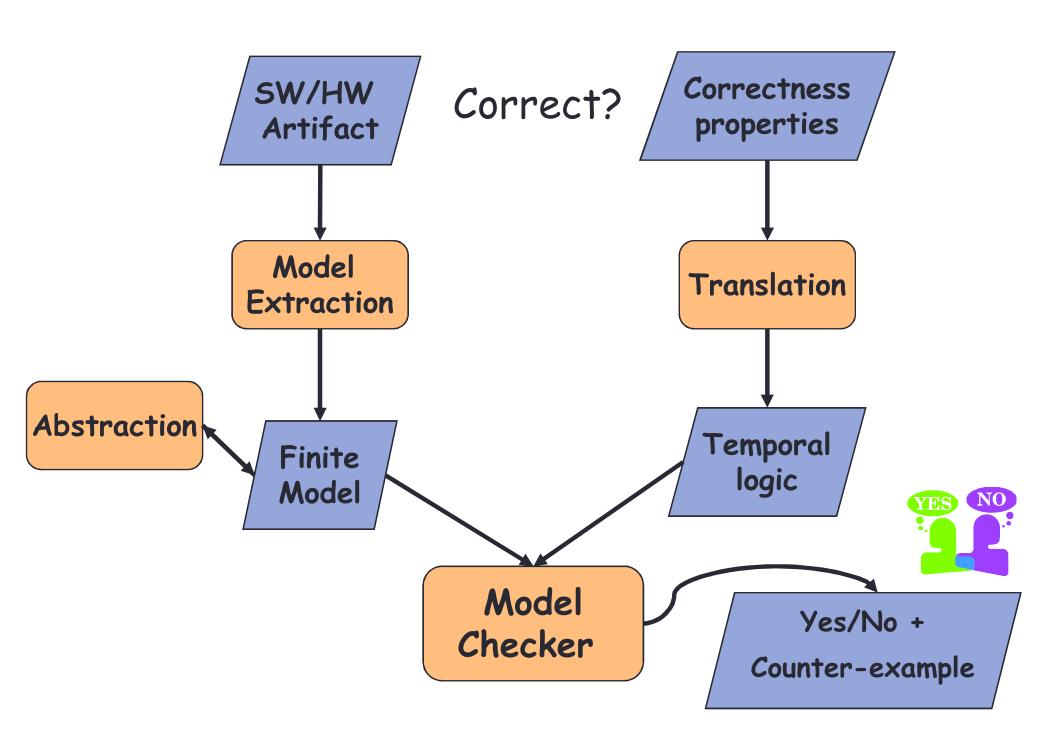
MODEL CHECKING

Arie Gurfinkel

Overview

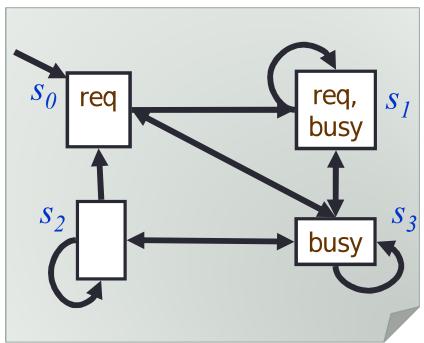
- Kripke structures as models of computation
- CTL, LTL and property patterns
- CTL model-checking and counterexample generation
- State of the Art Model-Checkers



Models: Kripke Structures

Conventional state machines

- $K = (V, S, s_0, I, R)$
- V is a (finite) set of atomic propositions
- S is a (finite) set of states
- $s_0 \in S$ is a start state
- I: $S \rightarrow 2^V$ is a labelling function that maps each state to the set of propositional variables that hold in it
 - That is, I(S) is a set of interpretations specifying which propositions are true in each state
- R ⊆ S × S is a transition relation



Propositional Variables

Fixed set of atomic propositions, e.g, {p, q, r}

Atomic descriptions of a system

"Printer is busy"

"There are currently no requested jobs for the printer"

"Conveyer belt is stopped"

Do not involve time!

