics and models of computation
can be faithfully represented. The methodology of [1] is as follows. Consider a

� This work has been partially supported by the EU (FEDER) and the Span-
ish MEC/MICINN under grant TIN 2007-68093-C02-02, Integrated Action HA
2006-0007, LERNet AML/19.0902/97/0666/II-0472-FA, and Generalitat Valenciana
GVPRE/2008/113.

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 182–198, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Automated Certification of Non-Interference in Rewriting Logic 183

(concurrent) Java program together with a specification of the Java semantics,
given as a term rewriting system. Given a safety property (i.e. a system property
defined in terms of certain events not happening), the unreachability of the sys-
tem states denoting the situation that should never occur allows us to infer the
desired safety property. Unreachability analysis is performed using the standard
Maude (breadth-first) search command, which explores the entire (finite) state
space of the program. In the case when the unreachability test succeeds, the cor-
responding rewriting proofs demonstrating that those states cannot be reached
are delivered as the expected outcome certificate. Certificates are encoded as
(abstract) rewriting sequences that, together with an encoding in Maude of the
abstraction, can be checked by standard reduction. Our methodology extends
to other mainstream conventional languages or lower level languages (e.g. Java
bytecode) by simply replacing the concrete semantics by a semantics for the pro-
gramming language at hand; for instance, a rewriting logic semantics for Java
bytecode can be found in [15].

In this paper, we extend the methodology of [1] to certify confidentiality by
analysing non-interference. Confidentiality is a property by which information
related to an entity or party is not made available or disclosed to unauthorized
individuals, entities, or processes. However, an authorized accessing program
can, on purpose or not, leak secret data in some improper way. To ensure that
the program does not disclose secret data and fulfills data confidentiality poli-
cies, it is necessary therefore to analyse and control how information flows within
the program. In this paper we focus on data confidentiality certification of Java
programs. In order to express the non–interference safety policies for ensuring
confidentiality, we use standard JML [21], a property specification language for
Java modules. Each variable in the Java code is annotated with a confidential-
ity label that represents the confidentiality level of the variable and its data
values.

The contributions of this paper are as follows:

– Starting from a basic specification of the semantics of Java written in Maude
[14], we develop an information–flow extension of such an operational Java
semantics which allows us to observe non-interference of Java programs, and
is also written in Maude. For the best of our knowledge, a clear-cut semantics
for Java programs dealing with non-interference was lacking. Much of previ-
ous work on ensuring Java non–interference has focused on enforcing it by
appropriate information flow type systems by certifying and type preserving
compilers [24,25] or bytecode typechecking [6].

– We provide an abstract, finite-state version of the information-flow opera-
tional semantics which supports finite program verification. Thanks to the
different handling of rules and equations in Maude we do not suffer the state–
space explosion of more traditional approaches (see [23]).

– Our Java certification methodology allows us to deal with some Java fea-
tures not considered in the related literature ([20,30]): object fields, local

184 M. Alba-Castro, M. Alpuente, and S. Escobar

variables and arrays. We deal with values delivered by a return statement,
a case not considered in [12,2,20,19]. We also consider return and break
statements within conditional and iteration statements. Finally, for method
invocations, we propagate context labels as proposed in [20], whereas they
did not implemented it.

– Regarding the confidentiality label inferred for assignment instructions, we
improve the granularity of the analysis over previous proposals [2,20] by
inferring the confidentiality label during the memory update.

– As a by–product of the verification, a certificate of non-interference is deliv-
ered which consists of a set of (abstract) rewriting proofs that can be easily
checked by the code consumer using a standard rewriting logic engine.

Section 2 introduces the rewriting logic semantics of Java considered in this pa-
per. In Section 3 we present the extended information-flow rewriting logic seman-
tics of Java, and Section 4 formalizes its abstract version. In Section 5 we propose
our certification methodology, which we illustrate in Section 6 with some encour-
aging experimental results that demonstrate the practicality of our approach. Fi-
nally, we discuss the related work in Section 7, and Section 8 concludes.

2 The Rewriting Logic Semantics of Java

We assume some basic knowledge of term rewriting [29] and rewriting logic [22].
In the following, we briefly describe the rewriting logic semantics of Java given
in [14] and used by the JavaFAN verification tool [15,16]. Its novelty and in-
terest are based on the following advantages: (i) formal specifications provide
a rigorous semantic definition for a language that can be mathematically scru-
tinized; (ii) such formal specifications can be developed with relatively little
effort1, even for large languages like Java [15] and the JVM [16]; (iii) the Maude
programming language [10], which implements rewriting logic, provides a for-
mal analysis infrastructure, so that its formal analysis tools (such as state-space
breadth-first search and LTL model checking) become available for free for each
programming language that is specified in Maude; and (iv) in spite of their gen-
erality, those formal analyses can be performed with competitive performance;
see [15].

In [14], a sufficiently large subset of full Java 1.4 language is specified in Maude,
including multithreading, inheritance, polymorphism, object references, and dy-
namic object allocation. However, Java native methods and many of the Java
built-in libraries available are not supported. The specification of Java operational
semantics is a rewrite theory, that is, a triple RJava = (ΣJava, EJava, RJava), with
ΣJava an order-sorted signature, EJava = ΔJava � BJava a set of ΣJava-equational
axioms where BJava are axioms such as associativity, commutativity and unity and
ΔJava is a set of terminating and confluent (modulo BJava) ΣJava-rewrite rules.

1 See the different programming languages available at
http://fsl.cs.uiuc.edu/index.php/Rewriting_Logic_Semantics

Automated Certification of Non-Interference in Rewriting Logic 185

Finally, RJava is a set of ΣJava-rewrite rules that are not required to be conflu-
ent and terminating. Intuitively, the sorts and function symbols in ΣJava describe
the static structure of the Java program state space as an algebraic data type, the
equations in ΔJava describe the operational semantics of its deterministic features,
and the rules in RJava describe its concurrent features. Following the rewriting
logic framework [29,22], we denote by u →r

Java v the fact that concrete terms u, v,
denoting Java program states, are rewritten (at the top position, see [14]) by us-
ing r, which is either a rule in RJava or an equation in ΔJava both applied modulo
BJava. We simply write u →Java v when no confusion can arise. We denote by
→∗

Java the extension of →Java to multiple rewrite steps, i.e., u →∗
Java v if there

exist u1, . . . , uk such that u →Java u1 →Java u2 · · ·uk →Java v.
Associativity, commutativity and unity (written ACU) axioms of binary op-

erations in BJava allow us to elegantly and effectively define (and implicitly im-
plement) the crucial infrastructure of the Java programming language, including
environments, threads, memory, input/output, synchronization information, and
stores as well as the lookup operations on them. All of them are implemented
as a (multi)-set union operation that builds up a “soup” of elements.

The rewrite theory RJava is defined as terms of a concrete sort State, with
the main state attributes (i.e., constructor symbols of the algebraic type State)
such as in, out, mem, or store. They define an algebraic structure which is
parametric w.r.t. a generic sort Value that defines all the possible values returned
by Java functions, or stored in the memory, etc. For instance, the int and
bool constructor symbols describe Java, integer and boolean values and are
defined in Maude as “op int : Int -> Value .” and “op bool : Bool -> Value

.”, where Int and Bool are the internal built–in Maude sorts that define integer
and boolean values. Intuitively, equations in ΔJava and rules in RJava are used
to specify the changes to the program state, i.e., the changes to the memory,
threads, input/output, etc. The semantics of Java is defined modularly, i.e.,
different features of the language are defined in separate Maude modules so to
ease extensions and maintenance [14].

The state space associated to a rewrite theory is determined in Maude only by
the program rules, since equations are deterministic. That is, rules and equations
are applied in the same way but Maude only keeps track of the rules applied
and omits the information about the equations applied. Therefore, the number
of rules and equations is relevant since the smaller the number of rules, the more
efficient the verification analysis, because the search space is smaller. According
to [14], the Java operational semantics contains about 424 equations and only 7
rules, which considerably saves memory and execution time.

The semantics of Java is defined in a continuation-based style [23]. Continua-
tions maintain the control context of each thread, which explicitly specifies the
next steps to be performed by the thread. Continuations are a typical technique
to transform the uncontrollable control context into controllable data context, by
stacking the sequence of actions that still need to be executed. Once the expres-
sion e on the top of a continuation (e -> k) is evaluated, its result will be passed
to the remaining continuation k. For instance, the Java addition operation on

186 M. Alba-Castro, M. Alpuente, and S. Escobar

---First evaluate arguments

eq k((E + E’) -> K) = k((E, E’) -> (+ -> K)) .

---Then, compute addition

eq k((int(I), int(I’)) -> (+ -> K)) = k(int(I + I’) -> K) .

Fig. 1. Continuation-based equations for Java addition operator on integers

---First obtain location in store from variable name

eq k(Var -> K) env([Var, Loc] Env) obj(Obj)

= k(#(Loc) -> K) env([Var, Loc] Env) obj(Obj) .

---Then obtain value stored in such location

rl t(k(#(Loc) -> K) id(I) TC) store(Loc, Value, -1] Store)

=> t(k(Value -> K) id(I) TC) store([Loc,Value,-1] Store) .

Fig. 2. Continuation-based equation and rule for variable content retrieval

---Obtain variable location while keeping expression in the continuation

eq k((Var = E) -> K) = k(getLocation(Var) -> (=(E) -> K)) .

---Once the location is obtained, evaluate expression keeping location

eq k(Loc -> (=(E) -> K)) = k(E -> (=(Loc) -> K)) .

---Once the expression is computed, assign to location

eq k(Value -> (=(L) -> K)) = k([Value -> L] -> (V -> K)) .

---General procedure to update the shared memory

rl t(k([Value -> Loc] -> K) id(I) TC) store([Loc,Value’,-1] ST)

=> t(k(K) id(I) TC) store([Loc, shared(Value), -1] ST) .

Fig. 3. Continuation-based equations and rules for Java assignment operator

Java integers is specified2 in Figure 1 using continuations, where k is the con-
structor symbol used to denote a continuation in a thread, -> is the constructor
symbol used to concatenate continuations, int is the constructor symbol used
to denote a Java integer, and + with arity3 2 and inside the constructor int is
the Maude addition symbol, whereas + with arity 2 but outside the constructor
int is the Java addition symbol, and + with arity 0 is a continuation symbol
used to remember that the Java addition action is being stacked.

Another important aspect of the semantics is the use of Java variables. In
Figure 2 we show how the contents of a Java variable is retrieved from the store
in the Java state. The assignment operator for Java variables is specified in
Figure 3. Note that the relative order among assignment and retrieval operations
is relevant since multiple threads can try to concurrently assign a value to a

2 The Maude syntax is almost self-explanatory [10]. The general point is that each
syntactic element –e.g. a sort, an operation, an equation, a rule– is declared with an
obvious keyword: sort, op, eq, rl, etc., ended by a space and a period. We denote
variables with uppercase letters whereas lowercase letters denote Maude constructor
symbols.

3 The Maude syntax allows overloading of operators, with different arities.

Automated Certification of Non-Interference in Rewriting Logic 187

---Evaluates boolean expression keeping the then and else statements

eq k((if E S else S’ fi) -> K) = k(E -> (if(S, S’) -> K)) .

eq k(bool(true) -> (if(S, S’) -> K)) = k(S -> K) .

eq k(bool(false) -> (if(S, S’) -> K)) = k(S’ -> K) .

Fig. 4. Continuation-based equations for if-then-else statement

eq t(k(V -> return -> K) holds(Ll’) env(Env’)

fstack(fsi(K’, (holds(Ll) env(Env) TC)) Fstack) TC’)

= t(k(releaseEnv(Env’) -> release(Ll, Ll’) -> (V -> K’)) holds(Ll)

env(Env) fstack(Fstack) TC) .

Fig. 5. Continuation-based equation for return statement

variable or read its value from the store; hence a rule, instead of an equation,
is used to represent the physical assignment as well as the physical retrieval
from the store. In other words, the assignment operator and the retrieval of a
variable value are non-deterministic due to the presence of different threads, and
are specified with Maude rules instead of Maude equations.

A relevant aspect of the Java semantics for non-interference is the if-then-else
statement, shown in Figure 4. Also important for non-interference is the seman-
tic specification of the Java return statement, shown in Figure 5. The return
statement restores the previous environment, the held locks and the local thread
state from the function stack, and then updates the continuation to release the
method local environment and locks, and to restore them from the stack.

3 An Information-Flow Rewriting Logic Semantics for
Java

In this section, we develop an information-flow, extended version of the rewriting
logic semantics of Java recalled in Section 2. In order to motivate the new seman-
tics with appropriate Java examples, let us first briefly recall the Java modeling
language JML [21].

JML is a behavioral interface specification language that accepts Java built-
in operators in order to relieve Java programmers from the encumbrance of
learning a language-independent formal specification language like OCL [9]. As
an interface specification language, JML can describe the names and static in-
formation found in Java declarations of Java modules with preconditions (in
requires clauses), normal postconditions (in ensures clauses), invariants (in
invariant clauses) and assert statements (with the assert clauses), that ex-
press first-order logic statements. As a behavior specification language, JML can
also describe how the module will behave when assertions are intermixed with
the Java code.

The text of an annotation could be either in one line, after the marker //@,
or in many lines enclosed between the markers /*@ and @*/. In this paper, we

188 M. Alba-Castro, M. Alpuente, and S. Escobar

consider lightweight specifications using the simplest JML clauses for Java meth-
ods and type specification of the simplest language level 0 (there are six levels
of annotations). We use two method specification clauses, the ensures clause
to indicate the required confidentiality label expected by the code consumer on
the result of a function and the requires clause to indicate any precondition
(Low or High) on the confidentiality label of a function input parameter. We use
assert clauses to indicate the confidentiality label of local variables. The JML
specifications written as code annotations are treated like Java comments that
are ignored by traditional compilers whereas they are automatically handled by
our certification methodology.

The problem of verification and certification of program non-interference using
information flow analysis, was first considered in [12]. The flow policy is usually
represented by a flow relation between security classes that specify the permissi-
ble flows between them. Each storage object (constant, scalar variable, array, or
file) is assigned to a security class. This assignment is static and inferred from
the declarations in the program. A non-interference policy means that variables
have fixed confidentiality levels and that inputs with high confidentiality level do
not influence outputs of lower confidentiality level [28,7,30,13]. This means that
the values stored in the high confidentiality variables cannot flow to the lower
confidentiality variables. It is implicitly assumed that constants appearing in a
Java program always have the lowest confidentiality level, i.e., the considered
Java program is authorized to access secret data but it does not contain secret
data in its code.

A non-interference policy can be represented by a relation 〈L,≤〉 and a label-
ing function Lab : V ar → L, where L is the finite set of confidentiality levels, ≤ is
a partial order between confidentiality levels, and V ar is the finite set of program
variables. Usually there are two confidentiality levels, i.e., Conf = {Low, High},
representing respectively the public non-secret data (low confidentiality) and the
secret private one (high confidentiality), so that Low ≤ High. 〈Conf,≤〉 forms a
lattice where Low is the greatest lower bound or bottom (⊥), High is the least
upper bound or top (�), and the join operator () is defined as Low	Low = Low
and, otherwise, X 	 Y = High. This means that values of Low labeled variables
can flow to High labeled variables, but also that values of High labeled variables
cannot flow to Low labeled variables. The information that flows in a program is
either explicit or implicit. An explicit illicit flow is caused by assignment state-
ments in which the values of expressions with high variables are assigned to low
variables [28,19], shown in the following.

Example 1. Consider the simple Java program borrowed from [20]. We use the
requires and ensures clauses and the operator \result. This example has an
illegal direct flow from the variable high with confidentiality label High to the
variable low with label Low in the first assignment statement. Nevertheless, the
final outcome is an integer constant value with the Low confidentiality label, so
that the final output is legal.

public int mE1(int high,int low) { low = high; low = 2; return low;}

/*@ requires high == High && low == Low; @ ensures \result == Low; @*/

Automated Certification of Non-Interference in Rewriting Logic 189

Another explicit illicit flow might occur in function and procedure invocations,
shown in the following example.

