
Model-Checking

Overview of Automated Verification

Answer +
Counter-example

Answer +
Counter-example

SW/HW
artifact

SW/HW
artifact

Correctness
properties

Correctness
properties

Temporal
logic

Temporal
logic

Model of
System

Model of
System

Model
Extraction
Model

Extraction TranslationTranslation

Checker
Engine

Checker
Engine

abstractionabstraction

Correct?

CTL Model-Checking
CTL: Branching-time propositional temporal logic
Model - a tree of computation paths
Example:

Kripke Structure

Tree of computation

S2

S1 S3

S1 S3S2

S2

S1

S1 S3 S1 S3

S1 S2

S3

Models: Kripke Structures

p
¬ q
r

¬ p
q
r

p
q
¬ r

s0

s2

s1

Conventional state machines
M = <S, A, s0, I , R>
S is a (finite) set of states
A is a (finite) set of propositional

variables
s0 is a unique initial state (s0 ∈ S)
I: S → 2A is a labeling function that maps each state
to the set of propositional variables that hold in it
R ⊆ S × S is a (total) transition relation

Kripke Structures (Our Model)

Formula is defined with respect to a model M �
� AP� S � s0 � R � I � , where

AP is a set of atomic propositions

S is a set of states

s0 � S is the start state

R is a transition relation (every state has a successor)

I is a set of interpretations specifying which propositions are true in each state.

Example:

s1

s3

s0

s2

s4

s1

s3

s0

s2

s4

sd

How to deal with deadlock states?
8

Propositional Variables
Fixed set of atomic propositions {p, q, r}

Atomic descriptions of a system
“Printer is busy”

“There are currently no requested jobs for the printer”

“Conveyer belt is stopped”

How to choose them?

Should not involve time!

CTL: Computation Tree Logic
propositional temporal logic.

allows explicit quantification over possible futures
Syntax:
True () and False (⊥) are CTL formulae;
propositional variables are CTL formulae;
ifφ and ψ are CTL formulae, then so are:¬ φ , φ ∧ ψ ,φ ∨ ψ
EX φ --- φ holds in some next states;

EF φ --- along some path, φ is true in a future state;
E[φ U ψ] --- along some path, φ holds until ψ holds;
EG φ --- along some path, φ holds in every state

Universal quantification: AX φ , AF φ , A[φ U ψ], AG φ

Examples

ϕ

AX (all next)

ϕϕ

EX (exists next)

ϕ
ϕ

ϕ ϕϕ

ϕϕ ϕ ϕ ϕ

AG (all global)

ϕ
ϕ

ϕ

ϕ

ϕ

EG (exists global)

Examples, Cont’d

ϕ

ϕ ϕϕ

ϕ

AF (all future)EF (exists future)

ϕ
ϕ

ϕ ψ

ψ

ϕ
ϕ

ψ

ψ

AU (all until)EU (exists until)

CTL (Cont’d)
Examples:

Properties that hold:
(EX p)(s0)

(A[p U q])(s0)

(EX AF p)(s0)

Properties that fail:
(A[¬ p U q])(s0)

p
¬ q
r

¬ p
q
r

p
q
¬ r

s0

s2

s1

Some Statements To Express
It is possible to get to a state where started holds,
but ready does not hold

EF (started ∧ ¬ready)

When a request occurs, it will eventually be
acknowledged

AG (request → AF acknowledge)

A process is enabled infinitely often on every
computation path

AG AF enabled

A process will eventually be permanently deadlocked
AF AG deadlock

It is always possible to get to a restart state
AG EF restart

Semantics of CTL

M � s ��� f – means that formula f is true in state s. M is often omitted since we

always talk about the same model.

E.g. s �� � x � 1 � � � n : nat� y � 2� n
means that in state s, variable x has value 1 and variable y has an even natural

value.

