MODEL CHECKING

Arie Gurfinkel

Overview

- Kripke structures as models of computation

- CTL, LTL and property patterns

- CTL model-checking and counterexample generation
- State of the Art Model-Checkers

Model
[Ex trac 1'|on [Transla‘non}

EAbstraction

Model
Checker

I T
Models: Kripke Structures

2

Conventional state machines o1 gﬁgy 51
- K=(V, S, s, 1, R)
- V is a (finite) set of atomic c g

iy 2 3

propositions busy
- S’is a (finite) set of states \)
- 5, € Sis a start state | 4

- I: S - 2Vis a labelling function that maps each state to the set of
propositional variables that hold in it

- Thatis, I(S) is a set of interpretations specifying which propositions are
true in each state

- R S x S is a transition relation

Propositional Variables

Fixed set of atomic propositions, e.g, {p, q, r}

Atomic descriptions of a system

“Printer is busy”
“There are currently no requested jobs for the printer”

“Conveyer belt is stopped”

Do not involve time!

T
Modal Logic

Extends propositional logic with modalities to qualify
propositions
- ‘itis raining” — rain
- “it will rain tomorrow” — [rain
- it is raining in all possible futures

- “it might rain tomorrow@rain
- it is raining in some possible futures
Modal logic formulas are interpreted over a collection of
possible worlds connected by an accessibility relation

Temporal logic is a modal logic that adds temporal
modalities: next, always, eventually, and until

Computation Tree Logic (CTL)

CTL: Branching-time propositional temporal logic
Model - a tree of computation paths

8D
w o g
; ;330

Kripke Structure Tree of computation

T
CTL: Computation Tree Logic

Propositional temporal logic with explicit quantification over
possible futures

Syntax:

True and False are CTL formulas;
propositional variables are CTL formulas;

If p and @ are CTL formulae, thensoare: — ¢, oA W, o v @
EXop: ¢ holds in some next state
EF ¢ along some path, ¢ holds in a future state

E[o U w]: along some path, ¢ holds until ¢ holds
EG o along some path, ¢ holds in every state

- Universal quantification: AX ¢ , AF ¢ , Alp U @], AG ¢

Examples: EX and AX

i 4h

EX ¢ (exists next) AX ¢ (all next)

10

Examples: EG and AG

@%%& @5@%&

EG ¢ (exists global) AG ¢ (all global)

11

Examples: EF and AF

i 4

EF ¢ (exists future) AF ¢ (all future)

12

Examples: EU and AU

@%%?b @%%E%

E[p U y] (exists until) Alo U y] (all until)

CTL Examples

Properties that hold:
- (AX busy)(s,)
- (EG busy)(ss)
- A(req U busy) (s))
- E (—req U busy) (s,)
- AG (req = AF busy) (s,)

Properties that fail:
- (AX (req Vv busy))(s;)

13

reg

req, S]
busy

busy j

Some Statements To Express

- An elevator can remain idle on the third floor with its doors
closed

- When a request occurs, it will eventually be acknowledged

- A process is enabled infinitely often on every computation path

- A process will eventually be permanently deadlocked

- Action s precedes p after g

- Note: hard to do correctly. See later on helpful techniques

Semantics of CTL

K,S = ¢ — means that formula ¢ is true in state s. Kis often
omitted since we always talk about the same Kripke
structure

- E.g.,SEpPANQ

m=m%m" ...is a path

Y is the current state (root)

m*’ is a successor state of 7. Then,

AX§D=VW-W1I=§D EX§D=E|7T-7T1I=§D
AG o=V - Vi - TE@ EGo=3m- Vi - mE ¢
AF o=V -3i- TE ¢ EF o=3m- 3i- mE ¢

AlpUyl=vmr 3i- mewAVj 0<j<i=>mTEQ
El[pUy]=3m-3i- mMeEwAV - 0<j<i=>mTEQp

Relationship Between CTL Operators

“AXp = EX 7¢

“AFp = EG ¢ “EFp =AG ¢

AFg = AJtrue U ¢] EFg = E[true U ¢]
AG =9 NAAXAG ¢ EGop=9pANEXEGQp
AF o= o Vv AXAF ¢ EFp=¢0VEXEF g

A [false U ¢] = E[false U ¢] = ¢

AlpUy] =~ E[rp U (CoA~y)] A "EG
Alp U yl=wV (p ANAXAlp U y])

Elp Uy]=wV (p AEXE[p U y])

Alp W w]l="E[r@w U (7o A)] (weak until)
Elp U ywl="A[Pg W (7o A ~y)]

Adequate Sets

Def. A set of connectives is adequate if all connectives can
be expressed using it.
- e.g., {7,A} is adequate for propositional logic:
cavb="("a A7b)
Theorem. The set of operators {false,™, A} together with
EX, EG, and EU is adequate for CTL
- eg,AF(avAXb)="EG(avAXb) =7EG (manEX D)
- EU describes reachabillity
- EG — non-termination (presence of infinite behaviours)

