Automated, Formal Verification of Safety
Requirements for Interlocking Systems

Linh Hong Vu (1vho@dtu.dk)
Anne E. Haxthausen (aeha@dtu.dk)
Jan Peleska (jp@verified.de)

A
%)

FlcrAx)=Y (I_AT") i

DTU Compute
Department of Applied Mathematics and Computer Science

(=]
=
=

i

Outline

1. Background

2 DTU Compute

Automated, Formal Verification of Safety Requirements for Interlocking Systems

27.8.2015

(=)
=
=

i

Introduction

e Context: The Danish Signalling Programme’ (2009-2021) - replace the railway
signalling systems in the entire country with standardized ERTMS/ETCS Level 2
o ERTMS/ETCS: European standardized railway traffic management/train control
systems — seamless railway travel through Europe
¢ RobustRailS: (Robustness in Railway OperationS?)
e Funded by the Danish Strategic Research Council
e Accompanies the Danish Signalling Programme on a scientific level
* (One of the) goals: Provide methods and tools supporting efficient modelling and
verification of railway control systems (WP.4.1)
— primary focus: ETCS Level 2 compatible interlocking systems

ERTMS Leve 2 prieipes

7

[

RailS — 1.

Source: ertms.net

Robust

1 ;
http://www.bane.dk/signalprogrammet

http://robustrails.man.dtu.dk
3 DTU Compute Automated, Formal Verification of Safety Requirements for Interlocking Systems 27.8.2015

=]
=
=

i

Interlocking Systems

e Interlocking system: A signalling system component that is responsible for safe
routing of trains through the (fraction of) railway network under its control

o Safety-critical: A vital component with highest safety integrity level (SIL4)

e Our goal: A method for efficient verification of safety requirements (no collisions, no
derailments) for the new Danish interlocking systems

4 DTU Compute Automated, Formal Verification of Safety Requirements for Interlocking Systems 27.8.2015

=]
=
=

i

Conventional Development of Interlocking Systems

Configuration Data

Gene}*ic) — Specific
Application Application

e An application consists typically of:

0 a generic part

9 configuration data: the railway network and an interlocking table.
e Once and for all:

® [nformal specification, design, and implementation of generic application.
® |nformal, manual verification of generic application (“type certification’).

e For each installation:

e Creation and Informal, manual validation of the configuration data.
e Instantiation of the generic application by means of configuration data.
e Verification of the resulting specific application by testing.

5 DTU Compute Automated, Formal Verification of Safety Requirements for Interlocking Systems 27.8.2015

=]
=
=

i

Problems in Conventional Development

Configuration Data o
qppizlﬁm s
Generic — Specific
Application Application Requirements | Design Coding | Testing | Doployment ’—D
PP

e Manual, informal specification, validation and verification are time-consuming and
error-prone.
— Some errors are first detected when testing specific applications — costly.
We need a better method:
0 Formal verification: use formal methods.
9 Automated verification.
9 Easy to use.
9 Discover errors as early as possible.

9 Scalable.

6 DTU Compute Automated, Formal Verification of Safety Requirements for Interlocking Systems 27.8.2015

(==}
=

i

=]
=
=

Formal Methods

i

e Formal Methods: employ mathematically based languages, techniques, and tools for
specifying and verifying software/hardware systems.
e Advantages:

e Unambiguous

e Support advanced analysis techniques in early phases (specification, design)
of the development cycle.

o ..

— strongly recommended by CENELEC 50128 for SIL4 applications
e Obstacles:

® Not easy to use, require training

e Scalability: state explosion problem — the size of a verification problem
increases exponentially with the number of components — exhaust the limited
computing resources

— our method addresses these obstacles

7 DTU Compute Automated, Formal Verification of Safety Requirements for Interlocking Systems 27.8.2015

Outline

2. Method

8 DTU Compute

Automated, Formal Verification of Safety Requirements for Interlocking Systems

27.8.2015

(=)
=
=

i

Method Overview

CONFIGURATION DATA

] N -)
etwork Interlocking Interlocking CONFIG. DATA
Layout Tab. Gen. Table
Generic Generic p
Generic Test
Safety Behavioural ozéeénves GENERIC
Properties Model J
GENERATORS
Safety Behavioural Test
Properties Model Objectives INSTANCES
Static Verification Testing V&V
Checker Engine Engine
) 7
valid? syfe? Test Suite
v X
Configuration HW/sw
e Dadan | Modelvercatin .

Integration Testing

9 DTU Compute Automated, Formal Verification of Safety Requirements for Interlocking Systems

27.8.2015

(=)
=
=

i

9

Method Overview

i CONFIGURATION DATA
i Network Interlocking

IV Layout Tab. Gen.

|

'

| Generic
safety
Properties

Generic
Behavioural
Model

Safety Behavioural
Properties Model

. '
Static Verification \
| Checker Engine
1
| l
I
I
I l
Av valid? safe?
i X
I
i
| Configuration
\

1 Data Validation

DTU Compute

Interlocking
Table

Generic Test
Objectives

Testing
Engine

\ l
\

\
|

CONFIG. DATA
i

Automated, Formal Verification of Safety Requirements for Interlocking Systems

(=)
=
=

i

How is it better?

o Formal

@ Automated
9 Easy to use

Q Discover errors efficiently and
early

6 Scalable

10 DTU Compute

] Network Tnterlocking
Layout Tab. Gen.