Modal Logic

Extends *propositional logic* with modalities to qualify propositions

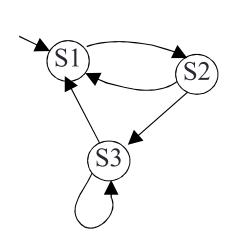
- "it is raining" rain
- "it will rain tomorrow" □ rain
 - it is raining in all possible futures
- "it might rain tomorrow" >rain
 - it is raining in some possible futures

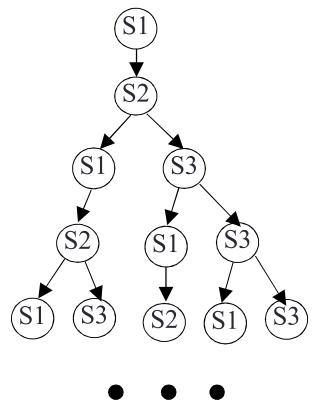
Modal logic formulas are interpreted over a collection of possible worlds connected by an accessibility relation

Temporal logic is a modal logic that adds temporal modalities: next, always, eventually, and until

Computation Tree Logic (CTL)

CTL: Branching-time propositional temporal logic Model - a tree of computation paths





Kripke Structure

Tree of computation

CTL: Computation Tree Logic

Propositional temporal logic with explicit quantification over possible futures

Syntax:

```
True and False are CTL formulas; propositional variables are CTL formulas;
```

If φ and ψ are CTL formulae, then so are: $\neg \varphi$, $\varphi \land \psi$, $\varphi \lor \psi$

EX φ : φ holds in some next state

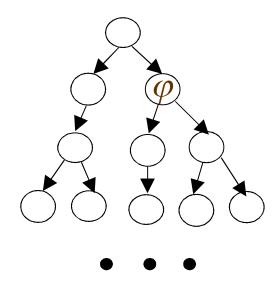
EF φ : along some path, φ holds in a future state

 $E[\varphi \cup \psi]$: along some path, φ holds until ψ holds

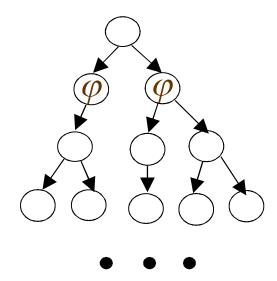
EG φ : along some path, φ holds in every state

• Universal quantification: AX φ , AF φ , A[φ U ψ], AG φ

Examples: EX and AX

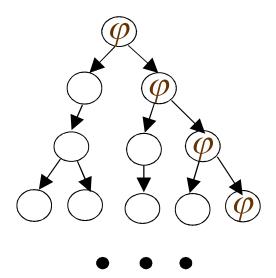


EX φ (exists next)

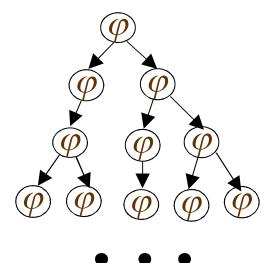


AX φ (all next)

Examples: EG and AG

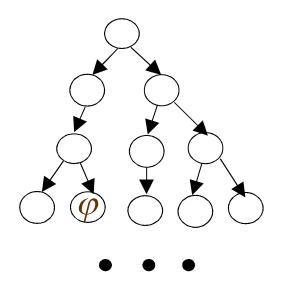


EG φ (exists global)

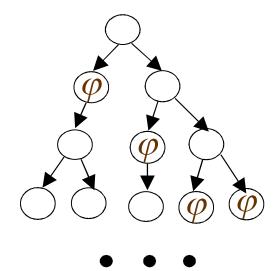


AG φ (all global)

Examples: EF and AF

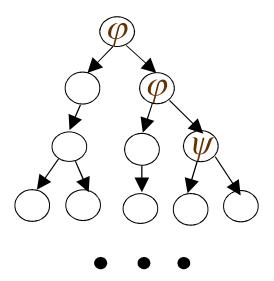


 $\mathbf{EF} \boldsymbol{\varphi}$ (exists future)

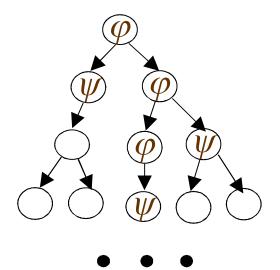


AF φ (all future)

Examples: EU and AU



 $E[\varphi U \psi]$ (exists until)



