
Strings and Multiple Source Files

Comp-206 : Introduction to Software Systems
Lecture 15

Alexandre Denault
Computer Science
McGill University

Fall 2006

String operation

■ As you have probably noticed by now, C does not have a
string primitive.

■ This means that traditional operators, such as = or ==
cannot be used with strings.
 string1 == string2 will compare the pointer addresses, not the

content of the string.
■ C provided functions in the <string.h> library to

manipulate and compare string.

Len of String

■ The strlen functions returns the length of a string, not
including the terminating null character.
 size_t strlen(const char *s);

Comparing Strings

■ To compare two string, use the strcmp function.
 int strcmp(const char *s, const char *t)

■ The function does a char by char comparison:
 If both strings are equal, the function returns a 0.
 The function returns a negative number if s > t
 The function returns a positive number if t > s

■ The strncmp function can also be used if only the first n
characters of a string need to be compared.
 int strncmp(const char *s, const char *t, size_t n)

Concatenating String

■ The strcat function appends the src string to the dest
string.
 char *strcat(char *dest, const char *src);

■ Once both string have been concatenated, a terminating
null character is added.
 The original null character at the end of dest is overwritten.

■ The strings may not overlap.
■ The dest string must have enough space for the result.
■ If only n characters from src need to be concatenated,

the strncat function should be used instead.
 char *strncat(char *dest, const char *src, size_t n);

Copying Strings

■ The strcpy() function copies the string pointed to by src
to the array pointed to by dest.
 char *strcpy(char *dest, const char *src);

■ The terminating `\0' character is also copied.
■ The strings may not overlap.
■ The destination string dest must be large enough to

receive the copy.
■ In only n characterns need to be copied, the strncpy

function should be used instead.
 char *strncpy(char *dest, const char *src, size_t n);

■ Note that if no null byte among the first n bytes of src,
the result will not be null-terminated.

Library Example

■ Small example application to manage a book list.
■ Striking similarity to assignment 2.
■ For modules:

 Book : Structure to hold book information.
 Library : Structure to hold collection of books.
 File : Utilities to save/load books.
 Main : Runs the application.

Dependencies

Library

Book

Main

File

Using Multiple Files

■ As mentioned before, functions and types in C need to
be defined before they can be used.

■ For functions, we can solve this problems by declaring
the functions before we use them (function prototype).

■ But what happens when we want to use a function
defined inside another file?

■ C allows us to include a file inside another.
 We will take a look at this latter in the lecture.

Using Header Files

■ When programming in C, code is usually separated in
two types of file:
 Header files (.h)
 Code files (.c)

■ All the preprocessor commands, type declarations,
global variable declaration and function prototypes are
usually stored in the header file.
 Header files have the .h extension.

■ The actual code is store in the code file.
 Code files have the .c extension.

Dependency Tree

library.c

file.h

book.c

main.c

book.h

file.c

library.h

book.h
#if !defined(BOOK)
#define BOOK

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef struct {
 char * title;
 char * author;
 int pages;
} book;

book * createBook(char* title, char* author, int pages);
void printBook(book* myBook);
void unallocateBook(book* myBook);

#endif

book.c
#include "book.h"

book * createBook(char* title, char* author, int pages) {

 book* newBook;

 newBook = (book *)malloc(sizeof(book));
 newBook->title = (char *)malloc(strlen(title)+1);
 newBook->author = (char *)malloc(strlen(title)+1);
 newBook->pages = pages;
 strcpy(newBook->title, title);
 strcpy(newBook->author, author);

 return newBook;
}

void printBook(book* myBook) {
...

main.c
#include "book.h"
#include "library.h"
#include "file.h"

int main (int argc, char **argv) {

 library* mylibrary = createLibrary(20);

 loadLibrary("lib.txt", mylibrary);

 addBookToLibrary(mylibrary, createBook(
"Lotr", "Tolkien", 300));

 addBookToLibrary(mylibrary, createBook(
"Harry Potter", "Rowing", 50));

 addBookToLibrary(mylibrary, createBook(
"C Prog", "Kerning", 100));

 printLibrary(mylibrary);
...

Preprocessor

■ The preprocessor processes a file before it is compiled.
 It removes comments from source files.
 It executes preprocessor commands (#define, #include).

■ Preprocessor commands (or directives) are most often
found in the beginning of the source file.

#include

■ Any instance of the #include directive is replace by the
content of the filename attached to the directive.

■ #include directive come in two formats:
 #include <filename>
 #include “filename”

■ When using the include statement with the < >, the
preprocessor searches for filename in the library
directories of the operating system.

■ When using the include statement with the “ “, the
preprocessor searches for filename in the same directory
as the source file.

#define

■ #define directives are used to define symbolic names or
values.

■ Similar to constant variables, #define can be used to
insert hard-coded values.

■ However, #define commands are executed by the
preprocessor, before the code is compiled.

