
MODEL CHECKING
Arie Gurfinkel

1

Overview

• Kripke structures as models of computation

• CTL, LTL and property patterns

• CTL model-checking and counterexample generation

• State of the Art Model-Checkers

2

3

Yes/No +

Counter-example

Yes/No +

Counter-example

SW/HW
Artifact
SW/HW
Artifact

Correctness
properties
Correctness
properties

Temporal
logic

Temporal
logic

Finite
Model
Finite
Model

Model
Extraction

Model
Extraction

TranslationTranslation

Model
Checker
Model

Checker

Correct?

AbstractionAbstraction

Models: Kripke Structures

Conventional state machines

• K = (V, S, s0, I , R)

• V is a (finite) set of atomic

propositions

• S is a (finite) set of states

• s0  S is a start state

• I: S  2V is a labelling function that maps each state to the set of

propositional variables that hold in it

• That is, I(S) is a set of interpretations specifying which propositions are

true in each state

• R  S  S is a transition relation

4

req req,
busy

busy

s
0

s
2

s
1

s
3

Propositional Variables

Fixed set of atomic propositions, e.g, {p, q, r}

Atomic descriptions of a system

“Printer is busy”

“There are currently no requested jobs for the printer”

“Conveyer belt is stopped”

Do not involve time!

5

Modal Logic

Extends propositional logic with modalities to qualify

propositions

• “it is raining” – rain

• “it will rain tomorrow” – ☐rain

• it is raining in all possible futures

• “it might rain tomorrow” – ⃟rain

• it is raining in some possible futures

Modal logic formulas are interpreted over a collection of

possible worlds connected by an accessibility relation

Temporal logic is a modal logic that adds temporal

modalities: next, always, eventually, and until

6

Computation Tree Logic (CTL)

CTL: Branching-time propositional temporal logic
Model - a tree of computation paths

7

S1
S2

S3

S2

S1 S3

S1 S3S2

S2

S1

S1 S3 S1 S3

Tree of computationKripke Structure

CTL: Computation Tree Logic

Propositional temporal logic with explicit quantification over

possible futures

Syntax:

True and False are CTL formulas;
propositional variables are CTL formulas;

If  and ψ are CTL formulae, then so are:   ,   ψ ,   ψ

EX  :  holds in some next state

EF  : along some path,  holds in a future state

E[ U ψ] : along some path,  holds until ψ holds

EG  : along some path,  holds in every state

• Universal quantification: AX  , AF  , A[ U ψ], AG 

8

Examples: EX and AX

9



EX  (exists next)



AX  (all next)



Examples: EG and AG

10









EG  (exists global)





 

   

AG  (all global)



Examples: EF and AF

11



EF  (exists future)



 

AF  (all future)



Examples: EU and AU

12







E[ U ψ] (exists until)





 



A[ U ψ] (all until)



CTL Examples

Properties that hold:

• (AX busy)(s0)

• (EG busy)(s3)

• A (req U busy) (s0)

• E (req U busy) (s1)

• AG (req ⇒ AF busy) (s0)

Properties that fail:

• (AX (req ∨ busy))(s3)

13

req req,
busy

busy

s
0

s
2

s
1

s
3

Some Statements To Express

• An elevator can remain idle on the third floor with its doors
closed

• EF (state=idle  floor=3  doors=closed)

• When a request occurs, it will eventually be acknowledged

• AG (request ⇒ AF acknowledge)

• A process is enabled infinitely often on every computation path

• AG AF enabled

• A process will eventually be permanently deadlocked

• AF AG deadlock

• Action s precedes p after q

• A[¬q U (q ∧ A[¬p U s])]

• Note: hard to do correctly. See later on helpful techniques

14

Semantics of CTL

K,s ⊨  – means that formula  is true in state s. K is often

omitted since we always talk about the same Kripke

structure

• E.g., s ⊨ p ∧¬q

π = π0 π1 … is a path

π0 is the current state (root)

πi+1 is a successor state of πi. Then,

AX  = π  π1 ⊨  EX  = π  π1 ⊨ 

AG  = π  i  πi⊨  EG  = π  i  πi⊨ 

AF  = π  i  πi⊨  EF  = π  i  πi⊨ 

A[ U ψ] = π  i  πi⊨ ψ ∧  j  0  j  i ⇒ πj ⊨ 

E[ U ψ] = π  i  πi⊨ ψ ∧  j  0  j  i ⇒ πj ⊨ 

15

Relationship Between CTL Operators

¬AX = EX ¬

¬AF = EG ¬ ¬EF = AG ¬

AF = A[true U ] EF = E[true U ]

AG  =  ∧ AX AG  EG  =  ∧ EX EG 

AF  =  ∨ AX AF  EF  =  ∨ EX EF 

A [false U ] = E[false U ] = 

A[ U ψ] = ¬ E[¬ψ U (¬ ∧ ¬ψ)] ∧ ¬EG ¬ψ

A[ U ψ] = ψ ∨ ( ∧ AX A[ U ψ])

E[ U ψ] = ψ ∨ ( ∧ EX E[ U ψ])

A[ W ψ] = ¬ E[¬ψ U (¬ ∧ ¬ψ)] (weak until)

E[ U ψ] = ¬ A[¬ψ W (¬ ∧ ¬ψ)]

16

Adequate Sets

Def. A set of connectives is adequate if all connectives can

be expressed using it.

