
Course and Unix Intro

Comp-206 : Introduction to Software Systems
Lecture 1

Alexandre Denault
Computer Science
McGill University

Fall 2006 



Instructor – Alexandre Denault

■ Graduate student, working in the Software Engineering 
lab.

■ Specializes in teaching framework and distributed 
environments.

■ Email: alexandre.denault@mail.mcgill.ca
■ Office: McConnell 322 (cubicle in the back)
■ Office Hours: 

 Tuesday & Thursday 1h00 - 2h30
 or send me an email



Official Course Description

Comprehensive overview of programming in C, use 
of system calls and libraries, debugging and 

testing of code; use of developmental tools like 
make, version control systems.



My Course Description

● Introduction to Software Systems ...

 ... is a course about the various types of tools we use to build 
software.

 ... serves as your introduction to the C programming language.
 ... gives you tools to be more productive during your 

undergraduate studies.



Course Content

The course will cover the following topics:

■ Unix operating system
■ Shell Scripting
■ C Programming (and related tools)
■ Debuggers and Profilers
■ Source Control
■ HTML, CSS and CGI
■ Perl and Web scripting
■ Python and GUI



Tentative Schedule

■ 4 lectures on Unix and Shell scripting
■ 10 lectures on C programming and related tools
■ 2 lectures on HTML, CSS and web servers
■ 3 lectures Perl programming
■ 3 lectures Python programming



Lecture Schedule and Prerequisites

■ Lectures:
 Tuesday and Thursday, 4h05-5h25
 Macdonald Engineering Building 279

■ Prerequisites:
 COMP 202 or
 COMP 250



Knowledge of Unix

■ This course assumes you have some basic knowledge of 
Unix (and the school labs). 
 login into your account, copying a file, editing a file, etc

■ If you don't, I highly suggest you attend one of the SOCS 
Unix seminars, to be held in the Trottier Building, 3rd 
floor, Room 3120 (Lab 2).
 Beginner: 10:00 - 11:00, Monday, Sept. 11
 Beginner: 10:30 - 11:30, Tuesday, Sept. 12
 Beginner: 14:30 - 15:30, Wednesday, Sept. 13
 Beginner: 14:30 - 15:30, Thursday, Sept. 14
 Intermediate: 10:30 - 11:30, Monday, Sept 18
 Intermediate: 10:00 - 11:00, Tuesday, Sept 19 



Workload and Grade Distribution

■ This course features assignments which require a lot of 
programming. 

■ This allows you to put in practice the material learned in 
class.

■ Grade Distribution:
 Homework Assignments (4) : 40%
 Midterm : 20%
 Final exam : 40%



Assignments

■ Allows you to practice the material seen in class. 
■ Allows me to evaluate what you have learned.
■ Each assignment is worth 10% of your grade.

■ Tentative dates:
 Assignment 1 : September 18th - October 3rd
 Assignment 2 : October 3rd - October 24th
 Assignment 3 : October 24th - November 14th
 Assignment 4 : November 14th - December 5th

■ You lose 15% per late day.
■ The T.A. will correct the assignments.



Midterm

■ The midterm will allow me to see if you understand the 
material, before testing you in the final. 

■ If we didn't see it in class, it's not in the midterm.

■ Tentative date:
 Thursday October 19th, 2006



Academic Integrity

McGill University values academic integrity. 
Therefore all students must understand the meaning 
and consequences of cheating, plagiarism and other 

academic offenses under the Code of Student 
Conduct and Disciplinary Procedures 

(see http://www.mcgill.ca/integrity/ for more 
information).



Textbook

■ Required Textbook:
 The C Programming Language (2nd Ed), by Kernighan & 

Ritchie, Prentice-Hall, ISBN 0131103628
 Just Enough Unix (5th Ed), by P.K. Anderson, McGraw Hill, 

ISBN 0072952970

■ Recommended textbooks:
 GNU Software, by Mike Louksides & Andy Oram, O’Reilly 

Media, ISBN 1565921127
 A Little Book on Perl, by Robert Sebesta, Prentice-Hall, ISBN 

0139279555
 Dive into Python, by Mark Pilgrim, Apress, ISBN 1590593561



What is Software?

■ Software is a collection of instructions (often grouped as 
functions and libraries) that allow a computer to complete 
a specific task.

■ Although these instructions can be written in different 
languages, they are eventually converted to a machine 
language.



Computer Programming

■ Computer Programming is the craft (art) of writing the 
computer instructions that accomplishes a specific task.

■ The difficult of computer programming depends heavily 
on the task itself and the tool that is used.

■ One of the key to being a successful programmer is 
knowing which tool to use in different situation.

 Not all programming language were designed to do the same 
thing.



Name that Programming Language

■ Java
■ C
■ C++
■ Basic
■ Ada
■ Lisp
■ Scheme
■ Javascript
■ AppleScript
■ Ocaml
■ D
■ and so on ...



What is an Operating System?

■ An operating system is a piece of software that allows us 
to interact with a computer without having to know the 
inner working of a computer.

■ Its primary function is to manage the computer's 
resources.

■ An operating system also provides us with libraries to 
interact with these resources.



Name that Operating System

■ Dos
■ Windows
■ Solaris
■ Linux
■ FreeBSD
■ BeOS
■ FreeDos
■ HP-UX
■ AIX
■ MacOs X



What is a Library?

■ A library is a piece of software specially packaged to be 
used by other software.

■ A library provides specific functionalities, thus avoiding 
the need for the programmer to build the functionalities 
himself.