 $A[\varphi U \psi]$ (all until)

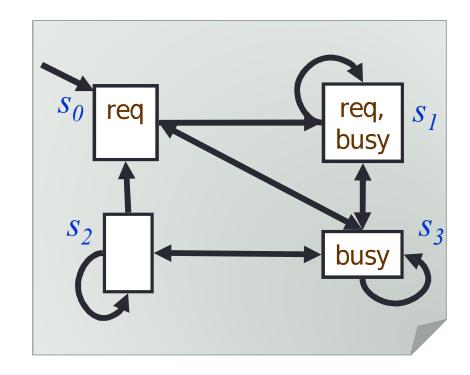
CTL Examples

Properties that hold:

- (AX busy)(s₀)
- (EG busy)(s₃)
- A (req U busy) (s₀)
- E (\neg req U busy) (s_1)
- AG (req \Rightarrow AF busy) (s_0)

Properties that fail:

(AX (req V busy))(s₃)



Some Statements To Express

- An elevator can remain idle on the third floor with its doors closed
- When a request occurs, it will eventually be acknowledged
- A process is enabled infinitely often on every computation path
- A process will eventually be permanently deadlocked
- Action s precedes p after q
 - Note: hard to do correctly. See later on helpful techniques

Semantics of CTL

 $K,s \models \varphi$ – means that formula φ is true in state s. K is often omitted since we always talk about the same Kripke structure

```
• E.g., s \models \rho \land \neg q

\pi = \pi^0 \pi^1 \dots is a path

\pi^0 is the current state (root)

\pi^{i+1} is a successor state of \pi^i. Then,

AX \varphi = \forall \pi \cdot \pi^1 \models \varphi

AG \varphi = \forall \pi \cdot \forall i \cdot \pi^i \models \varphi

AF \varphi = \forall \pi \cdot \exists i \cdot \pi^i \models \varphi
```

$$AX \varphi = \forall \pi \cdot \pi^{1} \vDash \varphi$$

$$AG \varphi = \forall \pi \cdot \forall i \cdot \pi^{i} \vDash \varphi$$

$$AF \varphi = \forall \pi \cdot \exists i \cdot \pi^{i} \vDash \varphi$$

$$EG \varphi = \exists \pi \cdot \forall i \cdot \pi^{i} \vDash \varphi$$

$$EF \varphi = \exists \pi \cdot \exists i \cdot \pi^{i} \vDash \varphi$$

$$A[\varphi \cup \psi] = \forall \pi \cdot \exists i \cdot \pi^{i} \vDash \psi \land \forall j \cdot 0 \le j < i \Rightarrow \pi^{j} \vDash \varphi$$

$$E[\varphi \cup \psi] = \exists \pi \cdot \exists i \cdot \pi^{i} \vDash \psi \land \forall j \cdot 0 \le j < i \Rightarrow \pi^{j} \vDash \varphi$$

Relationship Between CTL Operators

```
\neg AX \varphi = EX \neg \varphi
      \neg AF \varphi = EG \neg \varphi
                                                                             \neg \mathsf{EF} \varphi = \mathsf{AG} \neg \varphi
        AF\varphi = A[true U \varphi]
                                                                             \mathsf{EF}\varphi = \mathsf{E}[\mathsf{true}\;\mathsf{U}\;\varphi]
       AG \varphi = \varphi \wedge AX AG \varphi
                                                                               EG \varphi = \varphi \land EX EG \varphi
                                                                              \mathsf{EF} \ \varphi = \varphi \ \mathsf{V} \ \mathsf{EX} \ \mathsf{EF} \ \varphi
       AF \varphi = \varphi \lor AX AF \varphi
A [false U \varphi] = E[false U \varphi] = \varphi
A[\varphi \cup \psi] = \neg E[\neg \psi \cup (\neg \varphi \land \neg \psi)] \land \neg EG \neg \psi
 A[\varphi \cup \psi] = \psi \vee (\varphi \wedge AX A[\varphi \cup \psi])
 E[\varphi \cup \psi] = \psi \vee (\varphi \wedge EX E[\varphi \cup \psi])
 A[\varphi W \psi] = \neg E[\neg \psi U (\neg \varphi \land \neg \psi)] (weak until)
   \mathsf{E}[\varphi \cup \psi] = \neg \mathsf{A}[\neg \psi \mathsf{W} (\neg \varphi \land \neg \psi)]
```

Adequate Sets

<u>Def.</u> A set of connectives is adequate if all connectives can be expressed using it.

