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Overview

• Kripke structures as models of computation

• CTL, LTL and property patterns

• CTL model-checking and counterexample generation

• State of the Art Model-Checkers
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Models: Kripke Structures

Conventional state machines

• K = (V, S, s0, I , R)

• V is a (finite) set of atomic 

propositions

• S is a (finite) set of states

• s0  S is a start state

• I: S  2V is a labelling function that maps each state to the set of 

propositional variables that hold in it 

• That is, I(S) is a set of interpretations specifying which propositions are 

true in each state

• R  S  S is a transition relation 
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Propositional Variables

Fixed set of atomic propositions, e.g, {p, q, r}

Atomic descriptions of a system

“Printer is busy”

“There are currently no requested jobs for the printer”

“Conveyer belt is stopped”

Do not involve time!
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Modal Logic

Extends propositional logic with modalities to qualify 

propositions

• “it is raining” – rain

• “it will rain tomorrow” – ☐rain

• it is raining in all possible futures

• “it might rain tomorrow” – ⃟rain

• it is raining in some possible futures

Modal logic formulas are interpreted over a collection of 

possible worlds connected by an accessibility relation

Temporal logic is a modal logic that adds temporal 

modalities: next, always, eventually, and until

6



Computation Tree Logic (CTL)

CTL: Branching-time propositional temporal logic
Model - a tree of computation paths
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CTL:  Computation Tree Logic

Propositional temporal logic with explicit quantification over 

possible futures

Syntax:

True and False are CTL formulas;
propositional variables are CTL formulas;

If  and ψ are CTL formulae, then so are:   ,   ψ ,   ψ

EX  :           holds in some next state

EF  :           along some path,  holds in a future state

E[ U ψ] :    along some path,  holds until ψ holds

EG  :          along some path,  holds in every state

• Universal quantification: AX  , AF  , A[ U ψ], AG 

8



Examples: EX and AX
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Examples: EG and AG
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Examples: EF and AF
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Examples: EU and AU
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CTL Examples

Properties that hold:

• (AX busy)(s0)

• (EG busy)(s3)

• A (req U busy) (s0) 

• E (req U busy) (s1) 

• AG (req ⇒ AF busy) (s0) 

Properties that fail:

• (AX (req ∨ busy))(s3)
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Some Statements To Express

• An elevator can remain idle on the third floor with its doors 
closed 

• EF (state=idle  floor=3  doors=closed)

• When a request occurs, it will eventually be acknowledged

• AG (request ⇒ AF acknowledge)

• A process is enabled infinitely often on every computation path

• AG AF enabled

• A process will eventually be permanently deadlocked

• AF AG deadlock

• Action s precedes p after q

• A[¬q U (q ∧ A[¬p U s])]

• Note:  hard to do correctly.  See later on helpful techniques
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Semantics of CTL

K,s ⊨  – means that formula  is true in state s.  K is often 

omitted since we always talk about the same Kripke

structure

• E.g., s ⊨ p ∧¬q

π = π0 π1 … is a path

π0 is the current state (root)

πi+1 is a successor state of πi.  Then,

AX  = π  π1 ⊨  EX  = π  π1  ⊨ 

AG  = π  i  πi⊨  EG  = π  i  πi⊨ 

AF  = π  i  πi⊨  EF  = π  i  πi⊨ 

A[ U ψ] = π  i  πi⊨ ψ ∧  j  0  j  i ⇒ πj ⊨ 

E[ U ψ] = π  i  πi⊨ ψ ∧  j  0  j  i ⇒ πj ⊨ 
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Relationship Between CTL Operators

¬AX = EX ¬

¬AF = EG ¬ ¬EF = AG ¬

AF = A[true U ] EF = E[true U ]

AG  =  ∧ AX AG  EG  =  ∧ EX EG 

AF  =  ∨ AX AF  EF  =  ∨ EX EF 

A [false U ] = E[false U ] = 

A[ U ψ]  = ¬ E[¬ψ U (¬ ∧ ¬ψ)]  ∧ ¬EG ¬ψ

A[ U ψ] = ψ ∨ ( ∧ AX A[ U ψ])

E[ U ψ] = ψ ∨ ( ∧ EX E[ U ψ])

A[ W ψ] = ¬ E[¬ψ U (¬ ∧ ¬ψ)]    (weak until)

E[ U ψ] = ¬ A[¬ψ W (¬ ∧ ¬ψ)] 
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Adequate Sets

Def. A set of connectives is adequate if all connectives can 

be expressed using it.