Example 2. Consider the following Java program borrowed from [30], whose
method mE522 calls the method decrementing with two parameters. The ex-
plicit illicit flow occurs at the decrementing invocation, which passes the High
variable high to the Low parameter i.

int decrementing(int high,int i) { high = high - 1; return i; }

/*@ requires high == High && i == Low; @ ensures \result == Low; @*/

int mE522(int high,int low){ low=decrementing(high,high); return low;}

/*@ requires high == High && low == Low; @ ensures \result == Low; @*/

The common source for implicit illicit flows, which can often go unnoticed [28,19],
are control flow statements guarded by boolean expressions with variables of
confidentiality High, shown in the following example.

Example 3. Consider a Java program, also borrowed from [30], with an if con-
trol flow statement. If the actual data passed to the low parameter is not 0
and the returned value is 0, then we know that the secret variable high has a
value greater than 2. Note that the notion of a global confidentiality label (called
context label) being updated after each conditional expression is necessary for
proper verification of such an implicit leaking [12,20,19].

public int mE2(int high,int low) { if (high > 2) low = 0; return low;}

/*@ requires high == High && low == Low; @ ensures \result == Low; @*/

In order to avoid false positives, we will dynamically restore the previous global
confidentiality label after each conditional construction, as shown in the following
example.

Example 4. Consider a slight modification of Example 3 where the returned
value does not actually depend on the value of the High variable high. That is,
the variable j is affected by the value of the variable high but the variable low
used in the return expression is not.

public int mE2*(int high,int low)

/*@ requires high == High && low == Low; @ ensures \result == Low; @*/

{int j=0;low = 0; /*@assert j==Low;@*/ if (high>2) j = 1; return low;}

We describe the information-flow extended version of the rewriting logic seman-
tics of Java by the rewrite theory RJavaE = (ΣJavaE , EJavaE , RJavaE), EJavaE =
ΔJavaE �BJavaE and its corresponding →JavaE rewriting relation. In the new se-
mantics, program data do not only consist of standard concrete values but each
value is decorated with its corresponding confidentiality label. Our approach
consists of extending RJava (taking advantage of its modularity) by conveniently
complementing the concrete domain Value as to consider the extended domain
Value × LValue.

190 M. Alba-Castro, M. Alpuente, and S. Escobar

We introduce the sort LValue to represent values Low and High. We write
<Value,LValue> for a pair of a concrete value and its corresponding confiden-
tiality level label. We must also provide appropriate versions of the Java con-
structions and operators for the new extended domain. Recall that the symbols
env and store are the constructor symbols used by the original Java rewriting
semantics for the program environment and the memory store, respectively. The
new constructor symbol lenv is used to store the global confidentiality level
(context label).

Regarding confidentiality, we consider the following Java expressions as a spe-
cial case of the evaluation: literal constants, variable access, binary operators,
assignment expressions, unary pre– and post–fix operators and return expres-
sions. Thanks to the modularity of the rewriting logic approach to formalizing
program semantics, our changes to the semantics of Section 2 are incremental
and minimal. Variables receive an initial confidentiality level, which is stored in
the memory when the variable or parameter is created. Any operation writing a
value in a memory location stores, as the confidentiality label for such variable,
the join of the confidentiality label of the value to be written and the context
level at that moment, as shown in Figure 6. The label of any Integer constant
value, shown in Figure 7, is Low as expected, since constants are public data.
The label of a variable is the confidentiality label of its value in memory and,
therefore, the original equations of Figure 2 need no revision.

For the dynamic labeling of the context, the initial context label of any thread
is Low as usual [12,2,20,19]. Method invocation propagates context label with-
out changes as proposed in [20]. Assignment and expression statements do not
change context label. The context label may change only because of conditional
control flow statements to control indirect information flow, as shown in Fig-
ure 8. The current context label is stored in the continuation using the new
restoreLEnv continuation operator, which restores the previous context label
upon execution; see the last equation of Figure 8. According to [12,2,20,19], the
evaluation of boolean expressions returns a confidentiality level associated to the
resulting true or false value and, possibly, a modified context label. We up-
date the context label in order to reflect the confidentiality level returned by the
evaluation of the boolean expression, and then the two branches of the

rl t(k([< Value,LValue > -> L] -> K) id(I) lenv(LEnv) TC)

store([L, Value’, -1] ST)

=> t(k(K) id(I) lenv(LEnv) TC)

store([L, shared(< Value,LValue join LEnv >), -1] ST) .

Fig. 6. Rule for the extended memory write

eq k(i(I) -> K) = k(<int(I),Low> -> K) .

eq k(b(B) -> K) = k(<bool(B),Low> -> K) .

Fig. 7. Equations for extended constant evaluation

Automated Certification of Non-Interference in Rewriting Logic 191

--- First evaluates the boolean expression

--- and keeps the current context label

eq k((if E S else S’ fi) -> K) lenv(LEnv)

= k(E -> if(S, S’) -> restoreLEnv(LEnv) -> K) lenv(LEnv) .

--- Then updates the context label

eq k(< bool(true), LValue > -> (if(S, S’) -> K)) lenv(LEnv)

= k(S -> K) lenv(LEnv join LValue) .

eq k(< bool(false), LValue> -> (if(S, S’) -> K)) lenv(LEnv)

= k(S’ -> K) lenv(LEnv join LValue) .

--- New equation to restore previous context label

eq k(restoreLEnv(LEnv) -> K) lenv(LEnv’) = k(K) lenv(LEnv) .

Fig. 8. Continuation-based equations for the extended if-then-else statement

eq t(k(< V,LValue > -> return -> K) holds(Ll’) env(Env’)

lenv(LEnv) fstack(fsi(K’,(holds(Ll) env(Env) TC)) Fstack) TC’)

= t(k(releaseEnv(Env’) -> release(Ll,Ll’) -> (<V,LValue join LEnv> -> K’))

holds(Ll) env(Env) fstack(Fstack) TC) .

Fig. 9. Continuation-based equation for return statement

conditional expression will use such a new context confidentiality label for mem-
ory updates.

The extended semantics for the return statement considers not only the con-
fidentiality label of the value to be returned but also the context confidentiality
level, as shown in Figure 9.

4 The Abstract Rewriting Logic Semantics of Java

In this section, we develop an abstract version of the extended rewriting logic se-
mantics of Java developed in Section 3, described by the rewrite theory RJava# =
(ΣJava# , EJava# , RJava#), EJava# = ΔJava#�BJava# and its corresponding→Java#

rewriting relation. As in Section 3, our approach for the abstract Java semantics
consists of extending the original theory RJava (taking advantage of its modular-
ity) by abstracting the domain to LValue = {Low, High}, and introducing approx-
imate versions of the Java constructions and operators tailored to this domain.

An abstract interpretation (or abstraction) [11] of the program semantics is
given by an upper closure operator α : ℘(State) → ℘(State), that is mono-
tonic (for all SSt1, SSt2 ∈ ℘(State), SSt1 ⊆ SSt2 implies α(SSt1) ⊆ α(SSt2)),
idempotent (for all SSt ∈ ℘(State), α(SSt) ⊆ α(α(SSt))), and extensive (for
all SSt ∈ ℘(State), SSt ⊆ α(SSt)). The intuition of this definition is that
each Java program state St ∈ State is abstracted by its closure α({St}). Clo-
sure operators have many interesting properties. For instance, when the con-
sidered domain is a complete lattice, e.g. 〈α(State),⊆〉, each closure operator
is uniquely determined by the set of its fixed points. In the context of abstract
interpretation, closure operators are important because abstract domains can be

192 M. Alba-Castro, M. Alpuente, and S. Escobar

equivalently defined by using them or by Galois insertions, as introduced in [11].
Let ι : α(℘(State)) → A be an isomorphism. Then, given an upper closure op-
erator α : ℘(State) → ℘(State), the structure (℘(State), α ◦ ι, ι−1, A) is a Galois
insertion, where α ◦ ι and ι−1 are the abstraction and concretization functions,
respectively (see [11] for further details). In our approach [1], we only need an
abstract function for each Java variable name x, e.g., αx : ℘(Value) → ℘(Value)
and homomorphically extend those abstract functions to an abstract function
α : ℘(State) → ℘(State). Indeed, for each variable x, α abstracts the values
stored in the Java memory for x using αx.

In this section, our abstraction function α : ℘(StateE) → ℘(StateE) is an
homomorphism extension to sets of states of the function 2nd : Int × LValue →
LValue, meaning that we disregard the actual values of data.

In the abstract Java semantics, several alternative computation steps of→JavaE

are mimicked by a single abstract computation step of →Java# , reflecting the fact
that several distinct behaviors are compressed into a single abstract state (i.e.
set of states). Consider e.g. the approximate version of the Java > operator. For
the case of comparing two abstract states SSt1 and SSt2 in ℘(StateE) for >, an
(inaccurate) approximation of the result is the set {<true,Low>, <true,High>,
<false,Low>, <false,High>}, since all combinations are possible when we would
compare concrete states. As explained in [1], the instrumentalization of the Java
semantics to deal with a set of states instead of one single state implicitly means
too many modifications.Therefore, we adopt a different approach. When several
→JavaE rewrite steps are mimicked by a single abstract rewriting state leading to
an abstract Java state, and those rewrite steps apply different rules or equations,
we use concurrency at the Maude level. That is, we add rules to RJava# to reflect
the different possible evolutions of the system.

Now, we are ready to formalize the abstract rewriting relation →Java# , which
intuitively develops the idea of applying only one rule or equation from the
concrete Java semantics to an abstract Java state while exploring the different
alternatives in a non-deterministic way. By abuse, we denote the abstraction of
a rule α({l}) → α({r}) by α({l} → {r}).
Definition 1 (Abstract rewriting). Let α : ℘(StateE) → ℘(StateE) be an ab-
straction. We define the approximated version of rewriting →Java#⊆ ℘(StateE)×
℘(StateE) by:

SSt1 →Java# SSt2 using α({l} → {r}) ∈ (RJava# ∪ ΔJava#)
iff ∀u ∈ α(SSt1), ∃v ∈ SSt2 s.t. u →JavaE v, using l → r ∈ RJavaE ∪ ΔJavaE .

We denote by →∗
Java# the extension of →Java# to multiple rewrite steps. The

following result follows straightforwardly by monotonicity, idempotency, and ex-
tensitivity of the upper closure operator α.

Theorem 1 (Correctness & Completeness). Let α : ℘(StateE)→℘(StateE)
be an abstraction. Let SSt1, SSt2 ∈ ℘(StateE). If SSt1 →∗

Java# SSt2, then for
all u ∈ α(SSt1), there is v ∈ SSt2 such that u →∗

JavaE v. Let St1, St2 ∈ StateE.
If St1 →∗

JavaE St2, then there exists SSt3 ∈ ℘(State) s.t. α(St1) →∗
Java# SSt3

and St2 ∈ SSt3.

Automated Certification of Non-Interference in Rewriting Logic 193

rl t(k([LValue -> L] -> K) TC) store([L, Value’] ST) lenv(LEnv)

=> t(k(K) TC) store([L, LValue join LEnv] ST) lenv(LEnv) .

Fig. 10. Abstract rule for the memory write

eq k(i(I) -> K) = k(Low -> K) .

Fig. 11. Abstract equation for constant evaluation

eq t(k(LValue -> return -> K) holds(Ll’) env(Env’) lenv(LEnv)

fstack(fsi(K’, (holds(Ll) env(Env) TC)) Fstack) TC’)

= t(k(releaseEnv(Env’) -> release(Ll, Ll’) -> LValue join LEnv -> K’)

holds(Ll) env(Env) lenv(LEnv) fstack(Fstack) TC) .

Fig. 12. Abstract equation for return statement

Therefore, in the following, we abstract the semantics of Section 3 so that (i)
each pair <Value,LValue> in the equations and rules are approximated by the
second component LValue; and (ii) those equations that cannot be proved conflu-
ent4 after the transformation are transformed into rules, to reflect the different
possible rewrites denoted by an abstract state. We additionally add a rule to
deal with confidentiality values alone, shown in Figure 10. For the label of an
integer constant value, we return Low as expected, shown in Figure 11. Note
that this can be still expressed by means of an equation, since confluence and
coherence [10] are preserved. The label of a variable is the confidentiality label
of its value in memory and, therefore, we keep the original equations of Figure
2. Analogously, regarding conditionals the equations of Figure 8 still work. Since
pairs <Bool,LValue> are handled by the return statement, its abstract semantics
is still given by the equation of Figure 9.

However, we must add an extra equation to deal with confidentiality values
alone, shown in Figure 12, which is almost identical to equations in Figure 9. The
following example illustrates the mechanization of the abstract Java semantics.

Example 5. Consider the Java program together with the call to the main func-
tion of Example 1. In the search command below, we ask for all possible values
returned by the main Java function of Example 1.

search in PGM-SEMANTICS-ABSTRACT :

java((preprocess(default class t(’Safe1NonInterference) imports nil

extends Object implements none {(public static) int ’mE1((int d(’high)),

(int d(’low))) throws(noType) {((10@(’low = ’high;)) 1 @(’low = i(2);))

12@ return ’low ;} (public static) void ’main (t(’String) [] d(’args))

throws(noType) {5 @ (’System . ’out . ’println < ’mE1 < i(1), i(0)

4 See the Church-Rosser checker for Maude available at
http://www.lcc.uma.es/~duran/CRC/

194 M. Alba-Castro, M. Alpuente, and S. Escobar

> > ;)}}) noType . ’main < new string [i(0)] > noVal))

=>! X:Output .

Solution 1 (state 1)

states: 2 rewrites: 248 in (7ms real) (0 rewrites/second)

X:Output --> pl(Low)

No more solutions.

The search command returns that one unique possible abstract Java execution
trace is possible, which leads to the abstract value Low as the outcome of the
Java instruction “System.out.println(mE1(1,0));”.

5 Certifying Java Source Code

Example 5 above illustrates how our methodology generates a safety certificate
which essentially consists of the set of (abstract) rewriting proofs of the form
t1 →r1

Java# t2 · · · →rk−1

Java# tk that implicitly describe the program states which
can (and cannot) be reached from a given (abstract) initial state. Since these
proofs correspond to the execution of the abstract Java semantics specification,
which is made available to the code consumer, the certificate can be inexpen-
sively checked on the consumer side by any standard rewrite engine by means of
a rewriting process that can be very simplified. Actually, it suffices to check that
each abstract rewriting step in the certificate is valid and that no rewriting chain
has been disregarded, which essentially amounts to use the matching infrastruc-
ture available within the rewriting engine. Note that, according to the different
treatment of rules and equations in Maude, where only transitions caused by
rules create new states in the space state, an extremely reduced certificate can
be delivered by just recording the rewrite steps given with the rules, while the
rewritings using the equations are omitted.

6 Experiments

The certification methodology presented here has been implemented in Maude5.
In developing and deploying the system, we fixed the following requirements: 1)
define a system architecture as simple as possible, 2) make the certification ser-
vice available to every Internet requester, and 3) hide the technical details from
the user. The prototype system offers a rewriting-based program certification
service, which is able to analyze safety properties of Java code which are related
to the safe use of types and with program non-interference.

In Table 1, we study three key points for the practicality of our approach: the
size of the reduced certificate versus the Java source code, the size of the reduced
certificate versus the size of the full certificate and the relative efficiency of pro-
ducing certificates w.r.t. their generation. The experiments have been performed
on a MacBook with 2 Gb RAM. Programs mE1 and mE2* are Java programs
5 It is publicly available at
http://www.dsic.upv.es/users/elp/toolsMaude/rewritingLogic.html

Automated Certification of Non-Interference in Rewriting Logic 195

Table 1. Certificate sizes, and certification times

Full Cert. Size Red. Cert. Size Size Relation Full C. Gen. Time Red. Cert. Gen. Time
Code example (Kb) (Kb) (Red/Source) (ms) (ms)

mE1 443 2.62 2.29 16 3.5
mE2* 561 4.65 4.97 213.5 28.5

mE2v1E1 615 4.74 4.42 267 47
mE2mE1 578 4.66 3.98 245.5 31
mE522v1 604 2.91 1.67 14 3.5

mE3 553 4.55 4.33 377 57.5

containing the methods of Examples 1, and 4, respectively. Programs mE2mE1
and mE2v1E1 contain methods which are a sequential composition respectively
of Examples 3 and 1 and of a variation of Example 3 with Example 1. Program
mE522v1 is a non-interferent variation of Example 2. Program mE3, borrowed
from [20], is similar to program mE2mE1 using the equality == operator.

