

Automated, Formal Verification of Safety Requirements for Interlocking Systems

Linh Hong Vu (1vho@dtu.dk)
Anne E. Haxthausen (aeha@dtu.dk)
Jan Peleska (jp@verified.de)

DTU Compute

Department of Applied Mathematics and Computer Science

Outline

1. Background

2. Method

3. Conclusion

Introduction

- Context: The Danish Signalling Programme¹ (2009-2021) replace the railway signalling systems in the entire country with standardized ERTMS/ETCS Level 2
- ERTMS/ETCS: European standardized railway traffic management/train control systems → seamless railway travel through Europe
- RobustRailS: (Robustness in Railway OperationS²)
 - Funded by the Danish Strategic Research Council
 - Accompanies the Danish Signalling Programme on a scientific level
- (One of the) goals: Provide methods and tools supporting efficient modelling and verification of railway control systems (WP.4.1)
 - → primary focus: ETCS Level 2 compatible interlocking systems

Source: ertms net

DTU Compute Automated, Formal Verification of Safety Requirements for Interlocking Systems

ERTMS Level 2 principles

http://www.bane.dk/signalprogrammet

http://robustrails.man.dtu.dk

Interlocking Systems

- Interlocking system: A signalling system component that is responsible for safe routing of trains through the (fraction of) railway network under its control
- Safety-critical: A vital component with highest safety integrity level (SIL4)
- Our goal: A method for efficient verification of safety requirements (no collisions, no derailments) for the new Danish interlocking systems

Conventional Development of Interlocking Systems

- An application consists typically of:
 - 1 a generic part
 - 2 configuration data: the railway network and an interlocking table.
- Once and for all:
 - *Informal* specification, design, and implementation of *generic application*.
 - *Informal, manual* verification of generic application ("type certification").
- · For each installation:
 - Creation and Informal, manual validation of the configuration data.
 - Instantiation of the generic application by means of configuration data.
 - Verification of the resulting specific application by testing.

Problems in Conventional Development

- Manual, informal specification, validation and verification are time-consuming and error-prone.
 - ightarrow Some errors are first detected when testing specific applications ightarrow costly.

We need a better method:

- 1 Formal verification: use formal methods.
- 2 Automated verification.
- 3 Easy to use.
- 4 Discover errors as early as possible.
- 5 Scalable.

Formal Methods

- Formal Methods: employ mathematically based languages, techniques, and tools for specifying and verifying software/hardware systems.
- Advantages:
 - Unambiguous
 - Support advanced analysis techniques in early phases (specification, design) of the development cycle.
 - . . .
 - → strongly recommended by CENELEC 50128 for SIL4 applications
- · Obstacles:
 - Not easy to use, require training
 - Scalability: state explosion problem the size of a verification problem increases exponentially with the number of components → exhaust the limited computing resources
 - → our method addresses these obstacles

Outline

1. Background

2. Method

3. Conclusion

Method Overview

Method Overview

How is it better?

- 1 Formal
- 2 Automated
- 3 Easy to use
- Discover errors efficiently and early
- **5** Scalable

Formal

Based on mathematical models and techniques

- Unambiguous
- Facilitate advanced mathematical analyses on specifications and designs
- Provide better understanding of the systems
- Models can be use as the base for implementation

Automated

Most of the steps in the flow are *automated*

- Interlocking table generation
- Validation of configuration data
- Instantiating the generic application
- · Verification of safety properties
- · Test generation and execution
- → "press-a-button": quick and efficient

Easy to use

Encapsulate the underlying mathematical artefacts by familiar concepts and notions.

- Configuration Data: graphical editor or XML input (e.g. exported from CAD)
- Generic Application: a railway tailored language with familiar concepts, notions such as Route, Signal, Point, etc.
- · Visualize erroneous situations

- → mathematical artefacts are generated
- → minimal training is required

Discover errors efficiently and early

Errors are revealed as early as possible by a 3-step V&V

- Configuration Data Validation: e.g., route protection, conflict routes are correct.
- 2 Model Verification: safety requirements are verified on the designs
- 3 HW/SW Integration Testing: implementation conforms to the formal model

Scalable

- Tackle the state explosion problem by using advanced verification techniques.
- Verified safety requirements for the Early Deployment Line (EDL): 8 stations (largest: Køge), one interlocking.
- No other research group has been able to formally verify an interlocking system of this size.

Conclusion

- ullet Interlocking systems: SIL4 o efficient safety verification is crucial
- A method for verification of safe requirements for interlocking systems
 - Formal
 - 2 Easy to use
 - 3 Automated
 - 4 Discover errors efficiently and early
 - 5 Scalable (was successfully applied to the Early Deployment Line)
- Related work: advanced state-of-the-art by the size of verifiable interlocking models.
- · Future work:
 - Push the size of verifiable interlocking models even further
 - Technology transfer to industry

Questions?