π = π0 π1 π2 	 	 	 is a path

π0 is the current state (root)

πi
 1 is πi’s successor state. Then,

AX f = � π� π1 �� f
EX f = � π� π1 �� f
AG f = � π� � i� πi ��� f
EG f = � π� � i� πi ��� f
AF f = � π� � i� πi ��� f
EF f = � π� � i� πi ��� f

3

Semantics (Cont’d)

A[f U g] = � π� � i� πi ��� g � � j� 0 � j � i � π j ��� f
E[f U g] = � π� � i� πi ��� g � � i� 0 � j � i � π j ��� f
A[f R g] = � π� � j � 0� � � i � j� πi

���� f � � π j ��� g
E[f R g] = � π� � j � 0� � � i � j� πi

���� f � � π j ��� g

Note: the i in � i� could be 0.

4

Relationship between CTL operators

� AX f = EX � f
� AF f = EG � f

� EF f = AG � f

AF f = A[� U f]

EF f = E[� U f]

A[� U f] = E[� U f] = f

A[f U g] = � E[� g U (� f � � g)] � � EG � g

A[f W g] = � E[� g U (� f � � g)]

E[f U g] = � A[� g W (� f � � g)]

AG f = f � AX AG f

EG f = f � EX EG f

AF f = f � AX AF f

EF f = f � EX EF f

A[f U g] = g � � f � AX A[f U g])

E[f U g] = g � � f � EX E[f U g])

� E[f U g] = A[� f R � g]

� A[f U g] = E[� f R � g]

6

Adequate Sets

Definition: A set of connectives is adequate if all connectives can be expressed

using it.

Example:
�

� � �
�

is adequate for propositional logic

Theorem: The set of operators � , � and � together with EX, EG, and EU are

adequate for CTL.

Other adequate sets:
�

AU, EU, EX

�

,

�

AF, EU, EX

�

Theorem: Every adequate set has to include EU.

7

LTL
� If p is an atomic propositional formula, it is a formula in LTL.

� If p and q are LTL formulas, so are p � q, p � q, � p, p U q, p W q, p R q,� p
(next), � p(eventually), � p (always)

Interpretation: over computations π : ω � 2AP which assigns truth values to the

elements of AP at each time instant:

� π ��� � f iff π1 �� f

� π ��� f U g iff � i� πi ��� f � � j� 0 � j � i � π j ��� f

� π ��� � f iff � i� πi ��� f

� π ��� � f iff � i� πi �� f

Here, π0 – initial state of the system

Two other operators:

� p W q = � p � � p U q � (p unless q, p waiting for q, p week-until q)

� p R q = � � � p U � q � (release)

9

Some Temporal Properties

� � p � � � p

� p � True U p

� p � � � � p

p W q � � p � � p U q �

p R q � � � � p U � q �

� p � p � � � p

� p � p � � � p

p U q � q � � p � � � p U q � �

A property ϕ holds in a model if it holds on every path emanating from the initial

state.

10

Expressing Properties in LTL

Good for safety (� �) and liveness (�) properties.
� p � � q – If p holds in initial state s0, then q holds at s j for some j � 0.

� � � q – Each path contains infinitely many q’s.

� � � q – At most a finite number of states in each path satisfy � q. Property q
eventually stabilizes.

� � � p U q � – always p remains true at least until q becomes true.

� � � � � p U q � � – never is there a point in the execution such that p remains true

at least until q becomes true.

Express: it is not true that p is true at least until the point s.t. for all paths q is true

at least until r is true

11

Comparison of LTL and CTL

Syntactically: LTL simpler than CTL

Semantically: incomparable!

� CTL formula EF p is not expressible in LTL

� LTL formula � � p not expressible in CTL.

Question: What about AF AG p?

Model: self-loop on p, transition on � p to a state with a self-loop on p.

Most useful formulas expressible in both:

� Invariance: � p and AG p

� Liveness (response): � � p � � q � and AG(p � AFq).

LTL and CTL coincide if the model has only one path!