• e.g., {¬,∧} is adequate for propositional logic:

• a ∨ b = ¬ (¬ a ∧ ¬b)

Theorem. The set of operators {false,¬, ∧} together with

EX, EG, and EU is adequate for CTL
• e.g., AF (a ∨ AX b) = ¬ EG ¬ (a ∨ AX b) = ¬ EG (¬a ∧ EX ¬b)

• EU describes reachability

• EG – non-termination (presence of infinite behaviours)

17

Universal and Existential CTL

• A CTL formula is in ACTL if it uses only universal temporal

connectives (AX, AF, AU, AG) with negation applied to the

level of atomic propositions

• Also called “universal” CTL formulas

• e.g., A [p U AX ¬q]

• ECTL: uses only existential temporal connectives (EX,

EF, EU, EG) with negation applied to the level of atomic

propositions

• Also called “existential” CTL formulas

• e.g., E [p U EX ¬q]

• CTL formulas not in ECTL ∪ ACTL are called “mixed”

• e.g., E [p U AX ¬q] and A [p U EX ¬q]

18

Safety and Liveness

Safety: Something “bad” will never happen

• AG ¬bad

• e.g., mutual exclusion: no two processes are in their critical section

at once

• Safety = if false then there is a finite counterexample

Liveness: Something “good” will always happen

• AG AF good

• e.g., every request is eventually serviced

• Liveness = if false then there is an infinite counterexample

Every universal temporal logic formula can be decomposed

into a conjunction of safety and liveness

19

Linear Temporal Logic (LTL)

For reasoning about complete traces through the system

Allows to make statements about a trace

20

S1
S2

S3

S2 S1S1 S2 S1

S2 S1S1 S2 S3

S2 S3S1 S3 S3

S2 S3S1 S1 S2

S2 S3S1 S3 S1

LTL Syntax

• If  is an atomic propositional formula, it is a formula in

LTL

• If  and ψ are LTL formulas, so are  ∧ ψ,  ∨ ψ,  , 

U ψ (until), X  (next), F (eventually), G  (always)

• Interpretation: over computations π: ω ⇒ 2V which

assigns truth values to the elements of V at each time

instant

π ⊨ X  iff π 1 ⊨ 

π ⊨ G  iff i  π i⊨ 

π ⊨ F iff i  π i⊨ 

π ⊨  U ψ iff i  π i⊨ ψ ∧  j  0  j  i ⇒ π j ⊨ 

Here, π i is the i ’th state on a path

21

Properties of LTL

 X  = X  

F  = true U 

G  =  F  

G  =  ∧ X G 

F  =  ∨ X F 

 W ψ = G  ∨ ( U ψ) (weak until)

A property holds in a model if it holds on every path

starting from the initial state

22

Expressing Properties in LTL

• Good for safety (G ) and liveness (F) properties

• Express:

• When a request occurs, it will eventually be acknowledged

• G (request ⇒ F acknowledge)

• Each path contains infinitely many q’s

• G F q

• At most a finite number of states in each path satisfy q (or

property q eventually stabilizes)

• F G q

• Action s precedes p after q

• [¬q U (q ∧ [¬p U s])]

• Note: hard to do correctly. See later on helpful techniques

23

Comparison between LTL and CTL

Syntactically: LTL is simpler than CTL

Semantically: incomparable!

• CTL formula AG EF  (always can reach) is not expressible in LTL

• LTL formula F G  (eventually always) is not expressible in CTL

• What about AF AG ?

• Has different interpretation on the following state machine:

• AF AG  is false

• F G  is true

The logic CTL* is a super-set of both CTL and LTL

LTL and CTL coincide if the model has only one path!

24

 

Property Patterns: Motivation

• Temporal properties are not always easy to write or read
• e.g., G ((q ∧ ¬r ∧ F r) ⇒ (p ⇒ (¬r U (s ∧ ¬r)) U r)

• Meaning:

• p triggers s between q (e.g., end of system initialization) and r (start of

system shutdown)

• Many properties are specifiable in both CTL and LTL
• e.g., Action q must respond to action p:

• CTL: AG (p ⇒ AF q)

• LTL: G (p ⇒ F q)

• e.g., Action s precedes p after q

• CTL: A[¬q U (q ∧ A[¬p U s])]

• LTL: [¬q U (q ∧ [¬p U s])]

25

Pattern Hierarchy

http://patterns.projects.cis.ksu.edu/
Specifying and reusing property specifications

• Absence: A condition does not occur within a scope

• Existence: A condition must occur within a scope

• Universality: A condition occurs throughout a scope

• Response: A condition must always be followed by another within a
scope

• Precedence: A condition must always be preceded by another
within a scope

26

Pattern Hierarchy: Scopes

Scopes of interest over which the condition is evaluated

27

Using the System: Example

• Property

• There should be a dequeue() between an enqueue() and an

empty()

