Railway control systems:
Development of safety-critical software

Istvan Majzik

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Budapest University of Technology and Economics
Department of Measurement and Information Systems

= The role of standards

= Development of railway control software
o Safety lifecycle
o Roles and competences
o Techniques for design and V&V
o Tools and languages
o Documentation

= Case study: SAFEDMI

o Hardware and software architecture

o Verification techniques

The role of standards

for railway control systems

How the development is influenced by
the requirements of the standards?

Standards for railway control applications

= Basic standard:

o |IEC 61508: Functional safety of electrical/
electronic/programmable electronic safety-related systems

= Specific CENELEC standards derived from IEC 61508:

o EN 50126-1:2012 - Railway applications - The Specification and
Demonstration of Reliability, Availability, Maintainability and
Safety (RAMS)

o EN 50129:2003 - Railway applications - Communication,
signalling and processing systems - Safety related electronic
systems for signalling

o EN 50128:2011 - Railway applications - Communication,
signalling and processing systems - Software for railway control
and protection systems

o EN 50159:2010 - Railway applications - Communication,
signalling and processing systems - Safety-related
communication in transmission systems

Relation of standards

EN 50126 Lifecycle

The Specification and
Demonstration of RAMS

Safety - Software

Aspects ; Aspects
EN 50129 EN 50128

Software for railway

Sa related electronic
= control and protection

systems for signalling

systems
EN 50159
EN 50124 EN 50123 Safety-related
Distances for all EE Fixed installations - D.C. communication in
equipments switchgear transmission systems
EN 50122
Fixed installations - EN 50155 y
Electrical safety, Electronic equipment Environment Aspects
earthing and the return used on rolling stock
Circuit EN 50125
Environmental
EN 50119 EN 50121

Fixed installations -
Electric traction
overhead contact lines

conditions for

Railway applications - T

Electromagnetic
compatibility

Railway control software
as safety-critical software

Software route map

= Basic SIL concepts:

o Software SIL shall be identical to
the system SIL

o Exception: Software SIL can be
reduced if mechanism exists to
prevent the failure of a software
component from causing the
system to go to an unsafe state

= Reducing software SIL requires:

o Analysis of failure modes and
effects

o Analysis of independence between
software and the prevention
mechanisms

Obtain System Requirements Specification,
System Safety Requirements Specification
System Architecture Description and System
Safety Plan for the system

Sl

Identify all the safety functions allocated to the
software

S

]
Review all safety functions allocated to the
software and determine the Software Safety

Integrity Level

it

Produce the Software Requirements
Specification and the Software Architecture
Specification

Sl

Design, develop and verify/test the software

according o the Software Quality Assurance

Plan, Software Safety Integrity Level and the
Software Lifecycle

|
b

L

Cperational life of the system

Software Maintenance

Perform the Software Validation and hand
over to system engineers /
\ |

Example: SCADA system architecture

Reducing SW component SIL
by the following solutions:

= Processing in two

channels
' Channel 1 l i Channel 2 :
1 ! : |

= Comparison of output I cu
signals at the 1/0 mzl Tocs B

I \ |

A '

A H ! 4
! 1

= Comparison of visual]
Database g =yNern, » Database
output by the operator: , RInE
Alternating bitmap [wmpue ||| convor BB L conro
visualization from the |
. p . . : C icati i ! C icati
two channels (blinking if || | oo) {1 || prowel

different)

c———————— e~ L TSR R, E e SR

= Detection of internal
errors before the effects
reach the outputs

I/0

Recall: Safety integrity requirements

" Low demand mode SIL Average probability of failure to
(|0W freq uency of perform the function on demand

102<PFD < 10
demands): 103 < PFD < 10

10*<PFD < 103
10> <PFD < 10*

W N |-

a

ngh demand mode SIL | Probability of dangerous failure per
. hour per safety function
(high frequency or

. 1 106 < PFH < 105
continuous demand): | T T
3 108 <PFH < 107

4 10°<PFH< 10%

\ (PFH or THR) /

e N —NTNSHRs

L] EGYETEM 1782

Problems in demonstrating software SIL

= Systematic failures in complex software:

o Development of fault-free software cannot be guaranteed in
case of complex functions

e Goal: Reducing the number of faults that may cause hazard

o Target failure measure (hazard rate) cannot be demonstrated
by a quantitative analysis

* General techniques do not exist, estimations are questionable

/—> SW safety standards prescribe methods and techniques\
for the software development, operation and maintenance:

1. Safety lifecycle

2. Competence and independence of personnel

3. Technigues and measures in all phases of the lifecycle
4. Documentation

_ /

Safety lifecycle

Analysa Design . Dewelopment

Itamal N '-‘ / i~ = TV Coaem
Kicko® \ . e @ » < .
Traceabiny Site ol % ST S e eneds § aiean 3 - ;
Requirements | g Acceptance i
Test ¥ ;
Develcpment |\ 3 = S TS N ¥ .
/ / Factory i~ T (el ':':':""T'— 1 Wi S i
Specfication \ // Acceptance 3 s e | Pl H
il Test 2 § i
5 \ ./ ' | WA et 1
Design / 4 ol S I o e 0—s v —-; 'n"
Sutgystem \ | J letagraven Test — v | -
\ ‘.. ‘.' v' Owow
UritiMeaute |), / J UniModide Test VW o8 5 e i ‘
\ v . —— - A
. e Development 4 V. weuwwa