12

CTL Model-Checking
Receive:

Kripke structure K
Temporal logic formula ϕ

Assumptions:
Finite number of processes

Each having a finite number of finite-valued variables

Finite length of a CTL formula

Algorithm:
Label states of K with subformulas of that ϕ are
satisfied there and working outwards towards ϕ.
Output states labeled with ϕ

Example: EX AG (p → E[p U q])

CTL Model-Checking (Cont’d)
EX ϕ

Label any state with EX ϕ if
any of its successors are
labeled with ϕ

AF ϕ
If any state s is labeled with
ϕ, label it with AFϕ
Repeat:

label any state with AFϕ
if all of its successors
are labeled with AFϕ

until there is no change

ϕ ϕ

EX ϕ

ϕ
ϕ

ϕ,
AF ϕ

ϕ,
AF ϕ

ϕ,
AF ϕ

ϕ,
AF ϕAF ϕ

ϕ,
AF ϕAF ϕ

ϕ,
AF ϕ

Labeling Algorithm (Cont’d)
� E [ψ1 U ψ2]:

- If any state s is labeled with ψ2, label it with E[ψ1 U ψ2].

- Repeat: label any state with E[ψ1 U ψ2] if it is labeled with ψ1 and at least one

of its successors is labeled with E[ψ1 U ψ2], until there is no change.

Ex:

� � � � ���
�

� � � � ��

� � � � ���
�

� � � � ��

ψ1

ψ1

E [ψ1 U ψ2 �

E [ψ1 U ψ2 �

E [ψ1 U ψ2 �

Output states labeled with f .

Complexity: O � � f �� S� � S � � R � � � (linear in the size of the formula and

quadratic in the size of the model).

16

Better Handling of EG
� restrict the graph to states satisfying ψ1, i.e., delete all other states and their

transitions;

� find the maximal strongly connected components (SCCs); these are maximal

regions of the state space in which every state is linked with every other one in

that region.

� use breadth-first searching on the restricted graph to find any state that can

reach an SCC.
ψ

ψ

states satisfying

|= EG SCC

SCC

SCC

Complexity: O � � f �� � S � � R � � � (linear in size of model and size of formula).

17

Example

Verifying E[� c2 U c1] on the mutual exclusion example.

s5

s0

0: t1 n2

0: c1 n2 0: t1 t2

0: c1 t2

2: E [~c2 U c1]

s3

s1

s2 s6s9

s4 s7

1: E[~c2 U c1]

1: E[~c2 U c1]

2: E [~c2 U c1]

3: E [~c2 U c1]

0: n1 n2

0: n1 t2

0: t1 t2

0: t1 c2

0: n1 c2

18

CTL Model-Checking
� Michael Browne, CMU, 1989.

� Usually for verifying concurrent synchronous systems (hardware, SCR specs...)

� Specify correctness criteria: safety, liveness...

� Instead of keeping track of labels for each state, keep track of a set of states in

which a certain formula holds.

19

Example

Verifying E[� c2 U c1] on the mutual exclusion example.

s5

s0

0: t1 n2

0: c1 n2 0: t1 t2

0: c1 t2

2: E [~c2 U c1]

s3

s1

s2 s6s9

s4 s7

1: E[~c2 U c1]

1: E[~c2 U c1]

2: E [~c2 U c1]

3: E [~c2 U c1]

0: n1 n2

0: n1 t2

0: t1 t2

0: t1 c2

0: n1 c2

20

Counterexamples
Explain:

Why the property fails to hold
to disprove that φ holds on all elements of S, produce
a single element s ∈ S s.t. ¬φ holds on s.

counterexamples restricted to universally-quantified formulas

counterexamples are paths (trees) from initial state illustrating
the failure of property

p
q
r

¬ p
q
r

p
¬ q
r

s0

s2

s1

AG p
p
q
rs0

¬ p
q
rs1

AX p ∨ AX q
p
q
r

s0

p
¬ q
rs2

¬ p
q
rs1

Counterexamples and Witnesses

� Counterexamples

– explains why a property is false

– typically a violating path for universal properties

– how to explain that something does not exist?

� Witnesses

– explains why a property is true

– typically a satisfying path for existential properties

– how to explain that something holds on all paths?

