
Strings and Multiple Source Files

Comp-206 : Introduction to Software Systems
Lecture 15

Alexandre Denault
Computer Science
McGill University

Fall 2006

String operation

■ As you have probably noticed by now, C does not have a
string primitive.

■ This means that traditional operators, such as = or ==
cannot be used with strings.
 string1 == string2 will compare the pointer addresses, not the

content of the string.
■ C provided functions in the <string.h> library to

manipulate and compare string.

Len of String

■ The strlen functions returns the length of a string, not
including the terminating null character.
 size_t strlen(const char *s);

Comparing Strings

■ To compare two string, use the strcmp function.
 int strcmp(const char *s, const char *t)

■ The function does a char by char comparison:
 If both strings are equal, the function returns a 0.
 The function returns a negative number if s > t
 The function returns a positive number if t > s

■ The strncmp function can also be used if only the first n
characters of a string need to be compared.
 int strncmp(const char *s, const char *t, size_t n)

Concatenating String

■ The strcat function appends the src string to the dest
string.
 char *strcat(char *dest, const char *src);

■ Once both string have been concatenated, a terminating
null character is added.
 The original null character at the end of dest is overwritten.

■ The strings may not overlap.
■ The dest string must have enough space for the result.
■ If only n characters from src need to be concatenated,

the strncat function should be used instead.
 char *strncat(char *dest, const char *src, size_t n);

Copying Strings

■ The strcpy() function copies the string pointed to by src
to the array pointed to by dest.
 char *strcpy(char *dest, const char *src);

■ The terminating `\0' character is also copied.
■ The strings may not overlap.
■ The destination string dest must be large enough to

receive the copy.
■ In only n characterns need to be copied, the strncpy

function should be used instead.
 char *strncpy(char *dest, const char *src, size_t n);

■ Note that if no null byte among the first n bytes of src,
the result will not be null-terminated.

Library Example

■ Small example application to manage a book list.
■ Striking similarity to assignment 2.
■ For modules:

 Book : Structure to hold book information.
 Library : Structure to hold collection of books.
 File : Utilities to save/load books.
 Main : Runs the application.

Dependencies

Library

Book

Main

File

Using Multiple Files

■ As mentioned before, functions and types in C need to
be defined before they can be used.

■ For functions, we can solve this problems by declaring
the functions before we use them (function prototype).

■ But what happens when we want to use a function
defined inside another file?

■ C allows us to include a file inside another.
 We will take a look at this latter in the lecture.

Using Header Files

■ When programming in C, code is usually separated in
two types of file:
 Header files (.h)
 Code files (.c)

■ All the preprocessor commands, type declarations,
global variable declaration and function prototypes are
usually stored in the header file.
 Header files have the .h extension.

■ The actual code is store in the code file.
 Code files have the .c extension.

Dependency Tree

library.c

file.h

book.c

main.c

book.h

file.c

library.h

book.h
#if !defined(BOOK)
#define BOOK

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef struct {
 char * title;
 char * author;
 int pages;
} book;

book * createBook(char* title, char* author, int pages);
void printBook(book* myBook);
void unallocateBook(book* myBook);

#endif

book.c
#include "book.h"

book * createBook(char* title, char* author, int pages) {

 book* newBook;

 newBook = (book *)malloc(sizeof(book));
 newBook->title = (char *)malloc(strlen(title)+1);
 newBook->author = (char *)malloc(strlen(title)+1);
 newBook->pages = pages;
 strcpy(newBook->title, title);
 strcpy(newBook->author, author);

 return newBook;
}

void printBook(book* myBook) {
...

main.c
#include "book.h"
#include "library.h"
#include "file.h"

int main (int argc, char **argv) {

 library* mylibrary = createLibrary(20);

 loadLibrary("lib.txt", mylibrary);

 addBookToLibrary(mylibrary, createBook(
"Lotr", "Tolkien", 300));

 addBookToLibrary(mylibrary, createBook(
"Harry Potter", "Rowing", 50));

 addBookToLibrary(mylibrary, createBook(
"C Prog", "Kerning", 100));

 printLibrary(mylibrary);
...

Preprocessor

■ The preprocessor processes a file before it is compiled.
 It removes comments from source files.
 It executes preprocessor commands (#define, #include).

■ Preprocessor commands (or directives) are most often
found in the beginning of the source file.

#include

■ Any instance of the #include directive is replace by the
content of the filename attached to the directive.

■ #include directive come in two formats:
 #include <filename>
 #include “filename”

■ When using the include statement with the < >, the
preprocessor searches for filename in the library
directories of the operating system.