EGYETEM 1782

Software lifecycle

[1

Software Requirements Crverall Software Test
Specification Specification

Software Requirements

Software Requirements Venfication

I
Saoftware Architecture Specification
I

I |

Software Design Specification
Software Interfaces Specification

Software, Software'Hardware
Integration Test Specification

[|

Software Component Saofheare Component

Test Specification

Software Architecture Verification Software Architecture
Software Design

Software Design Verification
Software Component Design

Software Component Design Verification

Software Source Code and
suppaorting documentation

|Sdb.l.rare-D:mpmeanestHEpﬁt |
I

Component Implementation
and Testing

Source Code Verification

I
| Software |I"|‘hEgl3‘tDl'l Test Report |

‘ Sdhl.ra.re'l-laldwam Integration Test

| Onverall Software Test Report |

Software Integration

Software Validation Software Validation

| Saoftware Deployment Documents |

| Software Maintenance Documents |

Software Deployment

Software Maintenance

Basic principles:

Top-down design
Modularity

Preparing test
specifications
together with the
design
specification
Verification of
each phase

Validation

Configuration
management and
change control

Clear
documentation
and traceability

Software quality assurance

= Software Quality Assurance Plan

o Determining all technical and control activities in the lifecycle
* Activities, inputs and outputs (esp. verification and validation)
* Quantitative quality metrics
» Specification of its own updating (frequency, responsibility, methods)

o Control of external suppliers
= Software configuration management
o Configuration control before release for all artifacts
o Changes require authorization
"= Problem reporting and corrective actions (issue tracking)

o “Lifecycle” of problems: From reporting through analysis,
design and implementation to validation

o Preventive actions

Development of generic software

Generic software: Operation and
maintenance
It can be used and re-used 5
after parameterization with
System specific data Software
development . assessment
\ (e.g., station layout) - /
Requirement Validation test Software
specification | specification | " validation
\ Sofyﬁare/hardware
Architecture Integration test Software pn
R S p——— > . A SEEFEpupE > . .
design specification integration
Component Component Component
) e A P > :
design test spec. testing
Component

coding

Parameterization of generic software

development

System

N

Requirement
specification

Design for
paramete-
rization

A\

Operation and
maintenance

F

Validation test
specification

Software
assessment
V&YV of
Software
_______________ validation parametE'

%\rlzation

%yﬁare/h ardware

Architecture Integration test Software pn
design | specification | integration
Component Component Component
design testspec. | testing

//‘ (ﬁara meterization]

T~ _—

Component
coding

Roles and competences in the
lifecycle

Roles in the development lifecycle

Project Manager (PM)
Requirements Manager (RQM)
Designer (DES)

mplementer (IMP)

Tester (TST) — component and overall testing
Integrator (INT) — integration testing

Verifier (VER) — static verification

Validator (VAL) — overall satisfaction of req.s

Assessor (ASR) — external reviewer

The preferred organizational structure

l"--------------------------------1

I
I K I
1 PM 11| ASR |,
1 . (| |
1 : i | ==————-
SIL3 & SIL41 d x |
| | RQM.DES,IMP | | INT,TST | | VER VAL !
N
Fmmmmmmmmmmmmmmmmmmmmmmmmmmmm e o W il
1 11 |
: PM 11 ASR |
I
I n n - - -
SIL1 & SIL 2 | : 5 |
| | rRamDES, MP INT, TST VER, VAL !
I
]

RN NN NN EE NN NN NN BN BN SN SN BN SN SN BN BN BN BN BN BN BN BN BN SN BN BN BN BN B Em E I-------I canbethesameperson
1 |
1 1 [
I PM 1 ASR | 1 | ! -
| I I " 1 : can be the same organization
SiLo " | | A -
: 1 - shall report to the Project Manager
|
1 RQM, DES, IMP |NT, TST, lIIIF"ER, lIIIF".li:'|.|_ Y can report to the Project Manager
I---------------------------------I — shall not report to the Project Manager
PM Project Manager AS Assessor
RQM Requirements Manager INT Integrator
TST Tester
DES Designer
9 VER Verifier

IMP Implementer VAL Validator

= Competence shall be demonstrated for each role
o Training, experience and qualifications

= Example: Competences of an Implementer

o Shall be competent in engineering appropriate to the
application area

o Shall be competent in the implementation language and
supporting tools

o Shall be capable of applying the specified coding standards
and programming styles

o Shall understand all the constraints imposed by the
hardware platform, the operating system

o Shall understand the relevant parts of the standard

Techniques for designh and V&V

Power-on

Basic approach

= Goal: Preventing the introduction of systematic faults and
controlling the residual faults

= S|L determines the set of techniques to be applied as

o M: Mandatory

o HR: Highly recommended (rationale behind not using it
should be detailed and agreed with the assessor)

o R: Recommended
o ---: No recommendation for or against being used
o NR: Not recommended