The two columns for “Full Cert.” show the size in Kbytes and the genera-
tion time, respectively, for the full certificates. Similarly for the two columns of
“Red. Cert.”. Running times are given in milliseconds and were averaged over
a sufficient number of iterations. The experiments are very encouraging, since
they show that the reduction in size of the certificate is very significant in all
cases, ranging the quotient “Red. Cert. Size/Full Cert. Size” from 8.2% in mE2*
to 4.8% for mE522v1. When we compare the time employed to generate the full
and reduced certificates we have that the reduced certificate generation time
takes only 12% of the full certificate generation time.

7 Related Work

Standard Java verification tools that use standard JML [21] as property speci-
fication language do not support non–interference certification. Some sophisti-
cated non–interference policies can be expressed by using the JML extensions of
the Krakatoa Java verification tool [13]. These JML extensions were developed
for Hoare-style assertions regarding program self-composition [4], which means
duplicating the code of the program thus requiring to distinguish the same pro-
gram variables in its two runs. However, non-interference policies that require
labeling data variables with confidentiality levels cannot be expressed by using
these JML extensions. The confidentiality aspect of non–interference is express-
ible using the JML specification pattern suggested in [20,30]. Unfortunately, this
proposal abuses notation by identifying confidentiality levels with values of the
program variables, and it cannot be applied in all cases [30].

Although non–interference has not been considered in current PCC implemen-
tations, there are some (not yet implemented) proposals for a subset of Java [5],
Java bytecode [27,7,6] and some simple, toy imperative languages [19,8]. How-
ever, none of them uses JML to express non–interference policies. [5] proposes
a type system, so that a compiler preserving the information flow type could be
developed for Java source code. [6] defines the first information flow type sys-
tem for a sequential JVM-like language that guarantees non–interference in type

196 M. Alba-Castro, M. Alpuente, and S. Escobar

checked programs. The soundness was proven by using the theorem prover Coq,
and a certified verifier was extracted from the proof. The certified verifier could
be used as a PCC proof checker in the consumer’s side. Although we consider
only two security levels we can easily extend our methodology to the multilevels
of confidentiality of [6]. Our global policies attach security levels to object fields
but we do not consider heaps (where objects and their fields are stored). Our
local policies are very flexible since the security levels of local variables and
parameters of methods may change temporarily as in [19,20].

Some proposals also exist for non–interference verification that are based on
information flow analysis by using abstract interpretation [2,3,18,17]. However,
these proposals do neither generate a proof as a result of the verification nor use
JML to express non–interference policies. The idea of first enriching the original
semantics of the language by pairing each data value to its security level, and then
approximate it by only considering the security level is also in [2]. A similar idea
is developed in [17] where input and ouput channels are associated with security
levels. Regarding the values delivered by a return statement, our work is similar
to [3] and [17]. [18] introduces the notion of abstract non–interference: abstract
non–interference can be obtained by weakening the standard notion of non–
interference by making it parametric relatively to input/output abstractions. In
abstract non–interference, the abstract domains encode the allowed flows that
characterize the degree of precision of the knowledge of a potential attacker
observing the data.

To verify non–interferent Java source programs, there are other type based
proposals that do not use JML either to specify information flow policies, namely
the Java extensions JFlow [24] and Jif [25]. These compilers produce secure Java
source code for verified programs written in the languages JFlow and Jif by
first applying static information flow analysis based on type systems to track
the correspondence between the confidential information and the policies that
restrict its use.

8 Conclusion

As far as we know, we propose the first sound and complete, fully automatic
certification technique that applies to certifying non-interference of Java source
code. The proposed methodology features quality attributes (notably reliability
and security, but also good performance) through rigorous mechanisms which
integrate a wide range of well-established programming language techniques
(abstract interpretation, program semantics, meta-programming, etc). Our ap-
proach is based on a rewriting logic semantics specification of a sufficiently large
subset of the full Java 1.4 language [14]. Certificates are encoded as (abstract)
rewriting sequences which can be checked in the abstract Java semantics written
in Maude on the consumer side by standard reduction. Our certification method-
ology extends to other programming languages by simply replacing the concrete
semantics by a semantics for the programming language at hand, see [23].

Our work can be easily extended to cope with procedure methods, exceptions,
heaps, and multithreading, since they are considered in the Java rewriting logic

Automated Certification of Non-Interference in Rewriting Logic 197

semantics. Since we inherit from Maude and the Java rewriting semantics its
competitive performance (see [15]), we have a scalable technique that can be
further refined to certifying industrial complex Java programs.

References

1. Alba-Castro, M., Alpuente, M., Escobar, S.: Automatic certification of Java source
code in rewriting logic. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916,
pp. 200–217. Springer, Heidelberg (2008)

2. Barbuti, R., Bernardeschi, C., De Francisco, N.: Abstract interpretation of opera-
tional semantics for secure information flow. Information Processing Letters 83(22),
101–108 (2002)

3. Barbuti, R., Bernardeschi, C., De Francisco, N.: Checking security of Java bytecode
by abstract interpretation. In: SAC 2002, pp. 229–236. ACM, New York (2002)

4. Barthe, G., D’Argenio, P., Rezk, T.: Secure information flow by self-composition.
In: CSFW 2004, pp. 100–114. IEEE, Los Alamitos (2004)

5. Barthe, G., Naumann, D., Rezk, T.: Deriving an information flow checker and
certifying compiler for Java. In: SSP 2006, pp. 230–242. IEEE, Los Alamitos (2006)

6. Barthe, G., Pichardie, D., Rezk, T.: A certified lightweight non-interference Java
bytecode verifier. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 125–140.
Springer, Heidelberg (2007)

7. Barthe, G., Rezk, T.: Non-interference for a JVM-like language. In: TLDI 2005,
pp. 103–112 (2005)

8. Beringer, L., Hofmann, M.: Secure information flow and program logics. In: IEEE
CSF 2007, pp. 233–248 (2007)

9. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Rustan, K.,
Leino, M., Poll, E.: An overview of JML tools and applications. IJSTTT 7(3),
212–232 (2005)

10. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

11. Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In:
POPL 1979, pp. 269–282 (1979)

12. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.
Commun. ACM 20(7), 504–513 (1977)

13. Dufay, G., Felty, A., Matwin, S.: Privacy-sensitive information flow with JML.
In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 116–130. Springer,
Heidelberg (2005)

14. Farzan, A., Chen, F., Meseguer, J., Rosu, G.: JavaRL: The rewriting logic semantics
of Java (2007),
http://fsl.cs.uiuc.edu/index.php/Rewriting_Logic_Semantics_of_Java

15. Farzan, A., Chen, F., Meseguer, J., Rosu, G.: Formal analysis of Java programs in
JavaFAN. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 501–505.
Springer, Heidelberg (2004)

16. Farzan, A., Meseguer, J., Rosu, G.: Formal JVM code analysis in JavaFAN. In:
Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116,
pp. 132–147. Springer, Heidelberg (2004)

17. De Francesco, N., Martini, L.: Instruction-level security typing by abstract inter-
pretation. Int. J. of Inf. Sec. 6(2-3), 85–106 (2007)

198 M. Alba-Castro, M. Alpuente, and S. Escobar

18. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In: POPL 2004, pp. 186–197 (2004)

19. Hunt, S., Sands, D.: On flow-sensitive security types. In: POPL 2006, pp. 79–90
(2006)

20. Jacobs, B., Pieters, W., Warnier, M.: Statically checking confidentiality via dy-
namic labels. In: WITS 2005, pp. 50–56 (2005)

21. Leavens, G., Baker, A., Ruby, C.: Preliminary design of JML: A behavioral interface
specification language for Java. ACM SIGSOFT Software Engineering Notes 31(3),
1–38 (2006)

22. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency.
TCS 96(1), 73–155 (1992)

23. Meseguer, J., Rosu, G.: The rewriting logic semantics project. TCS 373(3), 213–237
(2007)

24. Myers, A.C.: Jflow: Practical mostly-static information flow control. In: POPL
1999, pp. 228–241 (1999)

25. Myers, A.C., Nystrom, N., Zheng, L., Zdancewic, S.: Jif: Java information flow.
Software release (2001), http://www.cs.cornell.edu/jif

26. Necula, G.C.: Proof carrying code. In: POPL 1997, pp. 106–119 (1997)
27. Rose, E.: Lightweight bytecode verification. J. Autom. Reason. 31(3-4), 303–334

(2003)
28. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. on

Selected Areas in Comm. 21(1), 5–19 (2003)
29. TeReSe (ed.): Term Rewriting Systems. Cambridge U. Press, Cambridge (2003)
30. Warnier, M.E.: Language Based Security for Java and JML. PhD thesis, Radboud

University Nijmegen (2005)

Formal Verification of Safety Functions by
Reinterpretation of Functional Block Based

Specifications�

Erzsébet Németh and Tamás Bartha

Systems and Control Laboratory,
Computer and Automation Research Institute, Hungarian Academy of Sciences

Kende u. 13–17, H-1111 Budapest, Hungary
{nemethe,bartha}@sztaki.hu

Abstract. This paper presents the formal verification of a primary-to-
secondary leaking (abbreviated as PRISE) safety procedure in a nuclear
power plant (NPP). The software for the PRISE is defined by the Func-
tion Block Diagram specification method.

Our approach to the formal verification of the PRISE safety procedure
is based on the coloured Petri net (CPN) representation. The CPN model
of the checked software is derived by reinterpretation from the FBD
diagram, using a pre-developed library of CPN subnets. This results in
a high-level, hierarchical coloured Petri net, that has an almost identical
structure to the FBD specification.

The state space of the CPN model was drastically reduced by “folding”
equivalent states and trajectories into equivalence classes. Some of the
safety properties could be proven based on the SCC (strongly connected
components) graph of the reduced state space. Other properties were
proven by CTL temporal logic based model checking.

1 Introduction

Nuclear power plants (NPPs) are highly safety-critical and complex systems,
where the correct operation of the safety procedures is of great importance. The
plant protection systems must therefore satisfy high safety requirements and
minimize spurious forced outages.

Digital Control Systems (DCSs) and Programmable Logic Controllers (PLCs)
are widely utilized for control and automation functions in safety-related appli-
cations. The experts who create the system specification favour graphical spec-
ification formalisms, such as the function block diagram (FBD) defined by the
IEC Standard 61131-3 [14]. Graphical tools help to cope with the complexity
and the concurrent nature of the plant control and monitoring software.

Most of these graphical specification languages are executable, and the ex-
perts use simulation and extensive testing to verify the behaviour during the
� This research has been supported by the Hungarian Scientific Research Fund through

grant K67625, which is gratefully acknowledged.

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 199–214, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

200 E. Németh and T. Bartha

development process. However, simulation and testing does not guarantee ex-
haustiveness and completeness. Therefore, formal modelling and analysis of the
safety functions is required to prove that the system cannot enter into unsafe
states, remains operational (no deadlock or livelock occurs), does not trigger
the safety actions unnecessarily (no spurious activation can take place), but it
always triggers them when required (no activation masking can happen).

There are several results in the literature to the problem of formal verifica-
tion and validation of DCS and PLC-based industrial control and monitoring
systems. A few examples for formal modelling, verification and validation of
PLC applications in various specification languages [6] include:

– The authors of [12] describe an application of formal methods in the de-
velopment of safety critical software in the nuclear industry over a thirteen
year period. The work makes use of tabular specifications, and applies formal
methods “all the way down” from requirements, through design, implemen-
tation and verification.

– In [10] a model based approach using a toolset called PLCTools has been
introduced. The FBD programs are modelled and are described as High
Level Timed Petri nets (HLTPN). HLTPN are used for validating the design
and generating the code. MATLAB/SIMULINK provides suitable means for
specifying and simulating the plant.

– In [16] an approach for the automated verification of ladder diagrams [14]
and timed function blocks is presented. The algorithms are translated into
finite state automata. The SMV tool is used as symbolic model checker to
check for the properties. The paper [15] describes a similar approach based
on Signal Interpreted Petri nets (SIPNs), also using the SMV model checker
tool for analysis.

– In [5] programs described in instruction list [14] are modelled as Petri nets.
The model of the program is then composed with Petri net models of the
process into one model of the controlled system. The properties to be verified
are expressed in CTL and the SMV model checker is used.

– An attempt to combine theorem proving and model-checking to formally ver-
ify real-time systems is presented in [13]. The authors use state-event labelled
transition systems (SELTS) as a formal model for Time Transition Models
(TTMs). State-event observation equivalences formalized in the PVS proof
checkers. With appropriate restrictions the PVS models can be translated
into input for the SAL model-checker. A simple real-time control system is
specified and verified using these theories.

1.1 Verification of the PRISE Safety Procedure: Aim and Approach

This paper proposes a unifying methodology for the formal verification of safety
procedures in NPPs. The methodology is applied to the analysis of the Func-
tional Block Diagram (FBD) specification of a nuclear safety procedure called
PRISE (Primary-to-Secondary leaking fault). The operation and the activation
conditions of the PRISE safety procedure are explained in Section 2.

Formal Verification of Safety Functions 201

The FBD based specification of the safety logic was developed by the experts
of the nuclear power plant. The development was incremental, i.e. the experts
first produced a core logic, tested it in a simulation environment, found some
conditions and operating modes not covered by the logic, then extended the
logic accordingly. Our task was to prove the correctness and completeness of the
final safety logic. The verification goals were identified by the nuclear experts,
as described in Section 2.2.

We use reinterpretation for deriving our formal model. Thus, we derive the
formal model of the checked safety procedure directly from the FBD based spec-
ification, instead of the informal written starting specification. In addition, we
would like to preserve the advantages of the FBD: the clear and easy to overview
graphical representation, and the ability to execute (simulate) the specification.
As a further aim, the approach should provide possibility for automatic compo-
sition and verification of the formal model.

For this reason, we chose coloured Petri nets (CPNs) [3] as the formal mod-
elling and analysis framework. CPNs possess all of the above mentioned advan-
tages and allow modelling, simulation, and formal analysis based verification [4].
They have been successfully applied in the area of reliability analysis, as well as
for verification of safety-critical software and control components in NPPs [17].
A CPN based integrated knowledge base development tool for the verification of
the dynamic alarm system has been reported in [8]. A safety-critical software re-
quirements verification using combined CPN and Prototype Verification System
(PVS) methods is described in [9].

Our presented approach is non model based, i.e. only the PRISE safety logic
is modelled and verified, without including a simplified model of the nuclear
process. The model was prepared and analysed using the Design/CPN tool [4].

2 The PRISE Safety Procedure

The subject of our modelling and analysis is a safety procedure, designed for the
Paks Nuclear Power Plant (Paks NPP) located in Hungary. This plant operates
four VVER-440/213 type pressurized water reactor (PWR) units with a total
nominal (electrical) power of 1860 MW.

2.1 The Primary-to-Secondary Leaking Fault Event

The PRImary-to-SEcondary leaking (abbreviated as PRISE) is one of the major
faults related to non-compensable leaking of parts of the primary circuit. A
PRISE event occurs when there is a rupture or other leakage within the steam
generator, affecting either a few (3-10) tubes or their collector that contain the
high-pressure activated liquid of the primary circuit.

In the unlikely case of a PRISE event, the corresponding safety procedures
take care of the reactor trip (emergency shutdown) and the isolation of the faulty
steam generator. However, if the event is not handled properly, then there is a
possibility to release some of the contaminated water to the environment due to

202 E. Németh and T. Bartha

the unreliable operation of one of the involved sensors. In order to prevent this
possibility, a safety valve has been added to each steam generator. These valves
drain the contaminated water into the containment when necessary. The nuclear
experts developed a new safety procedure (called the PRISE safety procedure)
to control the operation of the safety valves.