• e.g., {¬,∧} is adequate for propositional logic:

• a ∨ b = ¬ (¬ a ∧ ¬b)

Theorem. The set of operators {false,¬, ∧} together with 

EX, EG, and EU is adequate for CTL
• e.g., AF (a ∨ AX b) = ¬ EG ¬ (a ∨ AX b)  = ¬ EG (¬a ∧ EX ¬b)

• EU describes reachability

• EG – non-termination (presence of infinite behaviours)
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Universal and Existential CTL

• A CTL formula is in ACTL if it uses only universal temporal 

connectives (AX, AF, AU, AG) with negation applied to the 

level of atomic propositions

• Also called “universal” CTL formulas

• e.g., A [p U AX ¬q]

• ECTL:  uses only existential temporal connectives (EX, 

EF, EU, EG) with negation applied to the level of atomic 

propositions

• Also called “existential” CTL formulas

• e.g., E [p U EX ¬q]

• CTL formulas not in ECTL ∪ ACTL are called “mixed”

• e.g., E [p U AX ¬q] and A [p U EX ¬q]
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Safety and Liveness

Safety: Something “bad” will never happen

• AG ¬bad

• e.g., mutual exclusion: no two processes are in their critical section 

at once

• Safety = if false then there is a finite counterexample

Liveness: Something “good” will always happen

• AG AF good

• e.g., every request is eventually serviced

• Liveness = if false then there is an infinite counterexample

Every universal temporal logic formula can be decomposed 

into a conjunction of safety and liveness
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Linear Temporal Logic (LTL)

For reasoning about complete traces through the system

Allows to make statements about a trace
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LTL Syntax

• If  is an atomic propositional formula, it is a formula in 

LTL

• If  and ψ are LTL formulas, so are  ∧ ψ,  ∨ ψ,      , 

U ψ (until), X  (next), F (eventually), G  (always)

• Interpretation: over computations π: ω ⇒ 2V which 

assigns truth values to the elements of V at each time 

instant

π ⊨ X  iff π 1 ⊨ 

π ⊨ G  iff i  π i⊨ 

π ⊨ F iff i  π i⊨ 

π ⊨  U ψ iff i  π i⊨ ψ ∧  j  0  j  i ⇒ π j ⊨ 

Here, π i is the i ’th state on a path
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Properties of LTL

 X  = X  

F  = true U 

G  =  F  

G  =  ∧ X G 

F  =  ∨ X F 

 W ψ = G  ∨ ( U ψ)    (weak until)

A property holds in a model if it holds on every path 

starting from the initial state
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Expressing Properties in LTL

• Good for safety (G ) and liveness (F) properties

• Express:

• When a request occurs, it will eventually be acknowledged

• G (request ⇒ F acknowledge)

• Each path contains infinitely many q’s

• G F q

• At most a finite number of states in each path satisfy q (or 

property q eventually stabilizes)

• F G q

• Action s precedes p after q

• [¬q U (q ∧ [¬p U s])]

• Note:  hard to do correctly.  See later on helpful techniques
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Comparison between LTL and CTL

Syntactically:  LTL is simpler than CTL

Semantically: incomparable!

• CTL formula AG EF  (always can reach) is not expressible in LTL

• LTL formula F G  (eventually always) is not expressible in CTL

• What about AF AG ?

• Has different interpretation on the following state machine:

• AF AG  is false

• F G  is true

The logic CTL* is a super-set of both CTL and LTL 

LTL and CTL coincide if the model has only one path! 
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Property Patterns: Motivation

• Temporal properties are not always easy to write or read
• e.g., G ((q ∧ ¬r ∧ F r ) ⇒ (p ⇒ (¬r  U (s ∧ ¬r)) U r)

• Meaning: 

• p triggers s between q (e.g., end of system initialization) and r (start of 

system shutdown)

• Many properties are specifiable in both CTL and LTL
• e.g., Action q must respond to action p:

• CTL: AG (p ⇒ AF q)

• LTL: G (p ⇒ F q)

• e.g., Action s precedes p after q

• CTL: A[¬q U (q ∧ A[¬p U s])]

• LTL: [¬q U (q ∧ [¬p U s])]
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Pattern Hierarchy

http://patterns.projects.cis.ksu.edu/
Specifying and reusing property specifications

• Absence: A condition does not occur within a scope

• Existence: A condition must occur within a scope

• Universality: A condition occurs throughout a scope

• Response: A condition must always be followed by another within a 
scope

• Precedence: A condition must always be preceded by another 
within a scope
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Pattern Hierarchy:  Scopes

Scopes of interest over which the condition is evaluated
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Using the System: Example

• Property

• There should be a dequeue() between an enqueue() and an 

empty()

• Propositions: deq, enq, em

• Pattern: “existence” (of deq) 

• Scope: “between” (events:  enq, em)

• Look up (S exists between Q and R)

• CTL: AG (Q ∧ ¬ R ⇒ A[¬ R W (S ∧ ¬ R)])