• Propositions: deq, enq, em

• Pattern: “existence” (of deq)

• Scope: “between” (events: enq, em)

• Look up (S exists between Q and R)

• CTL: AG (Q ∧ ¬ R ⇒ A[¬ R W (S ∧ ¬ R)])

• LTL: G (Q ∧ ¬ R ⇒ (¬ R W (S ∧ ¬ R)))

• Result
• CTL: AG (enq ∧ ¬ em ⇒ A[¬ em W (deq ∧ ¬ em)])

• LTL: G (enq ∧ ¬ em ⇒ (¬ em W (deq ∧ ¬ em)))

28

CTL Model-Checking

• Inputs:
• Kripke structure K

• CTL formula 

• Assumptions:
• The Kripke structure is finite

• Finite length of a CTL formula

• Algorithm:
• Working outwards towards 

• Label states of K with sub-formulas of  that are satisfied these
states

• Output states labeled with 

Example: EX EG (p⇒ E[p U q])

29

CTL Model-Checking (EX, EU)

EX 

• Label a state EX  if any of its

successors is labeled with 

E [ U ψ]

• Label a state E[ U ψ] if it is

labeled with ψ

• Until there is no change

• label a state with E[ U ψ]

if it is labeled with  and

has a successor labeled

with E[ U ψ]

30

 

ψ



ψ

ψ



ψ

ψ



ψ

ψ



ψ

CTL Model-Checking (EG)

EG 

• Label every node labeled with  by EG 

• Until there is no change

• remove label EG  from any state that does not have successors

labeled by EG 

31


 




 




 



Counterexamples

Explain why the property fails to hold

• to disprove that  holds on all elements of S, produce a single

element s  S s.t.  holds on s.

• counterexamples are restricted to universally-quantified formulas

• counterexamples are paths (trees) from initial state illustrating

the failure of property

32

AG req

s
0

s
3

AF ¬req  AX req

s
0

req req,
busy

busy

s
0

s
2

s
1

s
3

busyreq

req

req,
busys

1

busy s
3

Generating Counterexamples (EX, EG)

Negate the prop. and express using EX, EU, EG

• e.g., AG ( ⇒ AF ψ) becomes EF( ∧ EG ¬ ψ)

EX  :

find a successor state labeled with 

EG :

follow successors labeled

with EG  until a loop is found

33



Generating Counterexamples (EU)

E[ U ψ]:

remove all states that are not labeled with

either  or ψ. Then, find a path to ψ

This procedure works only for universal properties
• AX 

• AG (⇒ AF ψ)

• etc.

34







State Explosion

• How fast do Kripke structures grow?
Composing linear number of structures yields exponential growth!

• How to deal with this problem?
• Symbolic model checking with efficient data structures (BDDs,

SAT).

• Do not need to represent and manipulate the model explicitly

• Abstraction

• Abstract away variables in the model which are not relevant to the
formula being checked

• Partial order reduction (for asynchronous systems)
• Several interleavings of component traces may be equivalent as far as

satisfaction of the formula to be checked is concerned

• Composition

• Break the verification problem down into several simpler verification
problems

35

Model-Checking Techniques (Symbolic)

• BDD

• Express transition relation by a formula, represented as BDD.

Manipulate these to compute logical operations and fixpoints

• Based on very fast decision diagram packages (e.g., CUDD)

• SAT

• Expand transition relation a fixed number of steps (e.g., loop

unrolling), resulting in a formula

• For this unrolling, check whether the property holds

• Continue increasing the unrolling until error is found, resources are

exhausted, or diameter of the problem is reached

• Based on very fast SAT solvers

36

Model-Checking Techniques (Explicit State)

• Model checking as partial graph exploration

• In practice:

• Compute part of the reachable state-space, with clever techniques

for state storage (e.g., Bit-state hashing) and path pruning (partial-

order reduction)

• Check reachability (X, U) properties “on-the-fly”, as state-space is

being computed

• Check non-termination (G) properties by finding an accepting cycle

in the graph

37

Pros and Cons of Model-Checking

• Often cannot express full requirements

• Instead check several smaller properties

• Few systems can be checked directly

• Must generally abstract

• Works better for certain types of problems

• Very useful for control-centered concurrent systems

• Avionics software

• Hardware

• Communication protocols

• Not very good at data-centered systems

• User interfaces, databases

38

Pros and Cons (Cont’d)

• Largely automatic and fast

• Better suited for debugging

• … rather than assurance

• Testing vs model-checking

• Usually, find more problems by

exploring all behaviours of a downscaled system

than by

testing some behaviours of the full system

39

Some State of the Art Model-Checkers

• SMV, NuSMV, Cadence SMV
• CTL and LTL model-checkers

• Based on symbolic decision diagrams or SAT solvers

• Mostly for hardware and other models

• Spin
• LTL model-checker

• Explicit state exploration

• Mostly for communication protocols

• CBMC, SatAbs, CPAChecker, UFO
• Combine Model Checking and Abstraction

• Work directly on the source code (mostly C)

• Control-dependent properties of programs (buffer overflow, API
usage, etc.)

40