- e.g., {¬,∧} is adequate for propositional logic:
 - $a \lor b = \neg (\neg a \land \neg b)$

Theorem. The set of operators {false,¬, ∧} together with EX, EG, and EU is adequate for CTL

- e.g., AF $(a \lor AX b) = \neg EG \neg (a \lor AX b) = \neg EG (\neg a \land EX \neg b)$
- EU describes reachability
- EG non-termination (presence of infinite behaviours)

Universal and Existential CTL

- A CTL formula is in ACTL if it uses only universal temporal connectives (AX, AF, AU, AG) with negation applied to the level of atomic propositions
 - Also called "universal" CTL formulas
 - e.g., A [p U AX ¬q]
- ECTL: uses only existential temporal connectives (EX, EF, EU, EG) with negation applied to the level of atomic propositions
 - Also called "existential" CTL formulas
 - e.g., E [p U EX ¬q]
- CTL formulas not in ECTL U ACTL are called "mixed"
 - e.g., E [p U AX $\neg q$] and A [p U EX $\neg q$]

Safety and Liveness

Safety: Something "bad" will never happen

- AG ¬bad
- e.g., mutual exclusion: no two processes are in their critical section at once
- Safety = if false then there is a finite counterexample

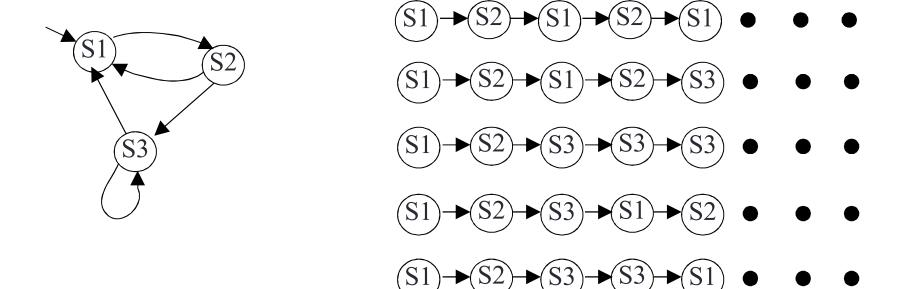
Liveness: Something "good" will always happen

- AG AF good
- e.g., every request is eventually serviced
- Liveness = if false then there is an infinite counterexample

Every universal temporal logic formula can be decomposed into a conjunction of safety and liveness

Linear Temporal Logic (LTL)

For reasoning about complete traces through the system



Allows to make statements about a trace

LTL Syntax

- If φ is an atomic propositional formula, it is a formula in LTL
- If φ and ψ are LTL formulas, so are $\varphi \land \psi$, $\varphi \lor \psi$, $\neg \varphi$, φ U ψ (until), X φ (next), F φ (eventually), G φ (always)
- Interpretation: over computations π : $\omega \Rightarrow 2^V$ which assigns truth values to the elements of V at each time instant

```
\pi \models X \varphi iff \pi^1 \models \varphi
\pi \models G \varphi iff \forall i \cdot \pi^i \models \varphi
\pi \models F \varphi iff \exists i \cdot \pi^i \models \varphi
\pi \models \varphi \cup \psi iff \exists i \cdot \pi^i \models \psi \land \forall j \cdot 0 \leq j < i \Rightarrow \pi^j \models \varphi
Here, \pi^i is the i th state on a path
```

Properties of LTL

$$\neg X \varphi = X \neg \varphi$$

$$F \varphi = \text{true } U \varphi$$

$$G \varphi = \neg F \neg \varphi$$

$$G \varphi = \varphi \land X G \varphi$$

$$F \varphi = \varphi \lor X F \varphi$$

$$\varphi W \psi = G \varphi \lor (\varphi U \psi) \quad \text{(weak until)}$$

A property holds in a model if it holds on every path starting from the initial state

Expressing Properties in LTL

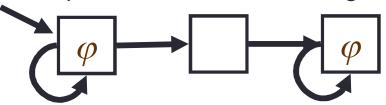
- Good for safety (G ¬) and liveness (F) properties
- Express:
 - When a request occurs, it will eventually be acknowledged
 - Each path contains infinitely many q's
 - r At most a nime number of states in each path satisfy ⊸*q* (or property *q* eventually stabilizes)
 - Action s precedes p after q
 - • Note. Hard to do correctiy. See later on helpful tedhniques

Comparison between LTL and CTL

Syntactically: LTL is simpler than CTL

Semantically: incomparable!