21

Generating Counterexamples

Only works for universal properties

- AX p
- AG � p � AFq �

- etc.

Step 1: negate the property and express it using EX , EU , and EG
- e.g. AG � p � AFq � becomes EF � p � EG � q �

Step 2:

- For EX p – find a successor state labeled with p
- For EGp – follow successors labeled with EGp until a loop is found

- For E

�

pUq

�

– remove all states not labeled with p or q, then look for path to q

22

Counterexamples and Witnesses (Cont’d)

� What about properties that combine universal and existential operators?
� Are they really different?

– a counterexample for ϕ is a witness to its negation

– a counterexample for a universal property is a witness to some existential

property

– e.g. AGp and EF � p

� One alternative

– build a proof instead of a counterexample

– works for all properties (but proofs can be big)

– see:

� A. Gurfinkel and M. Chechik. “Proof-like Counterexamples”,

Proceedings of TACAS’03.

� M. Chechik, A. Gurfinkel. “A Framework for Counterexample Generation

and Exploration”, FASE’2005.

23

Are counterexamples always linear?

� SMV only supports linear counterexamples
� But what about � AX p � � � AXq � ?

� Counterexample for AF � � y � AX � x �

AF

x x
AX AX

y

y

– See: E. Clarke et al. “Tree-Like Counterexamples in Model Checking”,

Proceedings of LICS’02.

24

State Explosion

Imagine that you a Kripke structure of size n. What happens if we add another

boolean variable to our model?

How to deal with this problem?

� Symbolic model checking with efficient data structures (BDDs). Don’t need to

represent and manipulate the entire model. Model-checker SMV [McMillan, 1993].

� Abstraction: we abstract away variables in the model which are not relevant to

the formula being checked (see later in the course).

� Partial order reduction: for asynchronous systems, several interleavings of

component traces may be equivalent as far as satisfaction of the formula to be

checked is concerned.

� Composition: break the verification problem down into several simpler

verification problems.

25

Idea of model-checking
recursively go through the structure of the
CTL property…
associating each subformula with a set of
states where each subproperty is true

Symbolic model-checking
effective cure for state explosion problem
use symbolic representation for sets of
states
use symbolic representation for transition
relation
use binary decision diagrams (BDDs) to
encode these

Example:
x∧y in classical logic

Symbolic model-checking
x

y

F T

F T

T

F

SMV

Symbolic model verifier – a model-checker that uses symbolic model checking

algorithm. The language for describing the model is a simple parallel assignment.

� Can have synchronous or asynchronous parallelism.

� Model environment non-deterministically.

� Also use non-determinism for systems which are not fully implemented or are

abstract models of complex systems.

26

First SMV Example

MODULE main

VAR

request : boolean;

state : {ready, busy};

ASSIGN

init(state) := ready;

next(state) := case

request : busy;

1: {ready, busy}

esac;

SPEC

AG(request -> AF state = busy)

Note that request never receives an assignment – this models input.

27

Model for First SMV Example

req
ready busy

req

busyready
~req ~req

28

Binary Decision Diagrams

� Representation of Boolean Functions
� BDDs, OBDDs, ROBDDs

� Operations

� Model-Checking over BDDs

29

Boolean Functions

Boolean functions: B =

�

0 � 1 �

,

f : B� � � � � B � B

Boolean expressions:

t :: � x � 0 � 1 � � t � t � t � t � t � t � t � t � t

Truth assignments: ρ,

�

v1 � x1 � v2 � x2 �� � � � vn � xn

�
Satisfiable: Exists ρ s.t. t

�

ρ
�

� 1

Tautology : Forall ρ, t

�

ρ

�

� 1

30

What is a good representation of boolean functions?

Perfect representation is hopeless:

Theorem 1 (Cook’s Theorem)

Satisfiability of Boolean expressions is NP-complete.

(Tautology-checking is co-NP-complete)

Good representations are

compact and

efficient

on real-life examples

31

Shannon Expansion

Def: x � y0 � y1 � � x � y0 � � � � x � y1 �

x is the test expression and thus this is an if-then-else.