Universal and Existential CTL

- ACTL formula is in ACTL if it uses only universal temporal

connectives (AX, AF, AU, AG) with negation applied to the
level of atomic propositions

- Also called “universal” CTL formulas
- e.g.,,A[p UAX 7q]

- ECTL: uses only existential temporal connectives (EX,
EF, EU, EG) with negation applied to the level of atomic
propositions
- Also called “existential” CTL formulas
-e.g., E[pUEX™q]

- CTL formulas not in ECTL u ACTL are called “mixed”
-eg., E[pUAXglandA[p U EX 7q]

Safety and Liveness

Safety: Something “bad” will never happen
- AG 7bad

- e.g., mutual exclusion: no two processes are in their critical section
at once

- Safety = if false then there is a finite counterexample
Liveness: Something “good” will always happen
- AG AF good

- e.g., every request is eventually serviced
- Liveness = if false then there is an infinite counterexample

Every universal temporal logic formula can be decomposed
iInto a conjunction of safety and liveness

Linear Temporal Logic (LTL)

2

0

For reasoning about complete traces through the system

A S @G D) o o
S S>> o 0

C

ED>E)+S)>CD>(5D) o o
ED+E)+E)>ED>ED) o o

Allows to make statements about a trace

BD>ED>ED>E0>SD e o o

LTL Syntax

- If ¢ Is an atomic propositional formula, it is a formula in
TL

- If pand w are LTL formulas, soare o Ay, oV Yy, — ¢, @
U w (until), X ¢ (next), Fe (eventually), G ¢ (always)

- Interpretation: over computations : w = 2V which
assigns truth values to the elements of V at each time
instant

mTEXe iff mTTE@

mTEGe iffVi-m'E

meEFe iff 3i-mE

mEeUuwiff 3i- mewAVj - 0<j<i>m/EQ
Here, 7' is the i ’th state on a path

Properties of LTL

— X =X

Fo =true U o

Gp =—F—=9¢

Gp =pANXGo

Fo =oVXFo
oWw=GoV(pUuyp) (weakuntil)

A property holds in a model if it holds on every path
starting from the initial state

Expressing Properties in LTL

- Good for safety (G —) and liveness (F) properties

- Express:
- When a request occurs, it will eventually be acknowledged

- Each path contains infinitely many g’s

~——ATTITOST a TITTITE TTUTTOET OT States nTeduT pauTsdtisfy —q (or
property g eventually stabilizes)

° ALUUIT o plIeltlUtcs U dilcl (¢

mmemmhniques

Comparison between LTL and CTL

Syntactically: LTL is simpler than CTL

Semantically: incomparable!
- CTL formula AG EF ¢ (always can reach) is not expressible in LTL

- LTL formula F G ¢ (eventually always) is not expressible in CTL
- What about AF AG ¢?
- Has different interpretation on the following state machine:

N

(o 4(%
- AF AG ¢ is false
- FGogistrue

The logic CTL* is a super-set of both CTL and LTL
LTL and CTL coincide if the model has only one path!

Property Patterns: Motivation

- Temporal properties are not always easy to write or read
ceg.,.G({(gArAFr)y=(p=(CrU(sAa)Ur)
- Meaning:
- p triggers s between q (e.g., end of system initialization) and r (start of
system shutdown)

- Many properties are specifiable in both CTL and LTL

- e.g., Action g must respond to action p:
- CTL: AG (p = AF q)
- LTL: G (p=>F q)
- e.g., Action s precedes p after g
- CTL:A[~q U (g AA["p U s])]
* LTL:[7q U (@ A [7p U s])]

Pattern Hierarchy

http://patterns.projects.cis.ksu.edu/
Specifying and reusing property specifications

Propetty Pattetns

/x

/ 2 nw\ /le m\r\
A bsence / \ Bounded Precedence Response Chain Chain
Existence Precedence Response

Universality Existence

- Absence: A condition does not occur within a scope
- EXistence: A condition must occur within a scope
- Universality: A condition occurs throughout a scope

- Response: A condition must always be followed by another within a
scope

- Precedence: A condition must always be preceded by another
within a scope

Pattern Hierarchy: Scopes

Scopes of interest over which the condition is evaluated

L I A AL LAY

BeforeR g SSSSSSY -

AR QeSS -
Between Qand R g NSNS

After QuutilR e SN e SSSSS -

Using the System: Example

- Property
- There should be a dequeue() between an enqueue() and an
empty()
- Propositions: deq, enqg, em
- Pattern: “existence” (of deq)
- Scope: “between” (events: enq, em)
- Look up (S exists between Q and R)
« CTLLAG(QA"R=>A"RW (SATR))
- LTL:G(QA-"R=("RW (SA—R)))
- Result
- CTL:AG (eng A "em = A["em W (deg A 7 em)])
- LTL: G (engA~em = (mem W (deg A 7 em)))