= Combinations of techniques is allowed

o E.g., alternative or equivalent techniques are marked

= Hierarchy of methods is formed (references to sub-tables)

Example: Software design and implementation

TECHNIQUE/MEASURE Ref SILO | SIL1 | SIL2 | SIL3 | SIL4
1. Formal Methods D.28 - R R HR HR
2. Modelling Table R HR HR HR HR
AT
Structured methodology D.52 R HR HR HR HR
4. Modular Approach D.38 HR M M M M
Components Table HR HR HR HR HR
A20
6. Design and Coding Standards Table HR HR HR M M
A 12
7. Analysable Programs D.2 HR HR HR HR HR
Strongly Typed Programming Language D.49 R HR HR HR HR
9. Structured Programming D.53 R HR HR HR HR
10. Programming Language Table R HR HR HR HR
A 15
11. Language Subset D.35 - - - HR HR
12. Object Oriented Programming Table R R R R R
A22
D.57
13. Procedural programming D.60 R HR HR HR HR
14. Metaprogramming D.59 R R R R R
Requirements:
1) An approved combination of techniques for Software Safety Integrity Levels 3 and 4 is 4, 5, 6, 8 and one
from 1 or 2.
2) An approved combination of techniques for Software Safety Integrity Levels 1 and 2 is 3, 4, 5, 6 and one
from 8, 9 or 10.
3) Metaprogramming shall be restricted to the production of the code of the software source before
compilation.

Example: Software Architecture

Combinations:

= Approved
combinations of
techniques for
Software SIL 3
and 4 are as
follows:
o 1,7,19,22and

one from 4, 5,
12 or 21; or

o 1,4,19,22and
one from 2, 5,
12,15 0r 21”
= Approved

combinations of

techniques for

Software SIL 1

and 2 are as

follows:

o 1,19, 22 and
one from 2, 4, 5,
7,12,150r 21"

TECHNIQUE/MEASURE Ref SILO | SIL1 | SIL2 | SIL3 | SIL4
1. Defensive Programming D.14 - HR HR HR HR
2. Fault Detection & Diagnosis D.26 - R R HR HR
3. Error Correcting Codes D.19 - - - - -
4. Error Detecting Codes D.19 - R R HR HR
5. Failure Assertion Programming D.24 - R R HR HR
6. Safety Bag Technigques D.47 - R R R R
7. Diverse Programming D.16 - R R HR HR
8. Recovery Block D.44 - R R R R
9. Backward Recovery D.5 - NR NR NR NR
10. Forward Recovery D.30 - NR NR NR NR
11. Retry Fault Recovery Mechanisms D.46 - R R R R
12. Memorising Executed Cases D.36 - R HR HR
13. Artificial Intelligence — Fault Correction D.1 - NR NR NR NR
14. Dynamic Reconfiguration of software D.17 - NR NR NR NR
15. Software Error Effect Analysis D.25 - R HR HR
16. Graceful Degradation D.31 - R R HR HR
17. Information Hiding D.33 - - - - -
18. Information Encapsulation D.33 R HR HR HR HR
19. Fully Defined Interface D.38 HR HR HR M M
20. Formal Methods D.28 - R R HR HR
21. Modelling Table R R R HR HR
AT
. Structured Methodology D.52 R HR HR HR HR
. Modelling supported by computer aided design Table R R R HR HR
and specification tools AT

Example: Verification and Testing

Requirements
for SIL4:

= 5: Mandatory

= 4: Highly
recommended

= 3.
Recommended

= 2:No
recommendation

= 71: Not
recommended

O Formal Proof

1
[o Boundary Value Analysis

| {
| @ Checklists
[S
| | o Control Flow Analysis
O Static Analysis (A19) |-
|.- : O Data Flow Analysis
| [\,
|

I @ Error Guessing
| |

|
\ o ‘Walkthroughs/Design Reviews
O Test Case Execution from Boundary Value Analysis

| Q Test Case Execution from Error Guessing
[8

| @ Test Case Execution from Error Seeding
o Dynamic Analysis and Testing (A13) ~|—
O Performance Modelling

1 O Equivalence Classes and Input Partition Testing

‘ Verification and Testing & |

\
627 { O Structure-Based Testing

| O Metrics
I e Traceability

5
| O Software Error Effect Analysis

| ,'l O 2. Branch

| i
| o Test Coverage for code (A21) =

| @ Functional/ Black-box Testing (Al4) Bl @
|

| O Performance Testing (A18) @&

' o Interface Testing
1

Example: Integration and Overall SW Testing

@ Test Case Execution from Cause Consequence Diagrams

[@ Prototyping/Animation

|
o Functional and Black-box Testing (A14)) o Boundary Value Analysis

p— | \ o Equivalence Classes and Input Partition Testing
: | Integration | \
- - \ @ Process Simulation

I 0 Avalanche/Stress Testing

[
[o Performance Testing (A18) (0 Response Timing and Memaory Constraints

|
| O Performance Requiremeants

6 Performance Testing (A18) &

" Overall Software Testing & ' } 6 Functional and Black-box Testing (Al4) &

6.2, 7.7 I -
\ 0 Medelling (417) 5 ®

Specific techniques (examples)