As a preliminary safety analysis step, simulation investigations have been
carried out for the PRISE initiating event. The event sequence generated by a
PRISE event when the initial plant state is in its normal operating mode and no
other fault occurs has been determined as follows:

1. First the decrease of primary circuit pressure pPR is observed that implies the
safety event pPR < 11.2 MPa. This causes an automatic reactor shutdown
when the control rods reach their bottom position (χRSHUT = 1).

2. The shutting down of the reactor initiates the turbine shutdown when the
secondary water and steam mass flowrates fall into a nominal low level. This
implies an increase in the faulty steam generator level �SG.

3. The increase will eventually cause a level alarm in the faulty steam generator
(Δ�SG > +600 mm) that automatically initiates the isolation of the faulty
steam generator resulting in even more increase of the �SG.

2.2 The Implemented PRISE Safety Procedure

As described above, the purpose of the PRISE safety procedure us to initiate
the draining if and only if a PRISE event occurs. This includes:

– Preventing the steam generators from being drained when a fault event (caus-
ing similar symptoms but not classified a PRISE event) occurs. Thus, the
PRISE safety procedure should be selective.

– When the system is not in a normal operating regime, but is either being
started or shut down, the PRISE safety procedure is designed not to be
active. The operators manually initiate the draining if needed.

Disturbing faults and various operating regimes make the selective detection
of a PRISE fault event complicated. Additionally, one of the key sensors, the
water level (�SG) sensor in the steam generators is highly unreliable. It tends
to show randomly a spuriously high level due to the solid scale content of the
secondary water. This measurement error is more frequent in transient operation
regime. The water level sensor is not part of the reactor safety system, therefore
it is not duplicated.

With the above considerations, the technological and system experts at Paks
Nuclear Power plant have designed the timed logical scheme, a safety procedure,
in a heuristic way. The logical scheme in its FBD representation is shown in
Figure 1. The description of the inputs and outputs of the PRISE safety proce-
dure is included in Table 1.

The resulting safety function will be included in the software of the Reactor
Protection System (RPS) of the Paks NPP. The RPS is implemented on the
basis of the TELEPERM XS (TXS) system platform for digital safety I&C.

Formal Verification of Safety Functions 203

INPUT-1

INPUT-2

INPUT-3

INPUT-4

INPUT-5

INPUT-6

INPUT-7

INPUT-8

INPUT-9

1

1

1

&

&S

R1

S

R1

& S

R1

OUTPUT-1

OUTPUT-2

t 0

Fig. 1. The Functional Block Diagram of the PRISE safety procedure

Table 1. PRISE safety procedure I/O description

INPUT-1 Short name: SG level high (Δ�SG > +600 mm)
Description: Steam generator water level is increasing

(due to closure of the turbine)
INPUT-2 Short name: Primary pressure decreasing (pP R < 11.2 MPa)

Description: The pressure of the primary water is decreasing
(due to the PRISE or other leakage)

INPUT-3 Short name: Containment pressure is normal (pCN < 0.1 MPa)
Description: The pressure of the containment is not increasing

(no primary water inflow due to a non-PRISE fault)
INPUT-4 Short name: Primary temperature below nominal (TCL < 245oC)

Description: Technical condition signifying that the reactor is in
startup/shutdown operation

INPUT-5 Short name: Control rods fully down (χRSHUT = 1)
Description: Technical condition used to reset the operation

of the PRISE safety procedure
INPUT-6 Short name: SG deltaP
INPUT-7 Short name: SG RAP 1/2

Description: Technical conditions used to avoid the erroneous draining of
the secondary water after isolation of the steam generator

INPUT-8 Short name: SG inhibition
Description: Technical condition used to indicate the SG inhibited state

INPUT-9 Short name: Primary pressure low (pPR < 5 MPa)
Description: Technical condition signifying that the reactor is in

startup/shutdown operation
OUTPUT-1 Short name: GFINH1 (SG is inhermetical)

Description: Primary output, activates the secondary water drain
OUTPUT-2 Short name: ACTIVE

Description: Auxiliary output used in control operations

204 E. Németh and T. Bartha

The designed safety procedure initiates the draining (OUTPUT-1) when a
critical decrease in the primary pressure (INPUT-2) is followed (after a specified
time delay) by the increase of the steam generator level (INPUT-1) that lasts for
a certain time interval. However, the draining is initiated only if the containment
pressure keeps its nominal value (INPUT-3). This assures that the pressure is
not increasing due to another, non-PRISE fault causing an inflow of the primary
water into the containment. INPUT-1 must hold its value for at least a minimum
time interval to prevent the incorrect initiation of draining by an unreliable water
level sensor measurement showing temporarily a spuriously high value.

The INPUT-4 and INPUT-9 input conditions inhibit the operation in a
startup or shutdown situation. INPUT-5 resets the operation of the PRISE safety
procedure in the case when the reactor is shut down. INPUT-6 and INPUT-7
prevent the erroneous draining of the containment after the isolation of a steam
generator caused by a non-PRISE fault. INPUT-8 indicates the situation when
the steam generator was manually isolated due to a failure indication.

The primary OUTPUT-1 of the procedure is the presence of a PRISE event.
Note that the auxiliary OUTPUT-2 signal indicates the presence of all but one
of the symptoms of the PRISE situation.

3 Coloured Petri Net Model of the PRISE Safety
Procedure

Our choice for the description formalism of the PRISE safety procedure are
coloured Petri nets (CPN) [4]. CPN is an extension of Petri nets. Most important
differences are:

– places can contain coloured tokens (i.e. multi-sets) that can symbolize the
data content in data flow models, and

– CP nets can be hierarchically structured using substitution transitions and
subnets.

Figure 2 shows the high-level prime page of our CPN model [17]. The larger
rectangles are substitution transitions that denote subnets of the corresponding
function blocks. The smaller net elements are simple places and transitions that
are only needed for connecting the subnets.

We carried out the development and validation of the CPN model in two
phases. In the first phase we studied the related Functional Blocks (FBs) and
transformed them into an equivalent CPN diagram. This transformation was not
straightforward, as the semantics of the FBs have a heterogeneous, semi-formal
description consisting of truth tables, timing diagrams, together with textual
information. When the transformation was completed, we generated the entire
state space of the resulting CPN model. This was achieved by “plugging in” the
CPN model of the FB as a subnet into a simple high-level feedback loop that
fed random values to the inputs of the subnet. (We used the same technique to
generate the state space of the CPN model of the whole PRISE safety procedure,

Formal Verification of Safety Functions 205

INPUT-1

BS

INPUT-2

BS

INPUT-4

BS

INPUT-3

BS

INPUT-5

BS

INPUT-6

BS

INPUT-7

BS

INPUT-8

BS

INPUT-9

BS

HS

OR

BS

HS

OR

BS HS

PULSE

NOT

BSBS

T5 INT
1‘10

T4 INT

1‘2

BS

PULSE

BS

OR

BS

HS

PULSE

T2 INT
1‘6

BS

AND

BS

HS

NOT

NOT

BS HS

PULSE

T3 INT
1‘2

BS

HS

HS

HS

HSHS

SR1

BS HS

HS

NOT

BS BSHS

AND_3

HS

ONDELAY

BS

T1 INT
1‘4

HS

SR1

BS

AND

BS HS
HS

SR1

OUTPUT-1BS

BS

BS

BS

BS

BS

OUTPUT-2BS

Fig. 2. The Coloured Petri net model of the PRISE safety procedure

as described later.) Then, we compared the state sequences in the alternative
trajectories of the state space to the specification.

As an example to the transformation of a functional block to its CPN form,
Figure 3 presents the CPN model of the SR1 function block. The SR1 function
implements the behaviour of a static RS flip-flop (preferred state on reset, pri-
ority on reset) as known from the digital circuit theory. There are 3 copies of
the SR1 block used in the timed logical description of the PRISE safety pro-
cedure. The subnet shown in Figure 3 is instantiated for each copy of the SR1
substitution transition in the high-level model in Fig. 2.

The operation of the CPN model of the SR1 function can be summarised as
follows: if the Set input is activated (BI1 input place is marked with a token
coloured with value 1), the output is set to active (BO1 output place receives a
token coloured with value 1). Similarly, the activation of the Reset input (BI2
input place) makes the output inactive (a coloured with value 0 is put into the
BO1 output place). When both inputs are active, the Reset function dominates.
With both inputs inactive, or when any of the input signals is invalid, then the
SR1 function block maintains the actual state of the output signal. Initially the
output is inactive.

In the second phase of the development and validation of the CPN model for
the PRISE safety procedure, we created the high-level prime page of the CPN
model (Figure 2). This prime page connects and instantiates the previously

206 E. Németh and T. Bartha

BI1

P Ge

BS

BO1

P Ge

BS

[BI1_fault_status = NO_FAULT
 andalso
BI2_fault_status = NO_FAULT
 andalso
BI2_value = 1]

T1

T3
[BI1_fault_status = FAULT
 orelse
BI2_fault_status = FAULT
 orelse
(BI1_fault_status=NO_FAULT andalso BI2_fault_status=NO_FAULT andalso BI2_value=0 andalso BI1_value=0)]

T2

[BI1_fault_status = NO_FAULT
 andalso
BI2_fault_status = NO_FAULT
 andalso
BI2_value=0
 andalso
BI1_value = 1]

BO1_Prev binary_value

1‘0

BI2
BS

P Ge

(0,
 NO_FAULT,
 if BI1_test_status = TEST orelse BI2_test_status = TEST
 then TEST
 else NO_TEST)

(BO1_Prev_value,
 if BI1_fault_status = FAULT orelse BI2_fault_status = FAULT
 then FAULT
 else NO_FAULT,
 if BI1_test_status = TEST orelse BI2_test_status = TEST
 then TEST
 else NO_TEST)

(1,
 NO_FAULT,
 if BI1_test_status = TEST
 orelse BI2_test_status = TEST
 then TEST
 else NO_TEST)

(BI1_value,
 BI1_fault_status,
 BI1_test_status)

(BI1_value,
 BI1_fault_status,
 BI1_test_status)

(BI1_value,
 BI1_fault_status,
 BI1_test_status)

BO1_Prev_value

0

BO1_Prev_value

BO1_Prev_value

(BI2_value,
 BI2_fault_status,
 BI2_test_status)

(BI2_value,
 BI2_fault_status,
 BI2_test_status)

(BI2_value,
 BI2_fault_status,
 BI2_test_status)

BO1_Prev_value 1

Fig. 3. The CPN model of the SR1 function block

prepared and validated CPN subnets of the different functional blocks. The
transformation of the Functional Block Diagram (Figure 1) was rather straight-
forward, since the structure of the FBD graph and the corresponding CPN
graph are isomorphic. The correctness of the translation was also partially val-
idated by the dynamic (behavioural) properties of the CPN, as described in
Section 4.

The run-time environment is a safety-critical highly dependable digital process
control computer. It uses an explicit 50 millisecond long scan cycle. During
each scan cycle the controller first samples its inputs, then evaluates all of its
functional diagram pages. The evaluation starts from the FBs connected to the
inputs and follows the flow of data until they reach the outputs. During the
evaluation the controller computes its new internal state, then sets the outputs,
and in the remaining time performs self-tests.

This behaviour is reflected by the CPN model the following way: the propaga-
tion of the tokens in the net represents the flow of data in the functional diagram.
The CPN model has a feedback loop (not included in Figure 2 for simplicity)
that puts simultaneously a single coloured token into each input place at the
beginning of a scan cycle. The colour of the input tokens carries the input data
value. These tokens initiate the execution of the subnets modelling the function
blocks. When every subnet has been executed, a single coloured token is gen-
erated into each output place. The feedback loop takes away every generated
token from the outputs and the scan cycle ends. Then the loop puts a new token
into every input place, so that the next cycle can begin.

Formal Verification of Safety Functions 207

4 Analysis of the Coloured Petri Net Model

Petri net and CPN models have a broad selection of analysis techniques; some
of which even avoid the state explosion problem [7]:

– Structural analysis techniques construct no state space at all, because they
work directly on the structure of the Petri net. Results are structural prop-
erties and invariants.

– Dynamic (reachability) analysis techniques are based on the construction and
exploration of the complete state space (reachability or occurence graph).

– The lazy state-space construction method is also available to build reduced
(interleaving) state spaces. The reduction is based on an appropriate equiv-
alence function, which maps several states into one.

The previously mentioned problems with the selective detection of a PRISE
fault event, and the heuristic design process of the safety logic made it necessary
to perform a rigorous formal verification of the PRISE safety procedure. We
needed to prove if it initiates the draining

– always if PRISE occurs in every normal operation regime coupled with sen-
sor fault in �SG that is highly unreliable,

– never if PRISE does not occur even if severe faults causing similar symptoms
occur.

We could translate these requirements into verification goals the following way:

– Liveness requirements: the secondary water draining activity is always acti-
vated when a real PRISE accident has occurred (no actuation masking).

– Safety requirements: the draining activity is not activated if not a real PRISE
accident has occurred (no erroneous actuation).

4.1 State Space Analysis of Coloured Petri Nets

State space analysis is one of the main formal analysis methods of Petri nets
[1]. It has been used successfully in the verification of concurrent systems like
communication protocols, parallel- and distributed algorithms.

The state space of a CPN is called an occurrence graph (O-graph) [4] or a
reachability graph. The O-graph has a node for each reachable marking and an
arc for each step that occurs. The source node of an arc is the start marking of a
step, while the destination node is the end marking. Using the constructed state
space it is possible to algorithmically reason about the behaviour of a system,
such as to verify that the system possesses certain desired properties or to locate
errors in the system. If the state space is finite, it can be used to analyse the
dynamic properties, such as reachability, boundedness, liveness, and fairness.

Although the PRISE safety procedure is relatively simple, its complete state
space is large (it has approx. 1014 states). This is due to the cyclic operation (mod-
elled by the feedback loop), and the internal sequential function blocks (the flip-
flop, pulse and delay blocks). Thus, an exhaustive analysis of the state space
cannot be performed with many of the analysis tools (including Design/CPN).

208 E. Németh and T. Bartha

This large state space is partially the result of the non model based approach
for the verification: during the model checking phase many false counterexam-
ples are found for the analysed requirements that correspond to invalid state
space trajectories. These trajectories cannot occur in the real system due to the
properties and constraints of the monitored plant operation (thus they were not
accounted for in the design of the PRISE safety procedure).

We could get round this problem by analysing parts of the state space defin-
ing constrained input scenarios. In our case study, we examined the initiation of
the OUTPUT-1 secondary water draining activation signal under nominal con-
ditions. It means that all the input signals have constant values or step-function
values, except the “SG level high” (INPUT-1) signal, which is unreliable, thus it
will be assumed to be arbitrary. The other inputs are set to match the activation
conditions of the OUTPUT-1 signal.

Restricting the analysis to the most significant failure scenario cut down the
size of the state space by several orders of magnitude: the number of states in
the occurrence graph became 46811.

Lazy state space generation using equivalence classes. The CPN models
have often some markings or state space trajectories which, for certain purposes,
are alike or similar, so that we may want to ignore the difference between them.
This notion of similarity provides a potential to reduce the state space for faster
and more thorough analysis, and motivated the introduction of the so-called
occurrence graphs with equivalence classes (OE-graphs).

The similarity of states can be formalized by defining equivalence relations
on the set of states and the set of actions. All states in an equivalence class
are then represented by a single node in the resulting OE-graph, therefore the
nodes correspond to equivalence classes of states and the arcs correspond to
equivalence classes of actions. The constructed condensed state space is called
the OE-graph. It is typically orders of magnitude smaller than the ordinary full
state space, but from which the same kind of dynamic properties can be directly
verified and analysed without unfolding it to the full state space.

The Design/CPN tool (from version 3.1) contains an OE/OS Graph Tool.
The OE/OS Graph Tool has a large number of built-in standard queries. These
can be used to investigate the dynamic properties of CPNs, such as reachability,
boundedness, home properties, liveness and fairness, and gives possibility to the
user to formulate his own queries. The theoretical background of the OE-graphs
including the proofs of reachability, boundedness, home, liveness and fairness
properties can be found in detail in [4].