- CTL formula AG EF φ (always can reach) is not expressible in LTL
- LTL formula F G φ (eventually always) is not expressible in CTL
 - What about AF AG φ ?
 - Has different interpretation on the following state machine:



- AF AG φ is false
- F G φ is true

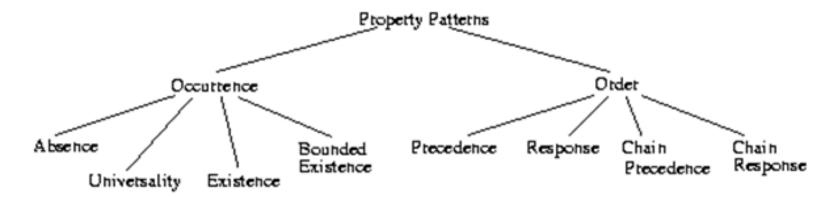
The logic CTL* is a super-set of both CTL and LTL LTL and CTL coincide if the model has only one path!

Property Patterns: Motivation

- Temporal properties are not always easy to write or read
 - e.g., G $((q \land \neg r \land F r) \Rightarrow (p \Rightarrow (\neg r \cup (s \land \neg r)) \cup r)$
 - Meaning:
 - p triggers s between q (e.g., end of system initialization) and r (start of system shutdown)
- Many properties are specifiable in both CTL and LTL
 - e.g., Action q must respond to action p:
 - CTL: AG $(p \Rightarrow AF q)$
 - LTL: G $(p \Rightarrow F q)$
 - e.g., Action s precedes p after q
 - CTL: $A[\neg q \cup (q \land A[\neg p \cup s])]$
 - LTL: $[\neg q \cup (q \land [\neg p \cup s])]$

Pattern Hierarchy

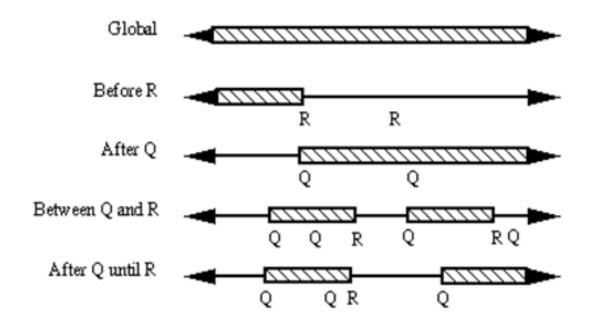
http://patterns.projects.cis.ksu.edu/
Specifying and reusing property specifications



- Absence: A condition does not occur within a scope
- Existence: A condition must occur within a scope
- Universality: A condition occurs throughout a scope
- Response: A condition must always be followed by another within a scope
- Precedence: A condition must always be preceded by another within a scope

Pattern Hierarchy: Scopes

Scopes of interest over which the condition is evaluated



Using the System: Example

- Property
 - There should be a dequeue() between an enqueue() and an empty()
 - Propositions: deq, enq, em
- Pattern: "existence" (of deq)
 - Scope: "between" (events: enq, em)
 - Look up (S exists between Q and R)
 - CTL: AG $(Q \land \neg R \Rightarrow A[\neg R \lor (S \land \neg R)])$
 - LTL: G $(Q \land \neg R \Rightarrow (\neg R \lor (S \land \neg R)))$
- Result
 - CTL: AG (enq $\land \neg$ em \Rightarrow A[\neg em W (deq $\land \neg$ em)])
 - LTL: G (enq $\land \neg$ em \Rightarrow (\neg em W (deq $\land \neg$ em)))