= Defensive programming

o Self-checking anomalous control/data flow and data values during
execution (e.g., checking variable ranges, consistency of
configuration) and react in a safe manner

= Safety bag technique

o Independent external monitor ensuring that the behaviour is safe

= Memorizing executed traces

o Comparison of program execution with previously documented
reference execution in order to detect errors and fail safely

= Test case execution from error seeding

o Inserting errors in order to estimate the number of remaining errors
after testing — from the number of inserted and detected errors

Tools and languages

@;Target Recorder Index Dump Display Print Go Config MNet 7 - 8| =

o ol@lE] dlFlev|[é 8] T 2| Ele| S| b

Remark

novramArea. xLogger . ulHumReq 100

p Addr:0150101¢C Swersion
Execution monitor
Remark
-y y FyT—— 100 | Train Migsion
novramArea. xhogger . ulNext Idx
EEL Watchdog
p Addr:01501020 Visualization
Offaet Format |Remark Value iz Datalogger
[00]novramirea. xLogger . LCNV novramirea. xhogger . xData[0] . ulTimestamp 2 Shutclorm
[04]novramirea. xLogger . LDSC Ewvento EVENT_FLT_INJECT START
[06 1novramairea. xhogger . LHEX novramArea. xhogger . xDatal0] . ulParaml 00000002
[0C]Inovrambrea. xLogger . LDEC novremwlrea. xLogger . xDatal0] . ulParamd 1000

Tool classes

= T1: Generates outputs which cannot contribute to
the executable code (and data) of the software

o E.g.: a text editor, a requirement support tool, a
configuration control tool

= T2:Supports the test or verification of the design
or executable code, where errors in the tool can
fail to reveal defects
o E.g.: a test coverage measurement tool; a static
analysis tool N;Pt:':):Iem
= T3: Generates outputs which can contribute to the
executable code (including data) of the system

o E.g.: source code compiler, a data/algorithms
compiler

Selection of software tools

= Justification of the selection of T2 and T3 tools:
o ldentification of potential failures in the tools output
o Measures to avoid or handle such failures

i

= Evidence in case of T3 tools:
o Output of the tool conforms to its specification
o Or failures in the output are detected C
Sources of evidence:

o Validation of the output of the tool: Based on the same steps
necessary for a manual process as a replacement of the tool

o Validation of the tool: Sufficient test cases and their results

o History of successful use in similar environments, for similar tasks

o Compliance with the safety integrity levels derived from the
risk analysis of the process including the tools

o Diverse redundant code that allows the detection and control of
tool failures

Programming languages

" The programming language shall
o have a translator which has been evaluated, e.g., by a
validation suite (test suite)

* for a specific project: reduced to checking specific suitability

* for a class of applications: all intended and appropriate use
of the tool

o match the characteristics of the application,

o contain features that facilitate the detection of design
or programming errors,

o support features that match the design method

Requirements for languages

TECHNIQUE/MEASURE Ref SILO | SIL1T | SIL2 | SIL3 | SIL4

1. ADA D.54 R HR HR HR HR

2. MODULA-2 D.54 R HR HR HR HR

3. PASCAL D.54 R HR HR HR HR

4. CorC++ D.54 R R R R R
D35

5 PL/M D.54 R R R NR NR

6. BASIC D.54 R NR NR NR NR

7. Assembler D.54 R R R R R

8. C# D.54 R R R R R
D.35

9. JAVA D.54 R R R R R
D .35

10. Statement List D .54 R R R R R

* Coding standards (subsets of languages) are defined
o “Dangerous” constructs are excluded (e.g., function pointers)
o Static checking can be used to verify the subset

Interesting facts

= Boeing 777: Approx. 35 languages are used

o Mostly Ada with assembler (e.g., cabin management
system)

o Onboard extinguishers in PLM
o Seatback entertainment system in C++ with MFC

= European Space Agency:
o Mandates Ada for mission critical systems

= Honeywell: Aircraft navigation data loader in C

= Lockheed: F-22 Advanced Tactical Fighter program
in Ada 83 with a small amount in assembly

= GM trucks vehicle controllers mostly in
Modula-GM (Modula-GM is a variant of Modula-2)

= TGV France: Braking and switching system in Ada

= Westinghouse: Automatic Train Protection (ATP)
systems in Pascal

Restrictions using pre-existing software

* The following information about the pre-existing software shall
clearly be identified and documented:

o the requirements that it is intended to fulfil
o the assumptions about the environment
o interfaces with other parts of the software

— Precise and complete description for the system integrator

"= The pre-existing software shall be included in the validation
process of the whole software

" For SIL 3 or SIL 4 the following precautions shall be taken:
o analysis of its possible failures and their consequences

o a strategy to detect failures and to protect the system from these

o verification and validation of the following:
* that it fulfils the allocated requirements
* that its failures are detected and the system is protected
* that the assumptions about the environment are fulfilled