Reduced state space construction for the PRISE CPN. Unfortunately,
due to the nature of the modelled safety procedure, the model and its state space
do not contain any symmetries or permutation invariances, thus these cannot be
used for reduction.

On the other hand, by a closer examination of the occurrence graph one
can observe a particular property: from the initial nodes there is a large “fan
out” into many alternate trajectories, but these soon converge into 3–4 desti-
nation nodes. The reason for this behaviour is the internal nondeterminism of

Formal Verification of Safety Functions 209

the PRISE CPN model. This means that the execution order of the CPN sub-
nets located on parallel data paths is not deterministic (in other words they
are concurrent, casually independent): all substitution transitions that meet the
enabling conditions (have enough coloured tokens on their input places) can fire.
(This nondeterminism models our lack of knowledge about the real execution
order of concurrent paths, since the TXS source code is confidential.)

We could formally verify that these alternate execution trajectories starting
from a particular input produce the same set of outputs, that is they form
observation equivalences. This can be used for state space reduction by removing
(“folding” together) the redundant trajectories, resulting in a single equivalent
trajectory.

For the purpose of the Design/CPN OE/OS Graph Tool, the equivalence
specification of markings and/or binding elements must be defined by the user. It
is achieved by implementing two equivalence functions and a hash function. One
defines when two markings are equivalent, the other defines when two binding
elements are equivalent. The hash function maps each equivalence class into a
unique hash key.

Instead of trying to formulate the above outlined observation equivalences in
terms of equivalence and hash functions, we rather created a minimum represen-
tation for the PRISE CPN model in the chosen constrained input scenario. For
this purpose we substituted the subnet determined by the constrained inputs
(INPUT-2 to INPUT-9) with an equivalent minimum sequential CPN subnet.
(The minimum sequential CPN subnet does not have concurrent data paths,
but produces the same results in the selected internal data points as the original
nonminimal model.) The observation equivalence of the original model and the
minimum representation was proven.

With this modification the size of the state space of the PRISE CPN model
was further reduced down to 387 states. Due to this small size we could examine
the structure of the state space directly by the SCC graph method.

The SCC-graph of the reduced state space. The SCC (Strongly Con-
nected Components) graph represents the strongly connected components of an
occurrence graph by a single node. The strongly connected components of an
O-graph are important, because every state in an SCC is a home state [1], that
is each state of an SCC is reachable from any other state of the same SCC. Thus,
strongly connected components represent repeatable, cyclic activities. The struc-
ture of the SCC-graph derived from the reduced state space of the PRISE CPN
is shown in Figure 4.

As it can be seen, the state space has a large initial sequence (172 nodes) of
singular (non-SCC) states. This sequence represents the enabling of the PRISE
detection logic. At the end of the sequence the OUTPUT-2 signal becomes active,
meaning that the safety logic is ready to activate on a valid INPUT-1 signal.

Two SCC nodes (~39 and ~181) can be found in the SCC-graph, these are
emphasized by bold text and grey background. The following interpretation was
found for the states contained in these SCC nodes by careful analysis using both
state space search methods and model checking:

210 E. Németh and T. Bartha

~1:
#Nodes: 1

~2 – ~173:
#Nodes: 171
all singular,
non SCC! ~39:

#Nodes: 69
~181:

#Nodes: 76

~174:
#Nodes: 1

~175:
#Nodes: 1

~176:
#Nodes: 1

~177:
#Nodes: 1

~178:
#Nodes: 1

~179:
#Nodes: 1

~180:
#Nodes: 1

Fig. 4. The structure of the SCC graph for the PRISE CPN

– The ~39 node contains the states in which the PRISE safety logic is enabled,
but no valid INPUT-1 signal (the unreliable steam generator level measure-
ment signal) is received. The various short input “spikes” on the INPUT-1
are correctly filtered out by the ONDELAY functional block.

– On the other hand, the ~181 node includes all of those states, where a valid
INPUT-1 signal was received (the ’SG level high’ signal was active for a
sufficient number of scan cycles).

From the structure of the SCC-graph in Figure 4 it is easy to see that the
PRISE safety procedure can be initiate iff the enabling conditions are valid
(OUTPUT-1 cannot be activated before OUTPUT-2), and only iff a reliable
steam generator level measurement signal is received. However, further analysis
is required to prove that the initial activation sequence is also correct. This will
be proven in the next sections.

Dynamic properties of the PRISE CPN. The analysis results from the
reduced state space of the PRISE CPN provide a lot of important information
for both the validation of the model and the verification of its correctness. The
investigated dynamic (or behavioural) properties are summarized in Table 2.

Table 2. Dynamic properties of the PRISE CPN model

Property Result
Boundedness The PRISE CPN is multi-set bounded.

The PRISE CPN is safe in the integer sense.
Liveness The PRISE CPN with feedback is deadlock-free.

All transitions related to the primary output signal are live.
Fairness Each live transition is at least impartial or fair.

The derived dynamic properties of the PRISE CPN give additional proof for
the validation of the transformation from the FBD based specification of the
safety procedure to its formal CPN model (see Section 3), in the following way:

Formal Verification of Safety Functions 211

– All places in the net are multi-set bounded. The upper multi-set bounds of
places describe the operational range of the corresponding signals. The lower
multi-set bounds of places prove that the resources (e.g. the inner state of
time-dependent blocks) are preserved, as the corresponding places contain a
token in all states of the operation.

– The net is safe in the integer sense, meaning that each place contains at most
one coloured token in any state. This confirms that the both the intended
data-flow behaviour and the functional structure is correctly expressed in
the CPN model.

– The PRISE CPN with the feedback loop is deadlock-free, there are no dead
markings: the safety logic will not “freeze” in any state of operation. All tran-
sitions involved in the activation of the primary output signal (OUTPUT-1)
are live. Thus, the PRISE safety procedure is able to activate the emergency
activity, and retains this capability during the whole operation.

– The fairness property of each live transition is at least impartial or fair. This
implies both that they can fire infinite times (the functionality is repeatable);
and neither “domination”, nor “starvation” of the activities can occur.

4.2 Analysis of the PRISE CPN by Model Checking

After the dynamic analysis of the CPN model the main characteristics of the
PRISE safety logic can already be seen. With these properties and with the
interpretation of the SCC-graph the model is partially verified.

In order to prove the safety and liveness requirements (defined in Section 4),
we have proved several subconditions:

1. The OUTPUT-2 and OUTPUT-1 signals are activated in all trajectories
of the state space (this is a liveness condition, since the initial activation
conditions are always present in the scenario under analysis).

2. In all trajectories of the state space the OUTPUT-1 signal can only be acti-
vated after the OUTPUT-2 signal, and not in the reverse order.

3. Neither the OUTPUT-2 nor the OUTPUT-1 signal can be activated incor-
rectly by the ’SG level high’ signal when the enabling conditions are not
present (that is while the INPUT-2 signal is still delayed).

4. The “ONDELAY” functional block connected to INPUT-1 correctly filters
the transient behaviour of the ’SG level high’ signal: the filtered signal will
only be activated if the ’SG level high’ signal remains continuously active
during the filtering interval. Shorter “spikes” of this signal cannot make the
filtered signal to become active.

5. The activation of the filtered ’SG level high’ signal will always activate the
OUTPUT-2 and subsequently the OUTPUT-1 signals when the other en-
abling conditions are present.

In the Design/CPN tool we could use two different techniques to prove these
subconditions: reachability graph search functions and ASKCTL temporal op-
erators with model checking.

212 E. Németh and T. Bartha

Fig. 5. Example verification results using state space search and reachability analysis

Figure 5 demonstrates the use of reachability graph search functions. The two
example search formulas are on the left (written in CPN ML language), the result
of their execution is shown on the right. The first formula says
that the OUTPUT-1 (GFINH in the figure) signal is active (contains a token
with the value 1) in 7 states of the state space. The second formula proves that
the OUTPUT-1 signal cannot be active in any of the states before the counter of
the PULSE block connected to the INPUT-2 place reaches zero — a prerequisite
to the activation of the OUTPUT-2 (ELES in the figure) signal.

The Design/CPN program has an explicit-state branching time model checker
called ASKCTL for evaluating CTL temporal expressions. This model checker
operates directly on the state space generated by the OE/OS Graph Tool.

Fig. 6. Example verification results using ASKCTL temporal expressions

Figure 6 gives two examples for the use of model checking with temporal
operators (again, temporal formulas are on the left, and the evaluation results
are on the right). The first formula confirms that all possible execution paths
eventually reach a state from where an action activating the OUTPUT-2 signal
will be executed. The second formula proves that the OUTPUT-1 signal cannot
be activated before the OUTPUT-2 signal would be set.

Formal Verification of Safety Functions 213

5 Conclusions

We presented an approach for the formal modelling and verification of a Function
Block based specification for the PRISE safety procedure. The approach uses
coloured Petri nets as the description formalism and state space analysis together
with model checking as the verification method.

The example demonstrated that the CPN formalism is well suited to FDB
based specifications, highlighting several advantages over other popular formal
analysis methodologies:

– Since both the FDB and the derived coloured Petri net express the flow
of data within the modelled system, their structure are very similar. Many
advantages of the Functional Block Diagrams are preserved, including the
clear and easy to overview structure and the simulation capabilities.

– Thanks to the hierarchical modelling capabilities of the Design/CPN tool,
the elementary Functional Blocks can be modelled separately by CPN sub-
nets, and a model library can be created.

– Due to the similarity of the FBD and CPN models, the construction of the
coloured Petri net model from a Function Block Diagram is straightforward.

– In addition to the dynamic properties, the Design/CPN tool provides other
strong analysis tools, like the equivalence classes, the SCC-graph, the state
space query and search methods, and branching time temporal logic.

Based on the successful model checking of the subconditions defined in
Section 4.2 we were able to prove that the PRISE safety procedure fulfils its
requirements in the constrained input scenarios. We could obtain further results
for the correctness of the PRISE safety procedure by using a model based ver-
ification method, i.e. by developing a simplified coloured Petri net plant model
and connecting it in a closed-loop structure to the CPN model of the PRISE
safety procedure. (These results are not covered by this paper, the interested
reader can find more details in [18].)

As a future work, we would like to create a model of the PRISE in a symbolic
model checking tool, such as SAL (Symbolic Analysis Laboratory) [13]. Symbolic
model checkers use a very compact representation of the state space, thus can
handle much larger state spaces than e.g. Design/CPN. It would be interesting
to evaluate the advantages and disadvantages of the CPN based modelling and
verification approach compared to a purely model checking based solution.

References

1. Murata, T.: Petri Nets: Properties, Analysis and Application. Proceedings of the
IEEE 77(4), 541–580 (1989)

2. Design/CPN – Computer Tool for Coloured Petri Nets, CPN group at the Univer-
sity of Aarhus, Denmark (2002), http://www.daimi.au.dk/designCPN/

3. Jensen, K.: Coloured Petri Nets – Basic Concepts, Analysis Methods and Practical
Use. In: Basic Concepts. Monographs in Theoretical Computer Science, vol. 1.
Springer, Heidelberg (1992)

214 E. Németh and T. Bartha

4. Jensen, K.: Coloured Petri Nets – Basic Concepts, Analysis Methods and Practical
Use. In: Analysis Methods. Monographs in Theoretical Computer Science, vol. 2.
Springer, Heidelberg (1997)

5. Mertke, T., Menzel, T.: Methods and tools to the verification of safety-related
control software. In: Proc. of the IEEE Int. Conf. on Sys., Man and Cybernetics
(SMC 2000), Nashville, USA, pp. 2455–2457 (2000)

6. Younis, M.B., Frey, G.: Formalization of existing PLC programs: A survey. In:
Proc. of the IEEE/IMACS Multiconf. on Comp. Eng. in Sys. App. (CESA 2003),
Lille, France, Paper No. S2–R–00–0239 (2003)

7. Heiner, M.: Verification and optimization of control programs by Petri nets without
state explosion. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248,
pp. 69–84. Springer, Heidelberg (1997)

8. Park, J.H., Seong, P.H.: An integrated knowledge base development tool for knowl-
edge acquisition and verification for NPP dynamic alarm processing systems. An-
nals of Nuclear Energy 29, 447–463 (2002)

9. Son, H.S., Seong, P.H.: Development of a safety critical software requirements
verification method with combined CPN and PVS: a nuclear power plant protection
system application. Reliability Engineering and System Safety 80, 19–32 (2003)

10. Baresi, L., Mauri, M., et al.: PLCTools: Design, Formal Validation, and Code
Generation for Programmable Controllers. In: Proc. of the IEEE Conf. on Sys.,
Man, and Cybernetics (SMC 2000), Nashville, USA, pp. 2437–2442 (2000)

11. Hanisch, H.M., Lobov, A., et al.: Formal Validation of Intelligent Automated Pro-
duction Systems towards Industrial Applications. Int. J. of Manufacturing Tech.
and Management 8(1), 75–106 (2006)

12. Wassyng, A., Lawford, M.: Lessons Learned from a Successful Implementation of
Formal Methods in an Industrial Project. In: Araki, K., Gnesi, S., Mandrioli, D.
(eds.) FME 2003. LNCS, vol. 2805, pp. 133–153. Springer, Heidelberg (2003)

13. Lawford, M., Pantelic, V., Zhang, H.: Towards Integrated Verification of Timed
Transition Models. Fundamenta Informaticae 70(1–2), 155–164 (2006)

14. International Standard IEC 61131-3: Programmable Controllers - Part 3: Program-
ming Languages. International Electrotechnical Commission, Geneva, Switzerland
(1993)

15. Minas, M., Frey, G.: Visual PLC-Programming using Signal Interpreted Petri Nets.
In: Proc. of the American Control Conference 2002 (ACC 2002), Anchorage, Alaska,
pp. 5019–5024 (2002)

16. Rossi, O., Schnoebelen, P.: Formal Modelling of Timed Function Blocks for the
Automatic Verification of Ladder Diagram Programs. In: Proc. 4th Int. Conf. Au-
tomation of Mixed Processes: Hybrid Dynamic Systems (ADPM), Dortmund, Ger-
many, pp. 177–182. Shaker Verlag, Germany (2000)

17. Németh, E., Bartha, T.: Formal verification of function block based specifications
of safety-critical software. In: Modern Information Technology in the Innovation
Processes of the Industrial Enterprises (MITIP 2006), Budapest, Hungary, pp.
211–218 (2006)

18. Németh, E., Fazekas, C., Szederkényi, G., Hangos, K.M.: Modeling and simulation
of the primary circuit of the Paks nuclear power plant for control and diagnosis.
In: Proceedings of the EUROSIM 2007, Ljubljana, Slovenia (2007) (on CD)

Using Datalog and Boolean Equation Systems

for Program Analysis�

Maŕıa Alpuente, Marco A. Feliú, Christophe Joubert, and Alicia Villanueva

Universidad Politécnica de Valencia, DSIC / ELP
Camino de Vera s/n, 46022, Valencia, Spain

{alpuente,mfeliu,joubert,villanue}@dsic.upv.es

Abstract. This paper describes a powerful, fully automated method
to evaluate Datalog queries by using Boolean Equation Systems (Bess),
and its application to object-oriented program analysis. Datalog is
used as a specification language for expressing complex interprocedu-
ral program analyses involving dynamically created objects. In our
methodology, Datalog rules encoding a particular analysis together with
a set of constraints (Datalog facts that are automatically extracted
from program source code) are dynamically transformed into a Bes,
whose local resolution corresponds to the demand-driven evaluation
of the program analysis. This approach allows us to reuse existing
general purpose verification toolboxes, such as Cadp, providing local
Bes resolutions with linear-time complexity. Our evaluation technique
has been implemented and successfully tested on several Java programs
and Datalog analyses that demonstrate the feasibility of our approach.

Keywords: program analysis, Datalog, boolean equation system,
demand-driven evaluation.

1 Introduction

Program analysis is a technique for statically determining dynamic properties of
programs. Static analysis generally executes an abstract version of the program’s
semantics on abstract data, rather than on concrete data. While originally es-
tablished as a technique used in optimizing compilers, program analysis is also
commonly used in software-development tools that help to find program errors
and also derive safety properties of programs.