CTL Model-Checking

- Inputs:

- Kripke structure K

- CTL formula ¢
- Assumptions:

- The Kripke structure is finite

- Finite length of a CTL formula
- Algorithm:

- Working outwards towards ¢

- Label states of K with sub-formulas of ¢ that are satisfied these
states

- Output states labeled with ¢

Example: EXEG (p = E[p U q])

R]|)

CTL Model-Checking (EX, EU)

EX ¢ ElpUuyl
- Label a state EX ¢ if any of its - Label a state E[p U] ifitis
successors is labeled with ¢ labeled with

- Until there is no change

@ — % . label a state with E[¢ U]
if it is labeled with ¢ and
has a successor labeled

with E[o U y]
@ @

<§p oy —> Op— OV —>
1 W

R} |

CTL Model-Checking (EG)

EG ¢
- Label every node labeled with ¢ by EG ¢

- Until there is no change

- remove label EG ¢ from any state that does not have successors
labeled by EG ¢

P P
STt S
P P

P
':>€0§ :ﬁw
P

Counterexamples

Explain why the property fails to hold

+ to disprove that ¢ holds on all elements of S, produce a single
element s € S s.t. —¢ holds on s.

« counterexamples are restricted to universally-quantified formulas

« counterexamples are paths (trees) from initial state illustrating
the failure of property AG reqg

€0 || bUSY
Sy 53
AF req v AXreq

\

req, busy | 53
S; | busy

So] req

33

Generating Counterexamples (EX, EG)

Negate the prop. and express using EX, EU, EG
e.g.,AG (¢ = AF) becomes EF(p A EG = @)

3¢

EXo:

¥ find a successor state labeled with ¢
6% O e
®e o o
EG o:
follow successors labeled

with EG ¢ until a loop is found

34

Generating Counterexamples (EU)

E[p U yl:
¥ remove all states that are not labeled with
; either ¢ or . Then, find a path to @
TR

This procedure works only for universal properties
AX ¢
AG (¢ = AF)
etc.

State Explosion

- How fast do Kripke structures grow?
Composing linear number of structures yields exponential growth!

- How to deal with this problem?
- Symbolic model checking with efficient data structures (BDDs,
SAT).
- Do not need to represent and manipulate the model explicitly
- Abstraction

- Abstract away variables in the model which are not relevant to the
formula being checked

- Partial order reduction (for asynchronous systems)

- Several interleavings of component traces may be equivalent as far as
satisfaction of the formula to be checked is concerned

- Composition

- Break the verification problem down into several simpler verification
problems

Model-Checking Techniques (Symbolic)

- BDD

- Express transition relation by a formula, represented as BDD.
Manipulate these to compute logical operations and fixpoints

- Based on very fast decision diagram packages (e.g., CUDD)

- SAT

- Expand transition relation a fixed number of steps (e.g., loop
unrolling), resulting in a formula

- For this unrolling, check whether the property holds

- Continue increasing the unrolling until error is found, resources are
exhausted, or diameter of the problem is reached

- Based on very fast SAT solvers

Model-Checking Techniques (Explicit State)

- Model checking as partial graph exploration

- In practice:

- Compute part of the reachable state-space, with clever techniques
for state storage (e.g., Bit-state hashing) and path pruning (partial-
order reduction)

- Check reachability (X, U) properties “on-the-fly”, as state-space is
being computed

- Check non-termination (G) properties by finding an accepting cycle
in the graph

Pros and Cons of Model-Checking

- Often cannot express full requirements
- Instead check several smaller properties

- Few systems can be checked directly
- Must generally abstract

- Works better for certain types of problems

- Very useful for control-centered concurrent systems
- Avionics software
- Hardware
- Communication protocols
- Not very good at data-centered systems
- User interfaces, databases

Pros and Cons (Cont'd)

- Largely automatic and fast
- Better suited for debugging

- ... rather than assurance

- Testing vs model-checking
- Usually, find more problems by
exploring all behaviours of a downscaled system
than by
testing some behaviours of the full system

T
Some State of the Art Model-Checkers

- SMV, NuSMV, Cadence SMV
- CTL and LTL model-checkers
- Based on symbolic decision diagrams or SAT solvers
- Mostly for hardware and other models
- Spin
- LTL model-checker
- Explicit state exploration
- Mostly for communication protocols

- CBMC, SatAbs, CPAChecker, UFO

- Combine Model Checking and Abstraction
- Work directly on the source code (mostly C)

- Control-dependent properties of programs (buffer overflow, API
usage, etc.)