Specification of interfaces

Pre/post conditions

Data from and to the interfaces
o All boundary values for all specified data,
o All equivalence classes for all specified data and each function
o Unused or forbidden equivalence classes

Behaviour when the boundary value is exceeded
Behaviour when the value is at the boundary
For time-critical input and output data:

o Time constraints and requirements for correct operation
o Management of exceptions

Allocated memory for the interface buffers

o The mechanisms to detect that the memory cannot be allocated
or all buffers are full

Existence of synchronization mechanisms between functions

Documentation

Documents in the software lifecycle

- - »
System Development Phase (ext '
T (external) Suftware Maintenance Phase (9.2)
System Pequirements Specification [.
System Safety Bequirements Specification Software Maintenance Fecords
System Architecture Description Software Change Records
System Safety Plan Plan Software Assessment Phase
‘ Software Assessment Flan
_ Software Assessment Beport
Software Requirements Phase (7.2) Software Validation Phase (7.7)
Software Pequirements Specification |
Chverall Software Test Specificat ——»{Overall Sofiware Test Report
= are Test Specification Software Validation Report
Software Bequirements Verification Eeport '
Software Planning Phase " I
Software Cruality Assarance Flan re Arch. & Design Phase (7.3)
Software Confignration Management Plan Software Architecture Specification Software Integration Phase (7.6)
Software Verification Plan Software Design Specification .
Software Validation Plan Software Interface Specification > o ware et et oot e
Software Maintenance Plan Software Integration Test Specification . InHﬂItedD' c Efif‘“ - port
Software Hardware IntesTation Test |Jotiware integration Venticanion teport
Specification
Software Architectnre and Design
Verification Feport

| |

Software Component Design Phase (7.4)

Software Component Design Specification
Software Component Test Specification > Software Component Test Repart

Software Component Testing Phase (7.5)

Software C t Design Verification Software Source Code Venification Beport

R |

Software Component Implementation Phase (7.5)

Software Source Code & Supporting Documentztion

Doc. control

= Writing
= First check:
Verifier

= Second
check:
Validator

= Third check:
Assessor

PHASE DOCUMENTATION Written 1% 2
by check check

Flanning 1. Software Quality Assurance Flan 3 VER WAL
2. Software Quality Assurance Verification Report YER WAL
3. Software Configuration Management Plan E‘.SEﬁ] VER WAL
4. Software Verfication Flan WER WAL
5. Software Validation Plan WAL VER

Software requirements | 5. Software Requirements Specification REQ VER WAL
7. Owerall Software Test Specification TST VER WAL
8. Software Reguirements Verification Feport VER WAL

ﬂrcf:r'recture and 9. Software Architecture Specification DES VER WAL

design 10. Software Design Specification DES VER VAL
11. Software Interface Specifications DES VER WAL
12. Software Integration Test Specification INT VER WAL
13. Software/Hardware Integration Test Specification INT VER WAL
14. Software Architecture and Design Yerification VER WAL

Repaort

Compaonent design 15. Software Component Design Specification DES VER WAL
16. Software Component Test Specification T5T VER WAL
17. Software Component Design Venfication Report VER

Component 18. Software Source Code and Supporting IMP VER WAL

:'mp!emenmﬁon and Documentation

resting 19. Software Source Code Verfication Report VER WAL
20. Software Component Test Report T5T VER WAL

Integration 21. Software Integration Test Report INT VER WAL
22, Software/Hardware Integration Test Report INT VER WAL
23, Software Integration Verification Report VER

Overa” _sofrware 24, Owerall Software Test Report TST VER WAL

testing / Final 25, Software Validation Report VAL | VER
26, Tools Validation Report ? VER
27. Release Note ? VER VAL

Case study: SAFEDMI

Development of a safe driver-machine
interface for ERTMS train control

What is ERTMS?

= European Rail Traffic Management System

o Single Europe-wide standard for train control and
command systems

= Main components:

o European Train Control System (ETCS): standard for in-cab
train control

o GSM-R: the GSM mobile communications standard for
railway operations (from/to control centers)

= Equipment used:

o On-board equipment: e.g., EVC European Vital Computer
for on-board train control

o Infrastructure equipment: e.g., balise, an
electronic transponder placed between o ~
the rails to give the exact location of a train S .

Development of a safe DM

EVC:
European
Vital
Computer
(on board)

A" Main characteristics:
CCAD = Safety-critical functions
= o Information visualization
/"'\ (speedometer, odometer, ...)
e o Processing driver commands
14 el o Data transfer to EVC

= Safe wireless communication
o System configuration
o Diagnostics
o Software update

= Safety:
o Safety Integrity Level: SIL 2
o Tolerable Hazard Rate: 107 <=THR < 10°®

hazardous failures per hours
o CENELEC standards: EN 50129 and EN 50128
= Reliability:
o Mean Time To Failure: MTTF > 5000 hours
(5000 hours: ~ 7 months)
= Availability:

o A=MTTF/ (MTTF+MTTR), A >0.9952
Faulty state: shall be less than 42 hours per year
MTTR < 24 hours if MTTF=5000 hours

Operational concerns

/(Safe Operation J
. . even in case of faults
Fail-safe operation L_—_

=\

Fail-stop behaviour

e Stopping (switch-off)
is a safe state

* |n case of a detected error
the system has to be
stopped

e Detecting errors is the

\main concern /

\

Fail-operational behaviour

e Stopping (switch-off)
is not a safe state
e Service is needed even
in case of a detected error

® full service
e degraded (but safe) service

e Fault tolerance is required

Fail-safety concerns

Safety in case of single random hardware faults

Fault handling

A/[' \\.