CTL Model-Checking

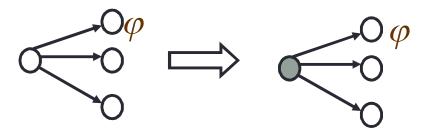
- Inputs:
 - Kripke structure K
 - CTL formula φ
- Assumptions:
 - The Kripke structure is finite
 - Finite length of a CTL formula
- Algorithm:
 - Working outwards towards φ
 - Label states of K with sub-formulas of φ that are satisfied these states
 - Output states labeled with φ

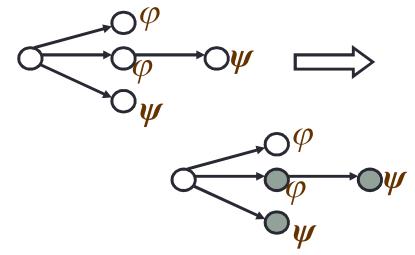
Example: EX EG $(p \Rightarrow E[p \cup q])$

CTL Model-Checking (EX, EU)

$\mathsf{EX} \ \varphi$

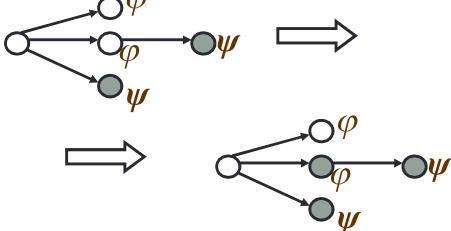
• Label a state EX φ if any of its successors is labeled with φ





$E [\varphi \cup \psi]$

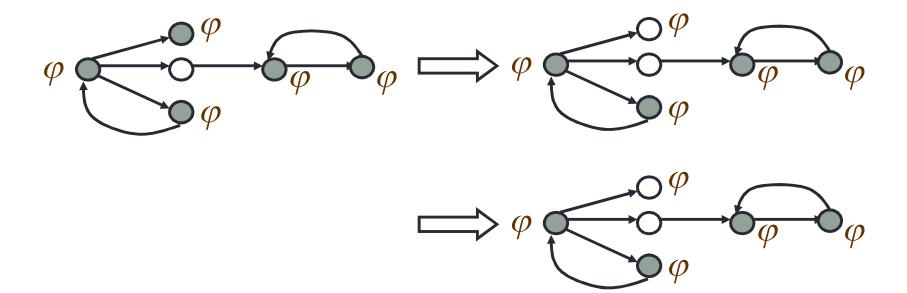
- Label a state $E[\varphi \cup \psi]$ if it is labeled with ψ
- Until there is no change
 - label a state with E[φ U ψ]
 if it is labeled with φ and
 has a successor labeled
 with E[φ U ψ]



CTL Model-Checking (EG)

$\mathsf{EG} \, \varphi$

- Label every node labeled with φ by EG φ
- Until there is no change
 - remove label EG φ from any state that does not have successors labeled by EG φ



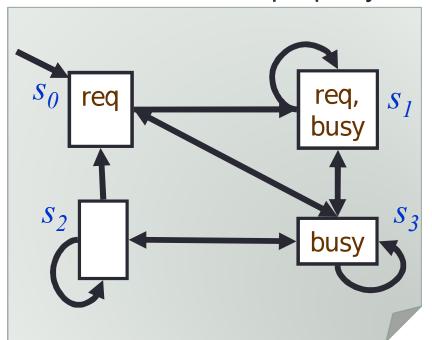
Counterexamples

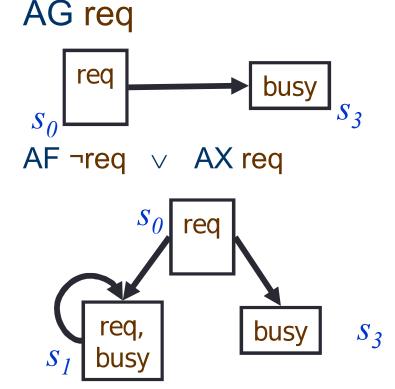
Explain why the property fails to hold

- to disprove that ϕ holds on all elements of S, produce a single element $s \in S$ s.t. $\neg \phi$ holds on s.
 - counterexamples are restricted to universally-quantified formulas