Recently, a large number of program analyses have been developed in Data-
log [15,18], a simple relational query language rich enough to describe complex
interprocedural program analyses involving dynamically created objects.

The advantages of formulating dataflow analyses as a Datalog query are
twofold. On the one hand, analyses that take hundreds of lines of code in a
traditional language can be expressed in a few lines of Datalog [18]. On the
� This work has been supported by the Spanish MEC under grant TIN2007-68093-

C02-02, by the Generalitat Valenciana GVPRE/2008/113, and by the Universidad
Politécnica de Valencia, under grant PAID-06-07 (TACPAS).

D. Cofer and A. Fantechi (Eds.): FMICS 2008, LNCS 5596, pp. 215–231, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

216 M. Alpuente et al.

other hand, an important number of optimization techniques for Datalog have
been studied extensively in logic programming and deductive databases [1,4].
The two general approaches for evaluating Datalog queries are the top-down
and the bottom-up methods. Given a set of rules, the bottom-up approach com-
putes all facts that can be inferred from the program and then selects those
that unify with the given query. The top-down, goal-directed approach com-
putes on-demand. While bottom-up computation may be very inefficient, the
top-down approach is prone to infinite loops and redundant computations. Op-
timization methods for both approaches that resolve the major drawbacks have
been developed, such as bottom-up transformations based on magic sets [3] and
top-down evaluation with tabling [4]. In the Query-Sub-Query (QSQ) optimiza-
tion technique [16], goals are generated top-down, but whenever possible, goals
are propagated in sets at a time, rather than one at a time, and all generated
goals and facts are memoized.

This paper describes the use of Boolean Equation Systems (Bes) [2] to evalu-
ate Datalog queries and its application to object-oriented program analysis. Our
technique is based on top-down evaluation guided by the given query, and makes
use of tables and finite data domains to ensure termination. Our method is not
a direct evaluation method because it transforms the rules prior to evaluate
them. Similarly to the QSQ technique [16], computation is done by proceed-
ing with a set tuples at a time. This can be a great advantage for large datasets
since it makes disk accesses more efficient. In our program analysis methodology,
Datalog rules encoding a particular analysis, together with a set of constraints
(Datalog facts that are automatically extracted from program source code), are
dynamically transformed into a Bes, whose local resolution corresponds to the
demand-driven evaluation of the program analysis. This approach allows us to
reuse existing general purpose verification toolboxes, such as Cadp, providing
local Bes resolutions with linear-time complexity.

Related Work. The description of data-flow analyses as a database query was
pioneered by Ullman [15] and Reps [13] who applied Datalog’s bottom-up magic-
set implementation to automatically derive a local implementation.

Recently, Bess with typed parameters [11], called Pbes, have been success-
fully used to encode several hard verification problems such as the first-order
value-based modal μ-calculus model-checking problem [12], and the equivalence
checking of various bisimulations [5] on (possibly infinite) labeled transition sys-
tems. However, Pbess have not yet been used to compute complex interproce-
dural program analyses involving dynamically created objects.

The closest related work proposes the use of Dependency Graphs (Dgs) for rep-
resenting satisfaction problems, including propositional Horn Clauses satisfaction
and Bes resolution [10]. A linear time algorithm for propositional Horn Clauses
satisfiability is described in terms of the least solution of a Dg equation system.
This corresponds to an alternation-free Bes, which can only deal with proposi-
tional logic problems. The extension of Liu and Smolka’s work [10] to Datalog
query evaluation is not straightforward. This is testified by the encoding of data-
based temporal logics in equation systems with parameters in [12], where each

Using Datalog and Boolean Equation Systems for Program Analysis 217

boolean variable may depend on multiple data terms. Dgs are not sufficiently ex-
pressive to represent such data dependencies on each vertex. Hence, it is necessary
to work at a higher level, on the Pbes representation.

Recently, a very efficient Datalog program analysis technique based on bi-
nary decision diagrams (Bdds) has been developed in the Bddbddb system
[18], which scales to large programs and is competitive w.r.t. the traditional
(imperative) approach. The computation is achieved by a fixed point computa-
tion starting from the everywhere false predicate (or some initial approximation
based on Datalog facts). Datalog rules are then applied in a bottom-up manner
until saturation is reached, so that all solutions satisfying each relation of a Dat-
alog program are exhaustively computed. These sets of solutions are then used
to answer complex formulas.

In contrast, our approach focus on demand-driven techniques to solve a set
of queries with no a priori computation of the derivable atoms. In the context
of program analysis, note that all program updates, like pointer updates, might
potentially be inter-related, leading to an exhaustive computation of all results.
Therefore, improvements to top-down evaluation remain attractive for program
analysis applications. Recently, Zheng and Rugina [19] showed that demand-
driven Cfl-reachability with worklist algorithm can compare favorably with an
exhaustive solution, especially in terms of memory consumption. Our technique
to solve Datalog programs based on local Bes resolution goes towards the same
direction and provides a novel approach to demand-driven program analyses.

Plan of the Paper. The rest of the paper is organized as follows: Section 2 recalls
Datalog definitions and the BES formalism with its parameterised extension. Our
methodology to transform Datalog query to an implicit Bes with parameters is
described in Section 3. Section 4 illustrates the application of Datalog and Bes
to program analysis, together with experimental results on Java programs and
context-insensitive pointer analysis. Finally, Section 5 concludes and highlights
future research directions.

2 Preliminaries

2.1 Datalog

Datalog [15] is a relational language using declarative rules to both describe and
query a deductive database. A Datalog rule is a function-free Horn clause over
an alphabet of predicate symbols (e.g. relation names or arithmetic predicates,
such as <) whose arguments are either variables or constant symbols. A Datalog
program R is a finite set of Datalog rules.

Definition 1 (Syntax of Rules). Let P be a set of predicate symbols, V be a
finite set of variable symbols, and C a set of constant symbols. A Datalog rule
r, also called clause, defined over a finite alphabet P ⊆ P and arguments from
V ∪ C, V ⊆ V, C ⊆ C, has the following syntax:

p0(a0,1, . . . , a0,n0) : − p1(a1,1, . . . , a1,n1), . . . , pm(am,1, . . . , am,nm).

218 M. Alpuente et al.

where each pi is a predicate symbol of arity ni with arguments ai,j ∈ V ∪ C
(j ∈ [1..ni]).

The atom p0(a0,1, . . . , a0,n0) in the left-hand side of the clause is the rule’s head,
where p0 is neither arithmetic nor negated. The finite conjunction of subgoals
in the right-hand side of the formula is the rule’s body, i.e., atoms that may
optionally be negated or arithmetic, and contain all variables appearing in the
head. Following logic programming terminology, a rule with empty body (m = 0)
is called a fact whereas a rule with empty head and m > 0 is called a goal. To keep
the presentation simple, we restrict our syntax to predicate symbols of arity 1.
A syntactic object (argument, atom, or rule) that contains no variables is called
ground. The Herbrand Universe of a Datalog program R defined over P , V and
C, denoted UR, is the finite set of all ground arguments, i.e., constants of C. The
Herbrand Base of R, denoted BR, is the finite set of all ground atoms that can
be built by assigning elements of UR to the predicate symbols in P . A Herbrand
Interpretation of R, denoted I (from a set I of Herbrand interpretations, I ⊆
BR), is a set of ground atoms.

Definition 2 (Fixed point semantics). Let R be a Datalog program. The
least Herbrand model of R is a Herbrand interpretation I of R defined as the
least fixed point of a monotonic, continuous operator TR : I → I known as the
immediate consequences operator and defined by:

TR(I) = {h ∈ BR | h : −b1, ..., bm is a ground instance of a rule in R,
with bi ∈ I, i = 1..m, m ≥ 0}

Note that TR computes both, ground atoms derived from applicable rules–called
intentional database (or idb)–, and ground instances of rules with an empty body
(m = 0), also called extensional database (edb). The choice of minimal model as
the semantics of a Datalog program is justified by the assumption that all facts
that are not in the database are false.

The number of Herbrand models being finite for a Datalog program R, there
always exists a least fixed point for TR, denoted μTR, which is the least Herbrand
model of R. In practice, one is generally interested in the computation of some
specific atoms, called queries, and not in the whole database of atoms. Hence,
queries may be used to prevent the computation of facts that are irrelevant for
the atoms of interest, i.e., facts that are not derived from the query.

Definition 3 (Query Evaluation). A Datalog query q is a pair 〈G, R〉 where:

• R is a Datalog program defined over P , V and C,
• G is a set of goals.

Given a query q, its evaluation consists in computing μT{q}, {q} being the ex-
tension of the Datalog program R with the Datalog rules in G.

The evaluation of a Datalog program augmented with a set of goals deduces all
the different constant combinations that, when assigned to the variables in the
goals, can make one of the goal clauses true, i.e., all atoms bi in its body are
satisfied.

Using Datalog and Boolean Equation Systems for Program Analysis 219

2.2 Parameterised Boolean Equation System

Given X a set of boolean variables and D a set of data terms, a Parameterised
Boolean Equation System [11] (Pbes) B = (x0, M1, ..., Mn) is a set of n blocks
Mi, each one containing pi ∈ � fixed-point equations of the form

xi,j(di,j : Di,j)
σi= φi,j

with j ∈ [1..pi] and σi ∈ {μ, ν}, also called sign of equation i, the least (μ) or
greatest (ν) fixed point operator. Each xi,j is a boolean variable from X that
binds zero or more data terms di,j of type Di,j

1 which may occur in the boolean
formula φi,j (from a set Φ of boolean formulae). x0 ∈ X , defined in block M1, is
a boolean variable whose value is of interest in the context of the local resolution
methodology. Boolean formulae φi,j are formally defined as follows.

Definition 4 (Boolean Formula). A boolean formula φ, defined over an al-
phabet of (parameterised) boolean variables X ⊆ X and data terms D ⊆ D, has
the following syntax given in positive form:

φ, φ1, φ2 ::= true | false | φ1 ∧ φ2 | φ1 ∨ φ2 | X(e) | ∀d ∈ D. φ | ∃d ∈ D. φ

where boolean constants and operators have their usual definition, e is a data
term (constant or variable of type D), X(e) denotes the call of a boolean variable
X with parameter e, and d is a term of type D.

A boolean environment δ ∈ Δ is a partial function mapping each (parameterised)
boolean variable x(d : D) to a predicate δ(x) : X → (D → �), with � =
{true, false}. Boolean constants true and false abbreviate the empty conjunction
∧∅ and the empty disjunction ∨∅ respectively. A data environment ε ∈ E is a
partial function mapping each data term e of type D to a value ε(e) : D → D,
which forms the so-called support of ε, noted supp(ε). Note that ε(e) = e when
e is a constant data term. The overriding of ε1 by ε2 is defined as (ε1 � ε2)(x) =
if x ∈ supp(ε2) then ε2(x) else ε1(x). The interpretation function [[φ]]δε, where
[[.]] : Φ → Δ → E → �, gives the truth value of boolean formula φ in the context
of δ and ε, where all free boolean variables x are evaluated by δ(x), and all free
data terms d are evaluated by E(d).

Definition 5 (Semantics of Boolean Formula). Let δ : X → (D → �) be a
boolean environment and ε : D → D be a data environment. The semantics of a
boolean formula φ is inductively defined by the following interpretation function:

[[true]]δε = true
[[false]]δε = false

[[φ1 ∧ φ2]]δε = [[φ1]]δε ∧ [[φ2]]δε
[[φ1 ∨ φ2]]δε = [[φ1]]δε ∨ [[φ2]]δε

[[x(e)]]δε = (δ(x))(ε(e))
[[∀d ∈ D. φ]]δε = ∀ v ∈ D, [[φ]]δ(ε � [v/d])
[[∃d ∈ D. φ]]δε = ∃ v ∈ D, [[φ]]δ(ε � [v/d])

1 To simplify our description in the rest of the paper, we intentionally restrict to one
the maximum number of data term parameter d : D.

220 M. Alpuente et al.

Definition 6 (Semantics of Equation Block). Given a Pbes B =
(x0, M1, ..., Mn) and a boolean environment δ, the solution [[Mi]]δ to a block
Mi = {xi,j(di,j : Di,j)

σi= φi,j}j∈[1,pi] (i ∈ [1..n]) is defined as follows:

[[{xi,j(di,j : Di,j)
σi= φi,j}j∈[1,pi]]]δ = σiΨiδ

where Ψiδ : (Di,1 → �)× . . . × (Di,pi → �) → (Di,1 → �)× . . . × (Di,pi → �)
is a vectorial functional defined as

Ψiδ(g1, ..., gpi) = (λvi,j : Di,j.[[φi,j]](δ � [g1/xi,1, ..., gpi/xi,pi])[vi,j/di,j])j∈[1,pi]

where gi : Di → �, i ∈ [1..pi].

A Pbes is alternation-free if there are no mutual recursion between boolean
variables defined by least (σi = μ) and greatest (σi = ν) fixed point boolean
equations. In this case, equation blocks can be sorted topologically such that the
resolution of a block Mi only depends upon variables defined in a block Mk with
i < k. A block Mi is closed when the resolution of all its boolean formulae φi,j

only depends upon boolean variables xi,k from Mi.

Definition 7 (Semantics of alternation-free PBES). Given an alternation-
free Pbes B = (x0, M1, ..., Mn) and a boolean environment δ, the semantics [[B]]δ
to B is the value of its main variable x0 given by the semantics of M1, i.e., δ1(x0),
where the contexts δi are calculated as follows:

δn = [[Mn]][] (the context is empty because Mn is closed)
δi = ([[Mi]]δi+1) � δi+1 for i ∈ [1, n − 1]

where each block Mi is interpreted in the context of all blocks Mk with i < k.

3 Datalog Queries and Boolean Equation Systems

An elegant and direct intermediate representation of a Datalog query can be
given as an implicit Bes parameterised with typed boolean variables. In this
section, we present reductions between Datalog query evaluation and Pbes res-
olution for both directions of reducibility. The reductions are linear-time with
a suitable representation of the problem instances. As in [18], we assume that
Datalog programs have stratified negation (no recursion through negation), and
totally-ordered finite domains, without considering comparison operators.

3.1 Datalog Query Representation

We propose a transformation of the Datalog query into a related query, expressed
as a parameterised boolean variable of interest and a Pbes, which is subsequently
evaluated using traditional Pbes evaluation techniques.

Using Datalog and Boolean Equation Systems for Program Analysis 221

Proposition 1. Let q = 〈G, R〉 be a Datalog query, defined over P , V and
C, and Bq = (x0, M1), with σ1 = μ, a Pbes defined over a set X of boolean
variables xp in one-to-one correspondence with predicate symbols p of P plus
a special variable x0, a set D of data terms in one-to-one correspondence with
variable and constant symbols of V ∪C, and M1 the block containing exactly the
following equations, where fresh variables are existentially quantified after the
transformation:

x0
μ
=

∨

:− q1(d1), ..., qm(dm). ∈G

m∧

i:=1

xqi(di) (1)

{xp(d : D)
μ
=

∨

p(d) :− p1(d1),... pm(dm). ∈R

m∧

i:=1

xpi(di) | p ∈ P} (2)

Then q is satisfiable if and only if [[B]]δ(x0) = true.

Boolean variable x0 encodes the set of Datalog goals G, whereas (paremeterised)
boolean variables xp(d : D) represent the set of Datalog rules R modulo renam-
ing.

In our framework, the reverse direction of reducibility consists in the trans-
formation of a parameterised boolean variable of interest, defined in a Pbes,
into a related relation of interest expressed as a Datalog query, which could be
evaluated using traditional Datalog evaluation techniques.

Proposition 2. Let B = (x0, M1), with σ1 = μ, be a Pbes defined over a set
X of boolean variables and a set D of data terms, and qB = 〈G, R〉 be a Datalog
query defined over a set P of predicate symbols p in one-to-one correspondence
with boolean variables xp of X \ {x0}, a set V ∪C of variable and constant sym-
bols in one-to-one correspondence with data terms of D, and 〈G, R〉 containing
exactly the following Datalog rules:

G =

⎧
⎪⎨

⎪⎩

: − q1,1(d1,1), . . . , q1,nj (d1,nj).,
...