Composite fail-safety| | |Reactive fail-safety| ||/Inherent fail-safety

e Each function is e Each function is e All failure modes
implemented by equipped with an are safe
at least 2 independent independent e Inherent safe”
components error detection system

e Agreement between e The effects of
the independent detected errors

components is needed K can be handled j
to continue the operation

The SAFEDMI hardware concept

= Single electronic structure based on reactive fail-safety
= Generic (off-the-shelf) hardware components are used

= Most of the safety mechanisms are based on software
implemented error detection and error handling

ERTMS ON-BOARD
SYSTEM (EVC)

A

commercial field bus

]

!]]

[}] 1

]]]

I 1 1

A4 EXCLUSION LOGIC :‘CD
— X

DMI | LCDDIsPLAY

wireless ﬁ ﬁ
interface

Keyboard

A

Speaker

The SAFEDMI hardware architecture

Commercial hardware components:

Keyboard
Log Keyboard Cabin
RAM ROM Bt Thermometer Controller Identifier

—=— = L= =
Bus CiDU Watch LCD lamps Graphic Audio
Controller dog Corialler Controller Controller
LCD LCD Video Flash
Speaker :
lamps matrix Pages audio
Device to Device to

communicate with communicate with

EVC BD

The SAFEDMI fault handling

= Operational modes:
o Startup, Normal, Configuration and Safe (stopped) modes

o Suspect state to implement controlled restart/stop after error:
counting occurrences of errors in a given time period;
forcing to Safe state (stop) in a given limit is exceeded

Power-on

Error detection in Startup mode

Detection of permanent hardware faults by thorough self-testing
= Memory testing:

o March algorithms (for stuck-at and coupling faults):
regular 1 and O patterns are written and read-back stepwise

= CPU testing:

o External watchdog circuit: Basic functionality (starting, heartbeat)

o Self-test: Core functionality — complex functionality
(instruction decoding, register decoding, internal buses, arithmetic
and logic unit)

" |ntegrity of software (in EEPROM):

o Error detection codes

= Device testing (speaker, keyboard etc.):

o Operator assistance is needed

Error detection in Normal/Config mode

= Hardware devices:
o Scheduled low-overhead memory, video page and CPU tests
o Acceptance checks for I/0
= Communication and configuration functions:
o Data acceptance / credibility checks for internal data
o Error detection and correction codes for messages
= QOperation mode control and driver input processing:
o Control flow monitoring (based on the program control flow graph)
o Time-out checking for operations
o Acknowledgement procedure: the driver shall confirm risky operations
= Visualization of train data (bitmap computations):

o Duplicated computation and comparison of the results

o Visual comparison by the driver (periodic change of bitmaps)

Testing the DMI

Testing goals

A
G

Maintenance centre

EVC:
European
Vital
Computer
(on board)

Main test groups:

e ERTMS functions

— Interactions with the driver
— Interactions with the EVC

e Internal safety mechanisms
e Wireless communications

Testing the ERTMS functions

= Sequences of test inputs: DMI inputs + workload

= Test output: DMI display + Diagnostic device

Step

Action

Expected Event

1.

Driver: give traction to the train

SAFEDMI: the current train speed increases.

None

SAFEDMI:

The text message “Entry in Full
Supervision Mode” is shown and a sound
is produced.

O
the FS mode icon is shown in area
B7;
in area A2 the distance to target is shown;

Driver: give traction to the train
until the current train speed
overcomes the permitted speed.

SAFEDMI:

In area Al the warning to avoid brake
intervention is displayed and sound is
produced;

In area E1 the icon m (Brake

applied) is shown;

In area C9 the icon - (Service
brake intervention or emergency brake
intervention) is shown.

Test environment

N NI
e "

L

Len
‘ ’x‘l|’llb

| ¢ b

g L T e - [P =] =#| | AMSALDOSIGHAL

S D R e T e

™ Mk
I lgn ke

SAFEDMI

Simulating the workload:

* signals from balises on a given route

e control messages from the railway
regulation control center

Plus: Diagnostic device

Output of the diagnostic device

24 Logger - FX
c% Target Recorder Index Dump Display Print Go Config Met 2 - 8 %
o @lw|E] «<|ilr|[64 & |2 Ee sl b

DMI: noveasmArea. xLogger . ulNumReg Group Addr:0150101% jﬂ
Offset Format |Remark Value