• counterexamples are paths (trees) from initial state illustrating

the failure of property

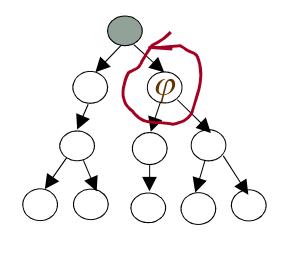




Generating Counterexamples (EX, EG)

Negate the prop. and express using EX, EU, EG

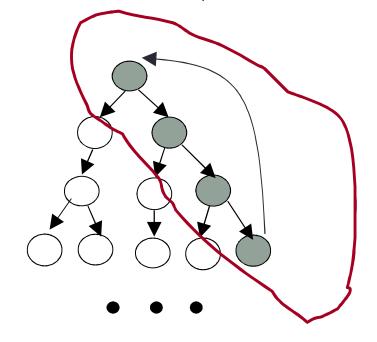
• e.g., AG $(\varphi \Rightarrow AF \psi)$ becomes $EF(\varphi \land EG \neg \psi)$



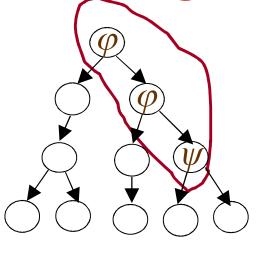
 $\mathsf{EX}\ \varphi$:

find a successor state labeled with φ

EG φ : follow successors labeled with EG φ until a loop is found



Generating Counterexamples (EU)



$E[\varphi \cup \psi]$:

remove all states that are not labeled with either φ or ψ . Then, find a path to ψ

This procedure works only for universal properties

- ΑΧ *φ*
- AG $(\varphi \Rightarrow AF \psi)$
- etc.

State Explosion

- How fast do Kripke structures grow?
 Composing linear number of structures yields exponential growth!
- How to deal with this problem?
 - Symbolic model checking with efficient data structures (BDDs, SAT).
 - Do not need to represent and manipulate the model explicitly
 - Abstraction
 - Abstract away variables in the model which are not relevant to the formula being checked
 - Partial order reduction (for asynchronous systems)
 - Several interleavings of component traces may be equivalent as far as satisfaction of the formula to be checked is concerned
 - Composition
 - Break the verification problem down into several simpler verification problems

Model-Checking Techniques (Symbolic)

BDD

- Express transition relation by a formula, represented as BDD.
 Manipulate these to compute logical operations and fixpoints
- Based on very fast decision diagram packages (e.g., CUDD)

SAT

- Expand transition relation a fixed number of steps (e.g., loop unrolling), resulting in a formula
- For this unrolling, check whether the property holds
- Continue increasing the unrolling until error is found, resources are exhausted, or diameter of the problem is reached
- Based on very fast SAT solvers

Model-Checking Techniques (Explicit State)

- Model checking as partial graph exploration
- In practice:
 - Compute part of the reachable state-space, with clever techniques for state storage (e.g., Bit-state hashing) and path pruning (partialorder reduction)
 - Check reachability (X, U) properties "on-the-fly", as state-space is being computed
 - Check non-termination (G) properties by finding an accepting cycle in the graph

Pros and Cons of Model-Checking

- Often cannot express full requirements
 - Instead check several smaller properties
- Few systems can be checked directly
 - Must generally abstract
- Works better for certain types of problems
 - Very useful for control-centered concurrent systems
 - Avionics software
 - Hardware
 - Communication protocols
 - Not very good at data-centered systems
 - User interfaces, databases

Pros and Cons (Cont'd)

- Largely automatic and fast
- Better suited for debugging
 - · ... rather than assurance
- Testing vs model-checking
 - Usually, find more problems by exploring all behaviours of a downscaled system than by

testing some behaviours of the full system

Some State of the Art Model-Checkers

- SMV, NuSMV, Cadence SMV
 - CTL and LTL model-checkers
 - Based on symbolic decision diagrams or SAT solvers
 - Mostly for hardware and other models
- Spin
 - LTL model-checker
 - Explicit state exploration
 - Mostly for communication protocols
- CBMC, SatAbs, CPAChecker, UFO
 - Combine Model Checking and Abstraction
 - Work directly on the source code (mostly C)
 - Control-dependent properties of programs (buffer overflow, API usage, etc.)