CONFIGURATION DATA
Interlocking
Table

Generic
safety
Properties

Generic
Behavioural
Model

Generic Test
Objectives

Safety Behavioural Test
Properties Model Objectives
[Static Verification Testing
Checker Engine Engine
valid? sple? Test Suite

Configuration
Data Validation

v A
Model Verification Integration Testing

Automated, Formal Verification of Safety Requirements for Interlocking Systems

CONFIG. DATA

INSTANCES

27.8.2015

(=)
=
=

i

Formal

Based on mathematical
models and techniques

e Unambiguous

e Facilitate advanced
mathematical analyses on
specifications and designs

e Provide better understanding of
the systems

e Models can be use as the base
for implementation

Howrthe customer explained it How the Analyst desigred it

How the Project Leader
understood it

1 DTU Compute

3 Network Interlocking Interlocking
Layout Tab. Gen. Table

Automated, Formal Verification of Safety Requirements for Interlocking Systems

CONFIGURATION DATA

CONFIG. DATA

Generic Generic 8
Generic Test
Safety Behavioural & GENERIC
A jectives
Properties Model
GENERATORS
Safety Behavioural t
Properties Model Objectives INSTANCES
Static Verification Testing, V&V
Checker Engine Engine
valid? safe? Test Suite
v X
Canﬂgmarmn HW/sW
Data Validation Model Verification Integration Testing
27.8.2015

(=]
=
=

i

Automated

Most of the steps in the
flow are automated

e Interlocking table generation

e Validation of configuration data

o Instantiating the generic
application

o Verification of safety properties
e Test generation and execution

— “press-a-button”: quick
and efficient

12 DTU Compute

Automated, Formal Verification of Safety Requirements for Interlocking Systems

CONFIGURATION DATA

] Network Tnterlocking
Layout Tab. Gen.

Interlocking .
=5 CONFIG. DATA

Generic Generic

Generic Test

Safety Behavioural Objectives GENERIC
Properties Model
GENERATORS
safety Behavioural Test " s
Properties Model Objectives INSTANCES
L Static Verification Testing V&v
Checker Engine Engine
valid? safe? Test Suite
X
Canﬁgumrmn HW/SW
Data Validation Model Verification Integration Testing
27.8.2015

=]
=
=

i

Easy to use

(=)
=
=

i

Encapsulate the -

underlying mathematical = TR

artefacts by familiar =

concepts and notions.

e Configuration Data: graphical]
editor or XML input (e.g.
exported from CAD)

e Generic Application: a railway
tailored language with familiar
concepts, notions such as
Route, Signal, Point, etc.

e Visualize erroneous situations

— mathematical artefacts are generated
— minimal training is required

13 DTU Compute Automated, Formal Verification of Safety Requirements for Interlocking Systems

27.8.2015

Discover errors efficiently and early

Errors are revealed as
early as possible by a

=]
=
=

i

CONFIGURATION DATA

— R Interlocking Interlocking '
Layout = CONFIG. DATA

3-stepV&Y | LCEERLLSERERTL SRR
@ Configuration Data Validation: S N
e.g., route protection, conflict e e e e Y s vl R O
routes are correct. CoNERATORS
@ Model Verification: safety | [T . __
requirements are verified on the Safety er— Test —
R Properties Model Objectives INSTANCES
designs \ l \ J
@ HW/SW Integration Testing: | S~ T vay
. h Checker Engine Engine
implementation conforms to the
formal model l l J
S valid? Sﬂ‘°;< Test Suite
8 sty | dedd v |
~, A 2006
Automated, Formal Verification of Safety Requirements for Interlocking Systems 27.8.2015

14 DTU Compute

Scalable

e Tackle the state explosion
problem by using advanced
verification techniques.

o Verified safety requirements for
the Early Deployment Line
(EDL): 8 stations (largest: Kage),
one interlocking.

o No other research group has
been able to formally verify an
interlocking system of this size.

Map data 02015 Google

15 DTU Compute Automated, Formal Verification of Safety Requirements for Interlocking Systems 27.8.2015

(=)
=
=

i

Conclusion

e Interlocking systems: SIL4 — efficient safety verification is crucial

e Formal methods are strongly recommended by CENELEC for SIL4
— Issues: not easy to use, state explosion

e A method for verification of safe requirements for interlocking systems
Formal
Easy to use
Automated
Discover errors efficiently and early
e Scalable (was successfully applied to the Early Deployment Line)
o Related work: advanced state-of-the-art by the size of verifiable interlocking models.

e Future work:

® Push the size of verifiable interlocking models even further
e Technology transfer to industry

16 DTU Compute Automated, Formal Verification of Safety Requirements for Interlocking Systems 27.8.2015

=]
=
=

i

17

DTU Compute

Questions?

Automated, Formal Verification of Safety Requirements for Interlocking Systems

27.8.2015

=]
=
=

i

	Background
	Method
	Conclusion