■ The directive will replace the defined keyword by the
defined value.
 #define STEP 20
 In this case, all occurrence of the string STEP will be replaced

by the number 20

#define vs const

■ #define is more efficient
 Const is a variable and requires memory.
 #define is a text replacement and requires no additional

memory
■ const is safer

 Since the constant is a variable, the compiler can safely type
check it.

 #define can have some weird interaction (next slide).
■ My rule of thumb: unless you have a specific reason for

using #define, use const.
■ Good reasons for using #define include:

 Memory is a concern
 Performance is a concern
 You need the constant in another preprocessor command.

Dangers of define

#define C1 10/5
float const C2 = 10/5;

float C3 = 23.0 / C1; // C3 = 11
float C4 = 23.0 / C2; // C4 = 11.5

■ Why? Because C3 gets preprocessed to
float C3 = 23.0 / 10/5;

■ Because of the presence of 10 and 5, we get integer
division.

■ This example is pretty simple, but in large applications
(hundreds of source files), this can be difficult to find.

Macro Substitution

■ Macros exploit the substitution power of #define directive
to embedded small functions in the code.

■ Macros have the following syntax:
 #define name function

■ A common example of macro is the maximum value
macro.
 #define max(A, B) ((A) > (B) ? (A) : (B))

■ Not that macros are even more dangerous then #define
statements.
 By themselves, they are usually ok.
 However, if you start mixing them, you might get some

unexpected behavior.

Conditional Inclusion

■ It is possible to control preprocessing itself with
conditional statements that are evaluated during
preprocessing.

■ This provides a way to include code selectively,
depending on the value of conditions evaluated during
compilation.

■ The two most common uses of conditional inclusions
are:
 Making sure that a header is included only once.
 Adapting code to different OS.

Mixed an matched headers

filea.c fileb.c filec.c

filec.hfileb.hfilec.a

Headers only Once

■ To make sure that the contents of a file are included only
once, the contents of the file are surrounded with a
conditional like this:
#if !defined(UNIQUE_KEYWORD)
#define UNIQUE_KEYWORD
/* contents of header go here */
#endif

■ Note that the defined variable should be unique to the
file (unless you know exactly what you are doing).

Introduction to Make

■ Make is an automated build utility.
■ It automatically determines which pieces of a large

program need to be recompiled, and issues commands
to recompile them.

■ Although all our examples will be based on C
programming, Make can be used with any language.

■ These slides are based on the excellent Make Tutorial at
http://theory.uwinnipeg.ca/gnu/make/make_toc.html

Makefile

■ Make gets its instruction for “Makefile” file.
■ It's a collection of rules and instruction which explain how

to compile your program.
■ The first rule in your make file is your default rule.
■ If you make a mistake building your rule, your application

will not compile properly.
■ You just need to type “make” at the command to run

make. This will run the default rule.
make
 makefile is the default instruction file and is automatically used.
 To execute a specific action, specify that action as an

argument.
make clean

Dependency Tree

library.o main.o

library.c

book.h

file.o

file.c main.c

library.h file.h

book.o

book.c

Anatomy of a Rule

target ... : dependencies ...
 command
 ...

■ Target : either the name of the file you want to compile or
the name of an action you want to perform.

■ Dependencies : name of files needed to execute the
rule.

■ Command : Action that needs to be carried out.
 A rule can have more than one command, one on each line.
 You need to put a tab character at the beginning of every

command line!

Example makefile

librarydemo : main.o library.o file.o book.o
 gcc -Wall -g -ggdb -o library main.o library.o file.o book.o

main.o : main.c file.h library.h book.h
 gcc -c -Wall -g -ggdb main.c

file.o : file.c file.h library.h book.h
 gcc -c -Wall -g -ggdb file.c

library.o : library.c library.h book.h
 gcc -c -Wall -g -ggdb library.c

book.o : book.c book.h
 gcc -c -Wall -g -ggdb book.c

clean :
 rm -f library main.o library.o file.o book.o

Using Variables
objects = main.o library.o file.o book.o
coptions = -Wall -g -ggdb

librarydemo : ${objects}
 gcc ${coptions} -o library ${objects}

main.o : main.c file.h library.h book.h
 gcc -c ${coptions} main.c

file.o : file.c file.h library.h book.h
 gcc -c ${coptions} file.c

library.o : library.c library.h book.h
 gcc -c ${coptions} library.c

book.o : book.c book.h
 gcc -c ${coptions} book.c

clean :
 rm -f library ${objects}

Implicit rule

■ Make has an implicit rule for updating a “.o” file from a
correspondingly named “.c” file.

■ Although I don't recommend you using it, I'm showing
them to because will see them used frequently.

objects = main.o library.o file.o book.o

diskdemo : ${objects}
 gcc ${coptions} -o library ${objects}

main.o : file.h library.h book.h
file.o : file.h library.h book.h
library.o : library.h book.h
book.o : book.h

clean :
 rm -f library ${objects}