[O0]novramires. xLogger . | LDEC novramhres, xLogger . uwllumBeg 100 _:J

S Yersion
Execution monitor

DMI:novramAresa. xLogger , ulNextIdx Group Addr:0150101cC

offset Format |Remark Value .
Train Missian

[O0]novramAres. xLogger . | LDEC novramhres, xLogger . ullext Idx 100 Watchdog

DMI: novramires,.xLogger . xData[1] Froup Addr:01501020 “Wisualization

offset Format |Remark Value Rt Datal ogoer

[O0]novramires. xLogger . | LONW novramhres, xLogger . xData[0] . ulTimestamp 2 Shutdown

[04] novramires. xLogger . | LDSC Evento EVENT FLT INJECT START

[08 InovramAres. xLogger . LHEX novramwAres, xLogger . ®Data[0] . ulParaml oooaoooz

[OC]novramAres. xLogger . | LDEC novramhres. xLogger . xDatal[0] . ulParam? 1000

Robustness testing

Driver

" Focus: Exceptional and extreme inputs, overload
= Testing behaviour on the driver interface:

o Handling buttons: pressing more buttons simultaneously, ...
o Input fields: empty, full, invalid characters, ...

= Testing behaviour on the EVC interface:

o Invalid messages: empty, garbage, invalid fields, flooding, ...

Testing the internal mechanisms

Operational modes and the corresponding functions

o Activation of operational modes, configuration, disconnection
from the environment

o Coverage of the state machine of the operational modes
o Coverage of the state machine of error counting

Performance: Testing deadlines in case of maximum
workload (specified on the EVC interface)

Handling of buttons: Blocked buttons, safety
acknowledgements, ordering of events

Handling temperature sensors: Startup and operational
temperature conditions (tested in climate test chamber)

Systematic testing

= Testing the operational modes:

o Covering each state and

each state transition ol |
k [tailure]

- Power-on

Marmal / Comdjguration state
Computation

(:On-line error detection :)

[success] [failre]

State machine of the operational modes

State machine of error counting

Testing the internal safety functions

Targeted fault injection: Testing the implementation of the
software based error detection and error handling mechanisms

o Test goals:

* The injected errors are detected by the implemented mechanisms
* The proper error handling is triggered
o Tested mechanisms:

* Control flow checking, data acceptance checking,
duplicated execution and comparison, time-out checking

Random fault injection: Evaluation of error detection coverage
o Collecting data for coverage statistics

Checking hardware self-tests in specific configurations
o Hardware checks (RAM, ROM, video page)
o 1/0 device checks (cabin, LCD, temperature)

Software based fault injection
4

» Controller |-

Fault injection system

A

P
Fault Workload
; librar

ey \

-«—» Data collector
Fault injector Worklosi Monitor
generator A
i Data analyzer
A -

- Target sys

TS oy

Collecting diagnostic data

Eﬂ Fault Injector

‘% Target Recorder Cump Display Print Go Config Met 7 -8 =

W (e [8 & S0][5 4|

Group Addr:010EA
offzet Format |Remark Walue

X
[00]mLocalTime LCNV mwLocal Time _:J
Sy Yersion
Execution monitor

Group Addr:

Cffzet Format |Pemark Walue . .

- . Train Mission
[00]mLastTime LCNV mwLastTime Watchdog
DMI:ubFaultstep Group addr:010EA640 “isualization
offzet Format |Remark Value DatalLogger
[00]ubFaultStep EDEC ubFaultStep Shutdown
IMI:ulTotalFaultCoulter Group Addr:010EAG44
offzet Format |Remark Value
[00]ulTotalFaultCoulter LDEC ulTotalFaultCoulter
DIMI:ulFaultcounkter[0] Group Addr:010EA
Ooffset Format |Remark Value
[00]JulFaultCounter[0] LDEC ulFaultCounter [0]

IMI:faultParam({0d] Group Addr:010FBEE4
Ooffset Format |Remark Value
[00]faultParam[0] LD3C faultFaram[0]
DMI:ubFlt3equenceld Group Addr:010EAEFG
offzet Format |Remark Value
[00]ubFltSequenceId EDEC ubFltSequenceId
DMI:ulFaultPeriod Group Addr:010EAGFS
offzet Format |Remark Value
[00]ulFaultPeriod LCNV ulFaultPeriod
-
4 »
=l
CASafeDmitdiaghFaultinjector.dat] %

MUEGYETEM 1

Testing the wireless communication

= Scenario based testing: Communication scenarios

= Normal operation:

o Protocol testing: Establishing connection, message processing,
closing the connection

= QOperation in case of transmission errors:
o Error detection mechanisms (EDC, ECC)
o Closing the connection in case of too frequent errors

DMI
CIS-DMI QpenC BD

e L Search Broadcast 2

) 4 Broadcast Attempt | 3 Search Broadcast answer :|
Connection established 5
_>

7 Connection established 6 Connection established answer :|
< — !
) 8 Waiting for SA Setup

Wrapper configuration for testing

Session control System under test Bridge device Test control
CIS
(installed on DMI) DMI BD SIS
@
DMI broadacst °
CIS/DMI
IUT
Control Data
@
i Perf. Obs. Data
. DMI/BD session setup
'Ecnntrn\‘;‘ 5eu;ngsj — -
. . I H i | OperCanim SetConim Connestion No connection
Session signaling oo Session signaling o | T = :M tocrmie
£ Maintenance () Stpderoesiuy - (et
@ Datacomnection: N connection
Session data Session data @ LookUprotscessbl
L 4 L i 4 ®---® Siap Lokl | A l sxamsCamml [neles k. ity =