We can represent all operators using if-then-else on unnegated variables and

constants 0(false) and 1(true). This is called INF.

Shannon expansion w.r.t. x:

t � x � t

�

1 � x

� � t �

0 � x
�

Any boolean expression is equivalent to an expression in INF.

32

Example

t � � x1� y1 � � � x2� y2 � . Represent this in INF form with order x1 � y1 � x2 � y2.

t � x1 � t1 � t0
t0 � y1 � 0 � t00

(since x1 � 1 � y1 � 0 � t � 0)

t1 � y1 � t11 � 0
(since x1 � 0 � y1 � 1 � t � 0)

t00 � x2 � t001 � t000

t11 � x2 � t111 � t000

t000 � y2 � 0 � 1 (x1 � 0 � y1 � 0 � x2 � 0)

t001 � y2 � 1 � 0 (x1 � 0 � y1 � 0 � x2 � 1)

t110 � y2 � 0 � 1 (x1 � 1 � y1 � 1 � x2 � 0)

t111 � y2 � 1 � 0 (x1 � 1 � y1 � 1 � x2 � 1)

33

Decision Tree:

1 0 0 11 0 0 1 0 0

x1 1 branch
0 branch

y1 y1

x2 x2

y2 y2 y2 y2

Lots of common subexpressions:

- identify them!

BDDs – directed acyclic graph of Boolean expressions. If the variables occur in

the same ordering on all paths from root to leaves, we call this OBDD.

34

Example OBDD

OBDD for (x1� y1 � � � x2� y2 � with ordering x1 � y1 � x2 � y2

x1

x2

y2 y2

0 1

y1 y1
x1

y1

1

If an OBDD does not contain any redundant tests, it is called ROBDD.

35

ROBDDs

A Binary Decision Diagram is a rooted, directed, acyclic graph � V � E � . V contains

(up to) two terminal vertices, 0 � 1 � V . v � V

� �

0 � 1 �

are non-terminal and have

attributes var (v), and low(v), high(v) � V .

A BDD is ordered if on all paths from the root the variables respect a given total

order.

A BDD is reduced if for all non-terminal vertices u � v,

1) low(u) �� high(u)

2) low(u) = low(v), high(u) = high(v), var (u) = var (v) implies u � v.

36

ROBDD Examples

37

Canonicity of ROBDDs

Lemma 1 (Canonicity lemma) For any function f : Bn � B there is exactly one

ROBDD b with variables x1 � x2 � � � � � xn such that

tb

�

v1 � x1 �� � � � vn � xn

�

� f � v1 �� � � � vn �

for all � v1 � 	 	 	 � vn � � Bn.

Consequences:

- b is a tautology if and only if b � 1

- b is satisfiable if and only if b �� 0

38

But...

The size of ROBDD depends significantly on the chosen variable ordering!

Example: ROBDD for � x1� y1 � � � x2� y2 � with ordering x1 � x2 � y1 � y2

x1

y2

y1

y2

y1y1 y1

x2x2

1 0

Under ordering x1 � y1 � x2 � y2 had 6 nodes.

39

Furthermore...

� The size according to one ordering may be exponentially smaller than another

ordering.

� Figuring out the optimal ordering of variables is co-NP-complete.

� Some functions have small size independent of ordering, e.g. parity.

� Some functions have large size independent of ordering, e.g., multiplication

40

Representing Boolean Functions

Representation of

boolean functions compact? satisf’ty validity

Prop. formulas often hard hard

Formulas in DNF sometimes easy hard

Formulas in CNF sometimes hard easy

Ordered truth tables never hard hard

Reduced OBDDs often easy easy

Representation of

boolean functions � � �

Prop. formulas easy easy easy

Formulas in DNF hard easy hard

Formulas in CNF easy hard hard

Ordered truth tables hard hard hard

Reduced OBDDs medium medium easy

41

Symbolic model checking

Why?

Saves us from constructing a model’s state space explicitly. Effective ”cure” for

state space explosion problem.