: − qni,1(dni,1), . . . , qni,nj (dni,nj).

∣∣∣∣∣∣∣
x0

μ
=

ni∨

i=1

nj∧

j=1

xqi,j (di,j) ∈ M1

⎫
⎬

⎭

R =

⎧
⎪⎨

⎪⎩

p(d) : − p1,1(d1,1), . . . , p1,nj (d1,nj).,
...

p(d) : − pni,1(dni,1), . . . , pni,nj (dni,nj).

∣∣∣∣∣∣∣
xp(d)

μ
=

ni∨

i=1

nj∧

j=1

xpi,j (di,j) ∈ M1

⎫
⎬

⎭

Then [[B]]δ(x0) = true if and only if qB = 〈G, R〉 is satisfiable.

Example 1. We illustrate the reduction method from Datalog to Pbes by means
of a simple Datalog example. Let q = 〈G, R〉 be the following Datalog query with
D = {mary, alice,mark , X, Y, Z}:

:- superior (mary, Y).

supervise(mary, alice).

222 M. Alpuente et al.

supervise(alice, mark).

superior(X, Y) :- supervise(X, Y).

superior(X, Y) :- supervise(X, Z), superior(Z, Y).

By using Proposition 1, we obtain the following Pbes:

x0
μ
= ∃Y ∈ D . xsuperior(mary , Y)

xsupervise(mary , alice)
μ
= true

xsupervise(alice ,mark)
μ
= true

xsuperior(X : D, Y : D)
μ
= xsupervise(X, Y) ∨

∃Z ∈ D.(xsupervise(X, Z) ∧ xsuperior(Z, Y))

In the rest of this paper, we will develop the use of Pbess to solve Datalog
queries.

3.2 Instantiation to Parameterless BES

Among the different known techniques for solving a Pbes, such as Gauss elim-
ination with symbolic approximation, and use of patterns, under/over approxi-
mations, or invariants, we consider the resolution method based on transforming
the Pbes into a parameterless boolean equation system (Bes) that can be solved
by linear time and memory algorithms [11,7] when data domains are finite.

Definition 8 (Boolean Equation System). A Boolean Equation System
(Bes) B = (x0, M1, ..., Mn) is a Pbes where data domains are removed and
boolean variables, being independent from data parameters, are considered propo-
sitional.

To obtain a direct transformation into a parameterless Bes, we first described
the Pbes in a simpler format. This simplification step consists in introducing new
variables, such that each formula at the right-hand side of a boolean equation
only contains at most one operator. Hence, boolean formulae are restricted to
pure disjunctive or conjunctive formulae.

Given a Datalog query q = 〈G, R〉, by applying this simplification to the Pbes
of Proposition 1, we obtain the following Pbes:

x0
μ
=

∨

:− q1(d1),...,qm(dm). ∈G

gq1(d1),...,qm(dm)

gq1(d1),...,qm(dm)
μ
=

m∧

i:=1

xqi(di)

xp(d : D)
μ
=

∨

p(d) :− p1(d1),...,pm(dm). ∈R

rp1(d1),...,pm(dm)

rp1(d1),...,pm(dm)
μ
=

m∧

i:=1

xpi(di)

Using Datalog and Boolean Equation Systems for Program Analysis 223

By applying the instantiation algorithm of Mateescu [11], we eventually obtain
a parameterless Bes, where all possible values of each typed data terms have
been enumerated over their corresponding finite data domains.

The resulting implicit parameterless Bes is defined as follows, where � is the
standard preorder of relative generality (instantiation ordering).

x0
μ
=

∨

:− q1(d1),...,qm(dm). ∈G

gq1(d1),...,qm(dm) (3)

gq1(d1),...,qm(dm)
μ
=

∨

1≤i≤m, ei∈Di∧ di�ei

gc
q1(e1),...,qm(em) (4)

gc
q1(e1),...,qm(em)

μ
=

m∧

i:=1

xqiei
(5)

xpd

μ
=

∨

p(d) :− p1(d1),...,pm(dm). ∈R

rp1(d1),...,pm(dm) (6)

rp1(d1),...,pm(dm)
μ
=

∨

1≤i≤m, ei∈Di∧ di�ei

rc
p1(e1),...,pm(em) (7)

rc
p1(e1),...,pm(em)

μ
=

m∧

i:=1

xpiei
(8)

Observe that Equation 1 is transformed into a set of parameterless equa-
tions (3, 4, 5). First, Equation 3 describes the set of parameterised goals
gq1(d1),...,qm(dm) of the query. Then, Equation 4 represents the instantiation
of each variable parameter di to the possible values ej from the domain. Fi-
nally, Equation 5 states that each instantiated goal gc

q1(e1),...,qm(em) is satisfied
whenever the values ej make all predicates qi of the goal true. Similarly, Equa-
tion 2 (describing Datalog rules) is encoded into a set of parameterless equations
(6, 7, 8).

3.3 Optimizations

The parameterless Bes described above is inefficient since it adopts a brute-
force approach that, in the very first steps of the computation (Equation 4),
enumerates all possible tuples of the query. It is well-known that a Datalog
program runs in O(nk) time, where k is the largest number of variables in any
single rule, and n is the number of constants in the facts and rules. Similarly, for
a simple query like :- superior(X,Y)., with X and Y elements of a domain D of
size 10 000, Equation 4 will generate D2, i.e., 108, boolean variables representing
all possible combinations of values X and Y in relation superior. Usually, for
each atom in a Datalog program, the number of facts that are given or inferred
by the Datalog rules is much lower than the domain′s size to the power of
atom′s arity. Ideally, the Datalog query evaluation should enumerate (given or

inferred) facts only on-demand.

224 M. Alpuente et al.

Among the existing optimizations for top-down evaluation of Datalog queries,
the so-called Query-Sub-Query [16] technique consists in minimizing the number
of tuples derived by a rewriting of the program based on the propagation of
bindings. Basically, the method aims at keeping the bindings of variables between
atoms p(a) in a rule. In our Datalog evaluation technique based on Bes, we adopt
a similar approach: two boolean equations (Equations 4 and 7 slightly modified)
only enumerate the values of variable arguments that appear more than once
in the body of the corresponding Datalog rule, otherwise arguments are kept
unchanged. Moreover, if the atom p(a) is part of the Extensional Database, the
only possible values of its variable arguments are values that reproduce a given
fact of the Datalog program. We note Dp

i the subdomain of D that contains all
possible values of the ith variable argument of p if p is in Extensional Database,
otherwise Dp

i = D. Hence, the resulting Bes resolution is likely to process fewer
facts and be more efficient than the brute-force approach.

Following this optimization technique, a parameterless Bes can directly be
derived from the previous Bes representation which we define as follows:

x0
μ
=

∨

:− q1(d1),...,qm(dm). ∈G

gq1(d1),...,qm(dm) (9)

gq1(d1),...,qm(dm)
μ
=

∨

{a1, ..., am}∈({V ∪D
q1
1 }×...×{V ∪Dqm

1 }) |
gpc

q1(a1),...,qm(am)

if (∃ j ∈ [1..m], j
= i | di = dj ∧ di ∈ V)

then ai ∈ D
qi
1 ∧ (∀ j ∈ [1..m], di = dj | aj := ai) else ai := di (10)

gpc
q1(a1),...,qm(am)

μ
=

m∧

i:=1

xqiai
(11)

xqa

μ
= xf

qa
∨ xr

qa
(12)

xf
qa

μ
=

∨

(e:=a ∧ a∈C) ∨ (e∈Dq
1 ∧ a∈V) | q(e).∈R

xc
qe

(13)

xc
qe

μ
= true (14)

xr
pa

μ
=

∨

p(a) :− p1(d1),...,pm(dm). ∈R

rp1(d1),...,pm(dm) (15)

rp1(d1),...,pm(dm)
μ
=

∨

{a1, ..., am}∈({V ∪D
p1
1 }×...×{V ∪Dpm

1 }) |
rpc
p1(a1),...,pm(am)

if (∃ j ∈ [1..m], j
= i | di = dj ∧ di ∈ V)

then ai ∈ D
pi
1 ∧ (∀ j ∈ [1..m], di = dj | aj := ai) else ai := di (16)

rpc
p1(a1),...,pm(am)

μ
=

m∧

i:=1

xpiai
(17)

Observe that Equations 9, 11, 15 and 16 correspond respectively to Equa-
tions 3, 5, 6 and 8 of previous Bes definition with only a slight renaming of gen-
erated boolean variables. The important novelty is that, instead of enumerating

Using Datalog and Boolean Equation Systems for Program Analysis 225

all possible values of the domain, as it is done in Equation 4, the corresponding
new Equation 10 only enumerates the values of variable arguments that are re-
peated in the body of a rule, otherwise variable arguments are kept unchanged
i.e., ai := di. Indeed, the generated boolean variables gpc

q1(a1),...,qm(am) may still
refer to atoms containing variable arguments. Thus, the combinatorial explosion
of possible tuples is avoided at this point and delayed to future steps. Equation 12
generates two boolean successors for variable xqa : xf

qa
when q is a relation that

is part of the Extensional Database, and xr
qa

when q is defined by Datalog rules.
In Equation 13, each value of a (variable or constant) that leads to a given fact
q(e). of the program, generates a new boolean variable xc

qe
, that is true by defini-

tion of a fact. Equation 15 simply infers Datalog rules whose head is pa. Note that
Equations 10, 13, and 16 enumerate possible values of subdomains Dpi

1 instead of
full domain D. With the Datalog program described in Example 1, this restric-
tion would consist in using two new subdomains Dsupervise

1 = {mary, alice} and
Dsupervise

2 = {alice,mark} instead of domain D = {mary, alice ,mark} for the
values of each variable argument in relation supervise.

3.4 Solutions Extraction

Considering the optimized parameterless Bes defined above, the query satisfi-
ability problem is reduced to the local resolution of boolean variable x0. The
value (true or false) computed for x0 indicates whether there exists at least one
satisfiable goal in G. We can remark that the Bes representing the evaluation of
a Datalog query is only composed of one equation block containing alternating
dependencies between disjunctive and conjunctive variables. Hence, it can be
solved by optimized depth-first search (Dfs) for such a type of equation block.
However, since the Dfs strategy can only conclude the existence of a solution
to the query by computing a minimal number of boolean variables, it is nec-
essary to use a breadth-first search (Bfs) strategy to compute all the different
solutions of a Datalog query. Such a strategy will ”force” the resolution of all
boolean variables that have been put in the Bfs queue, even if the satisfiability
of the query has been computed in the meantime. Consequently, the solver will
compute all possible boolean variables xc

qe
, which are potential solutions for the

query. Upon termination of the Bes resolution (ensured by finite data domains
and table-based exploration), query solutions, i.e., combinations of variable val-
ues {e1, . . . , em}, one for each atom of the query that lead to a satisfied query,
are extracted from all boolean variables xc

qe
that are reachable from boolean

variable x0 through a path of true boolean variables.

4 Application to JAVA Program Analysis

There is a strong interest in developing efficient demand-driven evaluation tech-
niques that are applicable for program analysis since they naturally fit into
Integrated Development Environments (Ides) that dynamically provide analysis
results to a programmer during the development of its code. Actually, demand-
driven techniques are often considered better than global approaches during the

226 M. Alpuente et al.

program development since they usually encounter errors more rapidly by ex-
ploring only a portion of the code.

This also applies to Datalog queries: the more specific the query (i.e., the
higher the number of constant arguments), the better demand-driven resolution
of the query, as compared to a global-based method, since only facts from the
Datalog program that are necessary to answer the query will be inferred.

4.1 Datalog-Based Program Analysis

The Datalog approach to static program analysis [18] can be summarized as
follows. Each program element, namely variables, types, code locations, function
names, are grouped in their respective domains. Thus, each argument ai,j of
a predicate symbol pi is typed by a domain Ai,j of values. Hence, atoms pi :
℘(Ai,j)

ni → � are considered as relations among program’s elements defined in
their respective domains. By considering only finite program domains, Datalog
programs are ensured to be safe (query evaluation generates a finite set of facts).
Each program statement is decomposed into basic program operations, namely
load, store, assignment, and variable declarations. Each kind of basic operation
is described by a relation in a Datalog program. A program operation is then
described as a tuple satisfying the corresponding relation.

Example 2. Consider the simple Java program [18] on the left-hand side of the
following example:

public A foo { ... p = new Object(); /* o1 */

q = new Object(); /* o2 */

p.f = q;

r = p.f; ... }

⇒
vP_0(p, o1).

vP_0(q, o2).

store(p, f, q).

load(p, f, r).

where o1 and o2 are heap allocations (extracted from corresponding byte-
code). The Datalog pointer analysis approach consists first in extracting Datalog
constraints (relations on the right-hand side of the above example) from the pro-
gram. Then, it deduces further pointer-related information as output, like points-
to relations vP from local variables and method parameters to heap objects as
well as points-to relations hP between heap objects through field identifiers.
The relation vP 0 consists of initial points-to relations (v, h) of a program, i.e.,
vP 0(v,h) holds if there exists a direct assignment within the program between
a reference to a heap object h and a variable v. Other Datalog constraints such
as store and load relations are calculated similarly.

In this framework, a program analysis consists in either querying extracted
relations or computing new relations from existing ones. Datalog is both used to
specify a static code analysis as well as to evaluate queries on given and inferred
facts from the analysis.

Example 3. Consider the Datalog program that defines context-insensitive
points-to analysis given in Fig. 1 (pa.datalog [18]).

The program consists of three parts:

Using Datalog and Boolean Equation Systems for Program Analysis 227

Domains

V 262144 variable.map

H 65536 heap.map

F 16384 field.map

Relations

vP 0 (variable : V, heap : H) inputtuples

store (base : V, field : F, source : V) inputtuples

load (base : V, field : F, dest : V) inputtuples

assign (dest : V, source : V) inputtuples

vP (variable : V, heap : H) outputtuples

hP (base : H, field : F, target : H) outputtuples

Rules

vP (V1, H1) :- vP 0(V1, H1).

vP (V1, H1) :- assign(V1, V2), vP(V2, H2).

hP (H1, F1, H2) :- store(V1, F1, V2), vP(V1, H1), vP(V2, H2).

vP (V2, H2) :- load (V1, F1, V2), vP(V1, H1), hP(H1, F1, H2).

Fig. 1. Datalog specification of a context-insensitive points-to analysis

1. A declaration of domains, with domain names and size (number of elements).
2. A list of relations specified by a predicate symbol, its arguments over spe-

cific domains and whether it is derived from an applicable Datalog rule
(value outputtuples), or extracted from the program source code (value
inputtuples).

3. A finite set of Datalog rules, defining the outputtuples relations.

A Datalog query consists of a set of goals over the relations defined in the
Datalog program, e.g., :- vP(X,Y). where X and Y are variable arguments of
vP, meaning computing the complete set of variables in the domain of X that
may point to any heap object Y at any point during program execution. From the
initial relations of Example 2, we deduce by inferring the Datalog rules given
by Fig. 1 the following output relations: vP(p, o1), vP(q, o2), hP(o1, f,
02), and vP(r, o2). For instance, the output relation vP (r, o2) indicates that
variable r points to same heap allocation o2 as variable q.

4.2 Datalog-Based Program Analyzer

We implemented the Datalog query transformation to Bes in a powerful, fully
automated Datalog solver tool, called Datalog Solve, developed within the
Cadp verification toolbox [8]. Without loss of generality, in this section, we
describe the Datalog Solve tool focusing on Java program analysis. Other
source languages and classes of problems can be specified in Datalog and solved
by our tool.