Library Examples

■ On Unix, the Standard IO library provides functionality to 
open files and write to them.
 Without it, a programmer would need to write code to use the 

hard disk itself. 

■ On Windows, DirectX allows a developer to write display 
graphics.
 Without it, a programmer would need to write code to access 

the video card directly. 



Libraries and the OS

Hardware

Operating System

Libraries

Software



Services provided by the OS
■ Process management

 Allows applications to run simultaneously
■ Memory management

 Manages the allocation of memory
■ Disk and file systems

 Manages the writing to disk of files.
■ Networking

 Allows inter-computer communication.
■ Security

 Provides authentication, privacy and protection.
■ Device Drivers

 Allows the use of hardware in a generic fashion.
■ Graphic User Interface*

 Provides a visual interface to interact with the computer.



Process management

■ The first generation of operating systems only allowed 
one process to run at a time.

■ A multi-tasking operating allow multiple task to run at a 
time.
 Single most computers only have 1 CPU, the multiple task must 

share this CPU.
 Most often, the CPU will time-slice the task, so they get a fair 

amount of CPU time.

■ Computers with multiple CPU can run multiple task at a 
time. 
 This introduces numerous concurrency and coherence 

challenges.



Memory Management

■ At the hardware level, computer memory is a collection of 
0 and 1, stored in volatile silicon chips.

■ At the operating system, computer memory is an array of 
bytes, where data can be store and latter retrieved.

■ The operating system is responsible for allocating blocks 
of memory to the different processes.

■ When the OS runs out of memory, it can use the hard 
disk to temporarily store blocks of memory that it does 
not often use.



Disk and file systems

■ At the lowest level, a computer disk is a collection of 0 or 
1 stored on a magnetic or optical disk.

■ This hardware has no understand of files and directory.
■ The operating system provides file systems, which 

describe how files and directory should be stored on the 
disk.

■ Each operating feature different file system:
 Windows : Fat32, NTFS
 Linux: EXT2, EXT3, XFS, Reiser, etc
 MacOS X: HFS+



Networking

■ At the hardware level, networking is the exchange of 0 
and 1 over a communication channel. 

■ A network protocol describe how data should be 
transformed (and encapsulated) before being sent over 
the network.

■ The OS provides the necessary tool for a computer to 
join a network and transmit(receive) data over this 
network.

■ The most common network protocol is TCP/IP.



Security

■ Operating Systems feature authentication system which 
control who can use a computer.

■ They also offer privacy features on many levels:
 A user/administrator can define which files can be used by 

which users.
 A process should not be able to access the memory block of 

another process.
■ A good operating system will also monitor itself to 

prevent action which could compromise it’s stability:
 A process should not be able to delete a file which is currently 

in use.
 Certain spaces in memory should never be overwritten



Device Drivers

■ Each devices connected to the computer have their own 
different way of communicating with the computer.

■ Device drivers are small pieces of software which allow 
an external device to communicate with the computer in 
a generic fashion.

■ Without device drivers, an application would need to deal 
separately with all the different external hardware it 
supports.



Graphic User Interface

■ A graphic user interface (also known as a GUI) is a piece 
of software which allow interaction with the computer 
using visual components (icons, buttons, scrollbars, etc).

■ These visual components are often referred to as 
widgets.

■ A GUI also provides libraries which allow the 
development of new software with these visual 
components.

■ Before GUIs were distributed with operating system, 
interaction with the OS was often achieved through a CLI 
(command-line interface).



Compilers

■ A piece of software that translate instructions written in 
one language to another language.
 A C compiler transforms C code into machine code.
 A Java compiler transforms Java code into Java byte code.

■ A compiler typically translates from a high-level language 
to a lower-level language.

■ When a compiler produces machine code, its produces 
code for a specific platform.
 In other words, C code compiled for Linux will not run on 

Windows
 (and vice-versa).



A little bit of history ...

■ The history of Unix begins in a failed operating system by 
AT&T Bell Laboratories called Multics.

■ Ken Thompson who was working on this project, wrote a 
games called Space Travel.

■ When the project was canceled, he decided to port the 
game to the PDP-7 computer.

■ He wrote Unix as an operating system to make it easier 
to port the game.



Open vs Closed Operating Systems

■ An OS is closed (or proprietary) when it owned by a 
single company.
 It is often designed to work on a single kind of hardware.

■ An OS it open (or non proprietary) if no single company is 
responsible for its development.
 Since many people can work on the code, it is often available to 

different hardware platforms.



Open or Closed

Open

■ FreeDos
■ Linux
■ FreeBSD
■ OpenBSD

Closed

■ MS Dos
■ MS Windows
■ HP-UX
■ AIX



Types of Unix

■ System V UNIX : Operating Systems based on the 
original AT&T UNIX code fit in this category. These 
include most commercial UNIX distribution.
 AIX, Iris, Solaris, UnixWare, etc.

■ BSD UNIX : These Operating Systems are based on the 
Berkeley Software Distribution (BSD) version of UNIX. 
 FreeBSD, OpenBSD, NetBSD and MacOS X.

■ UNIX-like systems : Several Operating Systems behave 
like UNIX, but are not based on the original AT&T code. 
 Linux, Hurd, Minix 



UNIX Standards

■ Given the numerous different flavors of UNIX its 
available, its not surprising that there was an important 
need for standards.

■ For vendors, it was very difficult to make their application 
function on different Operating Systems.

■ Thus, the POSIX (Portable Operating System Interface) 
were established.