• LTL: G (Q ∧ ¬ R ⇒ (¬ R W (S ∧ ¬ R)))

• Result
• CTL: AG (enq ∧ ¬ em ⇒ A[¬ em W (deq ∧ ¬ em)])

• LTL: G (enq ∧ ¬ em ⇒ (¬ em W (deq ∧ ¬ em)))
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CTL Model-Checking

• Inputs: 
• Kripke structure K

• CTL formula 

• Assumptions:
• The Kripke structure is finite

• Finite length of a CTL formula

• Algorithm:
• Working outwards towards 

• Label states of K with sub-formulas of  that are satisfied these 
states

• Output states labeled with 

Example:  EX EG (p⇒ E[p U q]) 
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CTL Model-Checking (EX, EU)

EX 

• Label a state EX  if any of its 

successors is labeled with 

E [ U ψ]

• Label a state E[ U ψ] if it is 

labeled with ψ

• Until there is no change

• label a state with E[ U ψ]

if it is labeled with  and 

has a successor labeled 

with E[ U ψ]
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CTL Model-Checking (EG)

EG 

• Label every node labeled with  by EG 

• Until there is no change

• remove label EG  from any state that does not have successors 

labeled by EG 
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Counterexamples

Explain why the property fails to hold

• to disprove that  holds on all elements of S, produce a single 

element s  S s.t.  holds on s.

• counterexamples are restricted to universally-quantified formulas

• counterexamples are paths (trees) from initial state illustrating 

the failure of property

32

AG req

s
0

s
3

AF ¬req  AX req

s
0

req req,
busy

busy

s
0

s
2

s
1

s
3

busyreq

req

req,
busys

1

busy s
3



Generating Counterexamples (EX, EG)

Negate the prop. and express using EX, EU, EG

• e.g., AG ( ⇒ AF ψ) becomes EF( ∧ EG ¬ ψ)

EX  :

find a successor state labeled with 

EG :

follow successors labeled 

with EG  until a loop is found

33





Generating Counterexamples (EU)

E[ U ψ]:

remove all states that are not labeled with 

either  or ψ. Then, find a path to ψ

This procedure works only for universal properties
• AX 

• AG (⇒ AF ψ)

• etc.
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State Explosion

• How fast do Kripke structures grow? 
Composing linear number of structures yields exponential growth!

• How to deal with this problem?
• Symbolic model checking with efficient data structures (BDDs, 

SAT). 

• Do not need to represent and manipulate the model explicitly

• Abstraction 

• Abstract away variables in the model which are not relevant to the 
formula being checked 

• Partial order reduction (for asynchronous systems)
• Several interleavings of component traces may be equivalent as far as 

satisfaction of the formula to be checked is concerned

• Composition

• Break the verification problem down into several simpler verification 
problems
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Model-Checking Techniques (Symbolic)

• BDD

• Express transition relation by a formula, represented as BDD.  

Manipulate these to compute logical operations and fixpoints

• Based on very fast decision diagram packages (e.g., CUDD)

• SAT

• Expand transition relation a fixed number of steps (e.g., loop 

unrolling), resulting in a formula

• For this unrolling, check whether the property holds

• Continue increasing the unrolling until error is found, resources are 

exhausted, or diameter of the problem is reached

• Based on very fast SAT solvers 
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Model-Checking Techniques (Explicit State)

• Model checking as partial graph exploration

• In practice:

• Compute part of the reachable state-space, with clever techniques 

for state storage (e.g., Bit-state hashing) and path pruning (partial-

order reduction)

• Check reachability (X, U) properties “on-the-fly”, as state-space is 

being computed

• Check non-termination (G) properties by finding an accepting cycle 

in the graph
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Pros and Cons of Model-Checking

• Often cannot express full requirements

• Instead check several smaller properties

• Few systems can be checked directly

• Must generally abstract 

• Works better for certain types of problems

• Very useful for control-centered concurrent systems

• Avionics software

• Hardware

• Communication protocols

• Not very good at data-centered systems

• User interfaces, databases
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Pros and Cons (Cont’d)

• Largely automatic and fast

• Better suited for debugging 

• … rather than assurance

• Testing vs model-checking

• Usually, find more problems by 

exploring all behaviours of a downscaled system 

than by 

testing some behaviours of the full system

39



Some State of the Art Model-Checkers

• SMV, NuSMV, Cadence SMV
• CTL and LTL model-checkers

• Based on symbolic decision diagrams or SAT solvers

• Mostly for hardware and other models

• Spin
• LTL model-checker

• Explicit state exploration

• Mostly for communication protocols

• CBMC, SatAbs, CPAChecker, UFO
• Combine Model Checking and Abstraction

• Work directly on the source code (mostly C)

• Control-dependent properties of programs (buffer overflow, API 
usage, etc.)
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