Datalog Solve takes three different inputs (see Fig. 2): the domain defini-
tions (.map), the Datalog constraints or facts (.tuples), and a Datalog query

228 M. Alpuente et al.

q = 〈G, R〉 (.datalog, like pa.datalog in Fig. 1). The domain definitions state
the possible values for each predicate’s argument of the query. These are mean-
ingful names for the numerical values that are used to efficiently described the
Datalog constraints. For example, in the context of pointer analyses, variable
names (var.map) and heap locations (heap.map) are two domains of interest.
The Datalog constraints represent information relevant for the analysis. For in-
stance, vP0.tuples gives all direct references from variables to heap objects in
a given program. For efficiency reasons, these combinations are described by
numerical values in the range 0..(domain size − 1). Both, domain definitions
and facts are specified in the .datalog input file (see Fig. 1) and they are au-
tomatically extracted from program source code by using the Joeq compiler
framework [17] that we slightly modified to generate tuple-based instead of Bdd-
based input relations.

Datalog Solve (120 lines of Lex, 380 lines of Bison and 3 500 lines of C
code) proceeds in two steps:

1. The front-end of Datalog Solve constructs the optimized Bes represen-
tation given by Equations 9-17 by extracting from the inputs (a particular
analysis) the set of Datalog goals, rules and facts defining each boolean vari-
able.

2. The back-end of our tool carries out the demand-driven generation, resolu-
tion and interpretation of the Bes by means of the generic Cæsar Solve
library of Cadp, devised for local Bes resolution and diagnostic generation.

This architecture clearly separates the implementation of Datalog-based static
analyses from the resolution engine, which can be extended and optimized inde-
pendently.

Upon termination (ensured by safe input Datalog programs),
Datalog Solve returns both the query’s satisfiability and the computed
answers represented numerically in various output files (.tuples files). The tool

: input/output

(.tuples) (.tuples)

vP hP

Y/N (query satisfiability)

Output tuples (query answers)

finite domains

Datalog facts : provides

(+
 d

ia
gn

os
tic

)

re
so

lu
tio

n

im
pl

ic
it

B
E

S

(.map)

heap

(.map)

var

(.tuples)

vP0

(.tuples)

hP0

(.tuples)

assign

Datalog Solve

(.class)

Java program Joeq compiler

(.datalog)

analysis
specification

Cæsar Solve

(Cadp)

library

Fig. 2. Java program analysis using Datalog Solve tool

Using Datalog and Boolean Equation Systems for Program Analysis 229

Table 1. Description of the Java projects used as benchmarks

Name Description Classes Methods Vars Allocs

freetts (1.2.1) speech synthesis system 215 723 8K 3K
nfcchat (1.1.0) scalable, distributed chat client 283 993 11K 3K
jetty (6.1.10) server and servlet container 309 1160 12K 3K
joone (2.0.0) Java neural net framework 375 1531 17K 4K

Table 2. Times (in seconds) and peak memory usages (in megabytes) for each bench-
mark and context-insensitive pointer analysis

Name time (sec.) memory (Mb.)

freetts (1.2.1) 10 61
nfcchat (1.1.0) 8 59
jetty (6.1.10) 73 70
joone (2.0.0) 4 58

takes as a default query the computation of the least set of facts that contains
all the facts that can be inferred using the given rules. This represents the worst
case of a demand-driven evaluation and computes all the information derivable
from a Datalog program.

4.3 Experimental Results

The Datalog Solve tool was applied to a number of Java programs by comput-
ing the context-insensitive pointer analysis described above. To test the scalabil-
ity and applicability of the transformation, we applied our technique to four of the
most popular 100% Java projects on Sourceforge that could compile directly as
standalone applications and were used as benchmarks for the Bddbddb tool [18].
They are all real applications with tens of thousands of users each. Projects vary
in the number of classes, methods, variables, and heap allocations. The informa-
tion details, shown on Table 1, are calculated on the basis of a context-insensitive
callgraph precomputed by the Joeq compiler. All experiments were conducted
using Java JRE 1.5, Joeq version 20030812, on a Intel Core 2 T5500 1.66GHz
with 3 Gigabytes of RAM, running Linux Kubuntu 8.04.

The analysis time and memory usage of our context insensitive pointer analy-
sis, shown on Table 2, illustrate the scalability of our Bes resolution and validate
our theoretical results on real examples. Datalog Solve solves the (default)
query for all benchmarks in a few seconds. The computed results were verified
by comparing them with the solutions computed by the Bddbddb tool on the
same benchmark of Java programs and analysis.

5 Conclusions and Future Work

This paper presents a novel approach to solve Datalog queries based on Boolean
Equation System (Bes) resolution and its application to program analysis. By

230 M. Alpuente et al.

using a local fixed point computation of Bess, our technique not only keeps
the robustness of bottom-up over top-down evaluation semantics (problem of
repeated computations and infinite loops), but also preserves the effectiveness
of demand-driven techniques by taking advantage of constants and constraints
that are part of the query’s goals in order to reduce the search space. A new
deductive database solver, called Datalog Solve, was designed and imple-
mented, and several Java programs were analyzed modulo a context-insensitive
pointer analysis encoded in Datalog. The tool architecture is based on the well-
established verification framework Cadp, which provides a generic library for
local Bes resolution.

As a future work, we plan to endow Datalog Solve with new, optimized
strategies for local Bes resolution, e.g., rewriting of Datalog rules to allow goal-
directed bottom-up evaluation, as in the Magic sets approach with complexity
guarantees [14]. Another interesting improvement we plan to explore is to use
the rewriting logic framework implemented in the reflective, functional program-
ming language Maude [6] as a solver for Java program analyses using reflection.
Finally, we could benefit from the regular structure of our Bes encoding by
distributing the Bes resolution over a network of workstations with balanced
partitioning preserving locality, similarly to the work of [9] that successfully ap-
plied a distributed Bes resolution algorithm to numerous verification problems.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Andersen, H.R.: Model checking and boolean graphs. Theoretical Computer Sci-
ence 126(1), 3–30 (1994)

3. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic Sets and Other Strange
Ways to Implement Logic Programs. In: Proc. 5th ACM SIGACT-SIGMOD Symp.
on Principles of Database Systems PODS 1986, pp. 1–15. ACM Press, New York
(1986)

4. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,
Heidelberg (1990)

5. Chen, T., Ploeger, B., van de Pol, J., Willemse, T.A.C.: Equivalence Checking for
Infinite Systems Using Parameterized Boolean Equation Systems. In: Caires, L.,
Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 120–135. Springer,
Heidelberg (2007)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

7. van Dam, A., Ploeger, B., Willemse, T.A.C.: Instantiation for Parameterised
Boolean Equation Systems. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H.
(eds.) ICTAC 2008. LNCS, vol. 5160, pp. 440–454. Springer, Heidelberg (2008)

8. Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

Using Datalog and Boolean Equation Systems for Program Analysis 231

9. Joubert, C., Mateescu, R.: Distributed On-the-Fly Model Checking and Test Case
Generation. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 126–145.
Springer, Heidelberg (2006)

10. Liu, X., Smolka, S.A.: Simple Linear-Time Algorithms for Minimal Fixed Points.
In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
53–66. Springer, Heidelberg (1998)

11. Mateescu, R.: Local Model-Checking of an Alternation-Free Value-Based Modal
Mu-Calculus. In: Proc. 2nd Int’l Workshop on Verication, Model Checking and
Abstract Interpretation VMCAI 1998 (1998)

12. Mateescu, R., Thivolle, D.: A Model Checking Language for Concurrent Value-
Passing Systems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS,
vol. 5014, pp. 148–164. Springer, Heidelberg (2008)

13. Reps, T.W.: Solving Demand Versions of Interprocedural Analysis Problems. In:
Fritzson, P.A. (ed.) CC 1994. LNCS, vol. 786, pp. 389–403. Springer, Heidelberg
(1994)

14. Tekle, K.T., Hristova, K., Liu, Y.A.: Generating specialized rules and programs for
demand-driven analysis. In: Meseguer, J., Roşu, G. (eds.) AMAST 2008. LNCS,
vol. 5140, pp. 346–361. Springer, Heidelberg (2008)

15. Ullman, J.D.: Principles of Database and Knowledge-Base Systems. The New Tech-
nologies, vol. I and II. Computer Science Press (1989)

16. Vieille, L.: Recursive Axioms in Deductive Databases: The Query/Subquery Ap-
proach. In: Proc. 1st Int’l Conf. on Expert Database Systems EDS 1986, pp. 253–
267 (1986)

17. Whaley, J.: Joeq: a Virtual Machine and Compiler Infrastructure. In: Proc. Work-
shop on Interpreters, Virtual Machines and Emulators IVME 2003, pp. 58–66.
ACM Press, New York (2003)

18. Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using Datalog with Binary Decision
Diagrams for Program Analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780,
pp. 97–118. Springer, Heidelberg (2005)

19. Zheng, X., Rugina, R.: Demand-driven alias analysis for C. In: Proc. 35th ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages POPL 2008,
pp. 197–208. ACM Press, New York (2008)

Author Index

Alba-Castro, Mauricio 182
Alpuente, María 182, 215

Barnat, Jiří 53, 150
Bartha, Tamás 199
Brim, Luboš 53, 150

Černá, Ivana 53
Češka, Milan 53
Cimatti, Alessandro 166
Cleaveland, Rance 2
Colin, Samuel 103
Colombo, Christian 135

Damm, Werner 3
du Bousquet, Lydie 23
Durrieu, Guy 7

Edelkamp, Stefan 150
Escobar, Santiago 182

Fantechi, Alessandro 4
Feliú, Marco A. 215
Ferrari, Alessio 4

Gastel, Bernard van 85

Hu, Xiayong 119

Joubert, Christophe 215

Kouchnarenko, Olga 103

Lanoix, Arnaud 103
Lawford, Mark 119
Lensink, Leonard 85

Madani, Laya 23
Miller, Steven P. 1

Németh, Erzsébet 199

Pace, Gordon J. 135
Papailiopoulou, Virginia 23
Parissis, Ioannis 23
Pecheur, Charles 69
Pelánek, Radek 37

Roveri, Marco 166

Schneider, Gerardo 135
Šimeček, Pavel 150
Smetsers, Sjaak 85
Souquières, Jeanine 103
Sulewski, Damian 150
Susi, Angelo 166

Tonetta, Stefano 166
Tůmová, Jana 53

Vander Meulen, José 69
van Eekelen, Marko 85
Villanueva, Alicia 215

Waeselynck, Hélène 7
Wassyng, Alan 119
Wiels, Virginie 7

	Cover
	Front matter
	Formal Methods for Critical Systems
	Model-Based Verification of Automotive Control Software
	Contract-Based Analysis of Automotive and Avionics Applications: The SPEEDS Approach
	Panel Discussion on Formal Methods in Commercial Software Development Tools
	LETO - A Lustre-Based Test Oracle for Airbus Critical Systems
	Introduction
	Development Process and Target Test Phase
	Requirements for an Automated Test Oracle Procedure
	Proposed Approach
	Overview
	Test Schemas
	Language for the Test Section
	Illustration

	Implementation of the Approach
	Experiments and Results
	Conclusion
	References

	Extending Structural Test Coverage Criteria for Lustre Programs with Multi-clock Operators
	Introduction
	Overview of Lustre
	Operator Network
	Clocks in Lustre

	Coverage Criteria for Lustre Programs
	Activation Conditions
	Coverage Criteria

	Extension of Coverage Criteria to when and current Operators
	Activation Conditions for when and current
	An Illustrative Example

	Conclusion

	Fighting State Space Explosion:Review and Evaluation
	Introduction
	Overview of Techniques for Fighting State Space Explosion
	State Space Reductions
	Storage Size Reductions
	Parallel and Distributed Computation
	Randomized Techniques and Heuristics

	Research Analysis
	Research Papers
	Quality of Experiments
	Reported Improvement

	Practical Experience
	On-the-fly State Space Reductions
	Caching and Compression
	Distributed Exploration
	Error Detection Techniques

	Conclusions

	Local Quantitative LTL Model Checking
	Introduction
	Preliminaries
	Probabilistic Model Checking
	Algorithm

	Local Model Checking Techniques
	Minimal Subgraph Identification
	Iterative Computation
	Trivial SCC
	Parallelization

	Experimental Evaluation
	Conclusion

	Efficient Symbolic Model Checking for Process Algebras
	Introduction
	Background
	Transitions Systems
	Partial-Order Reduction
	Process Models

	The Two-Phase Approach to Partial Order Reduction
	The Two-Phase Algorithm
	ImProviso

	Forward Symbolic Model-Checking of CTL
	Forward Model Checking with Partial Order Reduction
	Implementation
	Case Study
	Related Work
	Conclusion and Perspectives

	Reentrant Readers-Writers: A Case Study Combining Model Checking with Theorem Proving
	Introduction
	The Readers-Writers Problem
	Implementation of Read-Write Locks

	Model Checking Readers/Writers with Uppaal
	Correcting the Implementation/Model

	General Reentrant Readers-Writers Model
	Readers-Writers Model in PVS
	Translation from Uppaal to PVS
	System Invariants
	No Deadlock

	Related and Future Work
	Concluding Remarks

	Using CSP||B Components: Application to a Platoon of Vehicles
	Introduction
	Basic concepts and Tools on CSP||B
	B Machines
	Communicating Sequential Processes (CSP)
	CSP||B Components

	Specifying a Single Cristal
	The Vehicle
	The Driving System
	The Cristal(mode) Assembly

	Specifying a Platoon of Cristals
	Detailing (CtrlVehicle(mode)||Vehicle)
	Three New CSP controllers
	The Vehicle2 Assembly

	Related Works
	Conclusion

	Formal Verification of the Implementability of Timing Requirements
	Introduction
	Related Work

	Preliminaries
	Functional and Performance Timing Requirements
	Requirements Refinement and SDV Procedure Overview
	Sample Instances

	Environmental Assumptions and Their Impact on Implementability
	Environmental Assumptions
	Latest Environment Based Feasibility Analyses
	Comparing the Feasibility Results in Different Environments

	Implementation of the Held_For Operator
	Timer Implementation of Held_For_S

	Example: Delayed Trip System with Tolerances
	Summary

	Dynamic Event-Based Runtime Monitoring of Real-Time and Contextual Properties
	Introduction
	Event-Based Runtime Monitoring
	Dynamic Automata with Events and Timers
	Constructing Monitors from DATEs

	Case Study
	Comparison of Larva with Other Related Tools
	Related Tools
	The Benchmark
	Performance of Larva

	Conclusions

	Can Flash Memory Help in Model Checking?
	Introduction
	I/O Efficient Model Checking with Mechanical Disks
	Graph Traversal
	LTL Model Checking

	From Mechanical to Solid State Disks
	I/O Efficient Graph Traversal with Solid State Disks
	Hashing
	Mapping
	Compressing
	Flushing

	I/O Efficient Model Checking with Solid State Disks
	Experimental Evaluation
	Conclusions

	From Informal Requirements to Property-Driven Formal Validation
	Introduction
	Overview of the Methodology
	Informal Analysis Phase
	Example of Informal Analysis

	Formalization Phase
	Formal Validation Phase
	Overview of the Support Tools
	Discussion of the Approach
	Related Work
	Conclusions

	Automated Certification of Non-Interference in Rewriting Logic
	Introduction
	The Rewriting Logic Semantics of Java
	An Information-Flow Rewriting Logic Semantics for Java
	The Abstract Rewriting Logic Semantics of Java
	Certifying Java Source Code
	Experiments
	Related Work
	Conclusion

	Formal Verification of Safety Functions by Reinterpretation of Functional Block Based Specifications
	Introduction
	Verification of the PRISE Safety Procedure: Aim and Approach

	The PRISE Safety Procedure
	The Primary-to-Secondary Leaking Fault Event
	The Implemented PRISE Safety Procedure

	Coloured Petri Net Model of the PRISE Safety Procedure
	Analysis of the Coloured Petri Net Model
	State Space Analysis of Coloured Petri Nets
	Analysis of the PRISE CPN by Model Checking

	Conclusions

	Using Datalog and Boolean Equation Systems for Program Analysis
	Introduction
	Preliminaries
	Datalog
	Parameterised Boolean Equation System

	Datalog Queries and Boolean Equation Systems
	Datalog Query Representation
	Instantiation to Parameterless BES
	Optimizations
	Solutions Extraction

	Application to JAVA Program Analysis
	Datalog-Based Program Analysis
	Datalog-Based Program Analyzer
	Experimental Results

	Conclusions and Future Work

	Back matter