Evaluation of the DMI

Goals and challenges of the evaluation

Evaluation techniques

DMI Wireless Detection
architecture communication codes
- hazardous - performance: - detection
failure rate throughput, quality
- reliability delay - residual
- availability - error rate erroxs
- connection
management

Challenge:
On-line tests
and checks Challenge: complexity of

Safe protocol computations
stack with

Challenge:
Inherent

several layers

Evaluation of the DMI architecture

= Model based evaluation approach:

o Construction of an analytical dependability model representing

 fault activation, error propagation processes,
e error detection and error handling mechanisms

o Stochastic Activity Network formalism (~ stochastic Petri Nets)
o Sub-models assigned to architectural components

* Resources with fault activation and periodic tests

* Propagation from active/passive resources to tasks

e Tasks with on-line error detection techniques
* Operational mode changes according to events and detected errors

= Analysis results:
o Availability and safety (SIL 2) requirements are satisfied

o Sensitivity analysis was performed to find optimization
possibilities

Evaluation of the DMI architecture

UML based architecture model

wfsrm

= fsm

attributes
operations
classes

Dependability

Analysis subnets

/’ EmorDetected pejectedsror HWTrigger

periodicTest EmorNolDetected

_,’/ PermanentFaults -
_—" task1_Errors

faultQccurmrence — Emor . i task2_Errors
internalPropagation

-

task1_Failure

hw1_task1_Errors o
- - task1_activation

</’ﬂ;pli:a1edEx:Euﬁu[|k Ff!l"{?DE‘med defectedFailure 12skTrigger

fsm_Ds ferm_Diag d I
«tasks «tasks H
Hoes Dmeong construction
attributes attributes
operations operations tO O I
classes classes
Data_Keyh MoDiag_Gou oDiag_Rs s
Data_Cp' 4 <
& /< XN
ahts b bt .
E Keyboard Q Cpu E RS232 & Y v
attributes attributes attributes 1a0_Rs)! y
operations operations operations / ¢ 4 Q/ B « g
classes classes classes] —~
ehs ™~ v
HRrs232 v
T T T Y £
attributes 1 attributes I ' ttributes /] ~
operations aperations aperations
classes classes clagses
-------- Jain
hission
sulbmadel
EWC
EVC - camm-Dml

System level dependability model

Failure~_ ~
S~
~ FailureNotDetected yngetectedFailure Hazards
controlFlowMonitoring
1,2E-06
1,0E-06
3]
€ 8,0E-07 —
B ‘\‘\
$ 6,0E-07
©
£ T~
OE- =
2,0E-07 T T i '

0,5 0,6 0,7 0,8 0,9
Control flow checking coverage

Dependability measures,
sensitivity results

Results of the dependability analysis

= MTTF (Mean time to failure)
o MTTF =47 000 hours
o Availability is computed on the basis of MTTR

= MTTH (Mean time to hazard)

o Focusing on hazardous failures
o MTTH =1 482 000 hours

" Hazardous failure rate
o Computed as 1/MTTH
0 6.7 * 10”7 per hour — satisfies SIL2

= Sensitivity analysis w.r.t. hazardous failure rate

Example: Efficiency of control flow checking

" |f the coverage falls below 50% then the SIL2
requirement is not satisfied (HR > 10°)

1,1E-06
1,0E-06

9,0E-07
$ 8,0E-07 ———

© \ —e—min
T g’ggg; \ NG —=—mean value
N e

S 50E-07 N max
T ‘-*\
4,0E-07 \\'
3, 0E-07 -
2,0E-07 . - ! .
0,5 0,6 07 08 0,9

Control flow checking coverage

Example: Efficiency of duplicated execution

= SIL 2 requirement is not satisfied if the duplicated
execution and comparison is replaced with a less

efficient error detection technique (HR > 10°)

4,5E-06
4,0E-06
3,5E-06 z

3,0E-06 /A —e—min
2,5E-06 i

2,0E-06 L
1,5E-06
1,0E-06
5,0E-07 et . . .

—8—mean value

max

Hazard rate

0,99 0,97 0,95 0,9 0.3

Duplic ated execution coverage

Summary of the evaluation activities

Experimental analysis of schedulability and
real-time properties

evaluation of error detection

/
[Model based analysis of reliability,

[Fault injection based experimental

availability and hazardous failure rate

— =
Evaluation of the detection
property of codes

Evaluation of the performance and
dependability properties of the wireless
communication

Model based evaluation of the
effect of DMI failures on QoS of
the train control system

|

[Evaluation of wireless DMI-EVC

communication

= The role of standards

= Development of railway control software
o Safety lifecycle
o Roles and competences
o Techniques for design and V&V
o Tools and languages
o Documentation

= Case study: SAFEDMI

o Hardware and software architecture

o Verification techniques: testing and evaluation