How?

Sets of states and the transition relation are represented by formulas. Set

operations are defined in terms of formula manipulations.

Data structures

ROBDDs - allow for efficient storage and manipulation of logic formulas.

42

Representing Models Symbolically
� A system state represents an interpretation (truth assignment) for a set of

propositional variables V .

� Formulas represent sets of states that satisfy it

– False - /0, True - S

– a - set of states in which a is true - (

�

s0 � s1 �

)

– b - set of states in which b is true - (

�

s1 � s2 �

)

– a � b =

�

s0 � s1 �

�

�

s1 � s2 �

=

�

s0 � s1 � s2 �

S 0

S 2 S 3

S 1

a

b

a, b

� State transitions are described by relations over two sets of variables, V
(source state) and V � (destination state)

– Trans. from s2 to s3 is described by � � a � b � � a �
� � b � � .

– Trans. from s0 to s1 and s2, and from s1 to s2 and to itself is described by

� a � b � � .
– Relation R is described by � a � b � � � � � a � b � � a �

� � b � �
43

Symbolic Model-Checking Algorithm on BDDs

Procedure � � (p)
Case

p � A : return Build(“p”)

p � � ϕ : return Apply (’ � ’, MC(ϕ))

p � ϕ � ψ : return Apply (’ � ’, MC(ϕ), MC(ψ))

p � ϕ � ψ : return Apply (’ � ’, MC(ϕ), MC(ψ))

p � EXϕ : return existQuantify (V� ,

Apply (‘ � ’, R, Prime(MC(ϕ)))

p � AXϕ : return Apply (’ � ’, MC(EX � ϕ))

p � E � ϕUψ � : Q0 = Build(’� ’)

Qi � 1 = Apply (’ � ’, Qi, Apply (’ � ’, MC(ψ),

Apply (’ � ’, MC(EX Qi)))

return Qn when Qn � Qn � 1
p � EGϕ : Q0 = Build(’ � ’)

Qi � 1 = Apply (’ � ’, MC(ϕ), MC(EX Qi))))

return Qn when Qn � Qn � 1

44

Pros and Cons of Model-Checking
Often cannot express full requirements

Instead check several smaller properties

Few systems can be checked directly
Must generally abstract

Work better for certain types of problems
Very useful for control-centered concurrent systems

Avionics software

Hardware

Communication protocols

Not very good at data-centered systems
User interfaces, databases

Some State of the Art Model-Checkers
SMV, NuSMV, Cadence SMV

CTL and LTL model-checkers
Based on symbolic decision diagrams or SAT solvers
Mostly for hardware

Spin
LTL model-checker (automata-theoretic)
Explicit state exploration
Mostly for communication protocols

HyTech, Kronos, Upaal
For real-time and hybrid systems

STeP and PVS
Combining model-checking with theorem-proving

Software Model-Checking
Goal: check programs without manually extracting
models
State of the art (explicit-state)

JavaPathfinder (NASA)
BOGOR (framework for building them, Kansas State)
Zing (Microsoft)

Symbolic model-checkers
SLAM (Microsoft)
BLAST (Berkley)
Yasm (Toronto)

	sheila-part1.pdf
	Model-Checking
	Overview of Automated Verification
	CTL Model-Checking
	Models: Kripke Structures
	Propositional Variables
	CTL: Computation Tree Logic
	Examples
	Examples, Cont’d
	CTL (Cont’d)
	Some Statements To Express
	CTL Model-Checking
	CTL Model-Checking (Cont’d)
	Counterexamples
	Symbolic model-checking
	Questions:

	additional-slides.pdf
	Some Statements To Express
	Complexity
	Pros and Cons of Model-Checking
	Some State of the Art Model-Checkers
	Software Model-Checking

	additional-slides.pdf
	Some Statements To Express
	Complexity
	Pros and Cons of Model-Checking
	Some State of the Art Model-Checkers
	Software Model-Checking

	sheila-part2.pdf
	CTL Model-Checking
	CTL Model-Checking (Cont’d)

