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Introduction

e Context: The Danish Signalling Programme’ (2009-2021) - replace the railway
signalling systems in the entire country with standardized ERTMS/ETCS Level 2
o ERTMS/ETCS: European standardized railway traffic management/train control
systems — seamless railway travel through Europe
¢ RobustRailS: (Robustness in Railway OperationS?)
e Funded by the Danish Strategic Research Council
e Accompanies the Danish Signalling Programme on a scientific level
* (One of the) goals: Provide methods and tools supporting efficient modelling and
verification of railway control systems (WP.4.1)
— primary focus: ETCS Level 2 compatible interlocking systems
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http://www.bane.dk/signalprogrammet

http://robustrails.man.dtu.dk
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Interlocking Systems

e Interlocking system: A signalling system component that is responsible for safe
routing of trains through the (fraction of) railway network under its control

o Safety-critical: A vital component with highest safety integrity level (SIL4)

e Our goal: A method for efficient verification of safety requirements (no collisions, no
derailments) for the new Danish interlocking systems
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Conventional Development of Interlocking Systems

Configuration Data

Gene}*ic ) — Specific
Application Application

e An application consists typically of:

0 a generic part

9 configuration data: the railway network and an interlocking table.
e Once and for all:

® [nformal specification, design, and implementation of generic application.
® |nformal, manual verification of generic application (“type certification’).

e For each installation:

e Creation and Informal, manual validation of the configuration data.
e Instantiation of the generic application by means of configuration data.
e Verification of the resulting specific application by testing.
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Problems in Conventional Development

Configuration Data o
qppizlﬁm s
Generic — Specific
Application Application Requirements | Design Coding | Testing | Doployment ’—D
PP

e Manual, informal specification, validation and verification are time-consuming and
error-prone.
— Some errors are first detected when testing specific applications — costly.
We need a better method:
0 Formal verification: use formal methods.
9 Automated verification.
9 Easy to use.
9 Discover errors as early as possible.

9 Scalable.
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Formal Methods

i

e Formal Methods: employ mathematically based languages, techniques, and tools for
specifying and verifying software/hardware systems.
e Advantages:

e Unambiguous

e Support advanced analysis techniques in early phases (specification, design)
of the development cycle.

o ..

— strongly recommended by CENELEC 50128 for SIL4 applications
e Obstacles:

® Not easy to use, require training

e Scalability: state explosion problem — the size of a verification problem
increases exponentially with the number of components — exhaust the limited
computing resources

— our method addresses these obstacles
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Method Overview

CONFIGURATION DATA

] N - )
etwork Interlocking Interlocking CONFIG. DATA
Layout Tab. Gen. Table
Generic Generic p
Generic Test
Safety Behavioural ozéeénves GENERIC
Properties Model J
GENERATORS
Safety Behavioural Test
Properties Model Objectives INSTANCES
Static Verification Testing V&V
Checker Engine Engine
) 7
valid? syfe? Test Suite
v X
Configuration HW/sw
e Dadan | Modelvercatin .

Integration Testing

9 DTU Compute Automated, Formal Verification of Safety Requirements for Interlocking Systems

27.8.2015

(=)
=
=

i



9

Method Overview
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How is it better?

o Formal

@ Automated
9 Easy to use

Q Discover errors efficiently and
early

6 Scalable
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Formal

Based on mathematical
models and techniques

e Unambiguous

e Facilitate advanced
mathematical analyses on
specifications and designs

e Provide better understanding of
the systems

e Models can be use as the base
for implementation

Howrthe customer explained it How the Analyst desigred it

How the Project Leader
understood it
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Automated

Most of the steps in the
flow are automated

e Interlocking table generation

e Validation of configuration data

o Instantiating the generic
application

o Verification of safety properties
e Test generation and execution

— “press-a-button”: quick
and efficient
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Easy to use
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Encapsulate the -

underlying mathematical = TR

artefacts by familiar =

concepts and notions.

e Configuration Data: graphical ]
editor or XML input (e.g.
exported from CAD)

e Generic Application: a railway
tailored language with familiar
concepts, notions such as
Route, Signal, Point, etc.

e Visualize erroneous situations

— mathematical artefacts are generated
— minimal training is required
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Discover errors efficiently and early

Errors are revealed as
early as possible by a
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Scalable

e Tackle the state explosion
problem by using advanced
verification techniques.

o Verified safety requirements for
the Early Deployment Line
(EDL): 8 stations (largest: Kage),
one interlocking.

o No other research group has
been able to formally verify an
interlocking system of this size.

Map data 02015 Google
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Conclusion

e Interlocking systems: SIL4 — efficient safety verification is crucial

e Formal methods are strongly recommended by CENELEC for SIL4
— Issues: not easy to use, state explosion

e A method for verification of safe requirements for interlocking systems
Formal
Easy to use
Automated
Discover errors efficiently and early
e Scalable (was successfully applied to the Early Deployment Line)
o Related work: advanced state-of-the-art by the size of verifiable interlocking models.

e Future work:

® Push the size of verifiable interlocking models even further
e Technology transfer to industry
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