■ When using the include statement with the “ “, the
preprocessor searches for filename in the same directory
as the source file.

#define

■ #define directives are used to define symbolic names or
values.

■ Similar to constant variables, #define can be used to
insert hard-coded values.

■ However, #define commands are executed by the
preprocessor, before the code is compiled.

■ The directive will replace the defined keyword by the
defined value.
 #define STEP 20
 In this case, all occurrence of the string STEP will be replaced

by the number 20

#define vs const

■ #define is more efficient
 Const is a variable and requires memory.
 #define is a text replacement and requires no additional

memory
■ const is safer

 Since the constant is a variable, the compiler can safely type
check it.

 #define can have some weird interaction (next slide).
■ My rule of thumb: unless you have a specific reason for

using #define, use const.
■ Good reasons for using #define include:

 Memory is a concern
 Performance is a concern
 You need the constant in another preprocessor command.

Dangers of define

#define C1 10/5
float const C2 = 10/5;

float C3 = 23.0 / C1; // C3 = 11
float C4 = 23.0 / C2; // C4 = 11.5

■ Why? Because C3 gets preprocessed to
float C3 = 23.0 / 10/5;

■ Because of the presence of 10 and 5, we get integer
division.

■ This example is pretty simple, but in large applications
(hundreds of source files), this can be difficult to find.

Macro Substitution

■ Macros exploit the substitution power of #define directive
to embedded small functions in the code.

■ Macros have the following syntax:
 #define name function

■ A common example of macro is the maximum value
macro.
 #define max(A, B) ((A) > (B) ? (A) : (B))

■ Not that macros are even more dangerous then #define
statements.
 By themselves, they are usually ok.
 However, if you start mixing them, you might get some

unexpected behavior.

Conditional Inclusion

■ It is possible to control preprocessing itself with
conditional statements that are evaluated during
preprocessing.

■ This provides a way to include code selectively,
depending on the value of conditions evaluated during
compilation.

■ The two most common uses of conditional inclusions
are:
 Making sure that a header is included only once.
 Adapting code to different OS.

Mixed an matched headers

filea.c fileb.c filec.c

filec.hfileb.hfilec.a

Headers only Once

■ To make sure that the contents of a file are included only
once, the contents of the file are surrounded with a
conditional like this:
#if !defined(UNIQUE_KEYWORD)
#define UNIQUE_KEYWORD
/* contents of header go here */
#endif

■ Note that the defined variable should be unique to the
file (unless you know exactly what you are doing).

Introduction to Make

■ Make is an automated build utility.
■ It automatically determines which pieces of a large

program need to be recompiled, and issues commands
to recompile them.

■ Although all our examples will be based on C
programming, Make can be used with any language.

■ These slides are based on the excellent Make Tutorial at
http://theory.uwinnipeg.ca/gnu/make/make_toc.html

Makefile

■ Make gets its instruction for “Makefile” file.
■ It's a collection of rules and instruction which explain how

to compile your program.
■ The first rule in your make file is your default rule.
■ If you make a mistake building your rule, your application

will not compile properly.
■ You just need to type “make” at the command to run

make. This will run the default rule.
make
 makefile is the default instruction file and is automatically used.
 To execute a specific action, specify that action as an

argument.
make clean

Dependency Tree

library.o main.o

library.c

book.h

file.o

file.c main.c

library.h file.h

book.o

book.c

Anatomy of a Rule

target ... : dependencies ...
 command
 ...

■ Target : either the name of the file you want to compile or
the name of an action you want to perform.

■ Dependencies : name of files needed to execute the
rule.

■ Command : Action that needs to be carried out.
 A rule can have more than one command, one on each line.
 You need to put a tab character at the beginning of every

command line!

Example makefile

librarydemo : main.o library.o file.o book.o
 gcc -Wall -g -ggdb -o library main.o library.o file.o book.o

main.o : main.c file.h library.h book.h
 gcc -c -Wall -g -ggdb main.c

file.o : file.c file.h library.h book.h
 gcc -c -Wall -g -ggdb file.c

library.o : library.c library.h book.h
 gcc -c -Wall -g -ggdb library.c

book.o : book.c book.h
 gcc -c -Wall -g -ggdb book.c

clean :
 rm -f library main.o library.o file.o book.o

Using Variables
objects = main.o library.o file.o book.o
coptions = -Wall -g -ggdb

librarydemo : ${objects}
 gcc ${coptions} -o library ${objects}

main.o : main.c file.h library.h book.h
 gcc -c ${coptions} main.c

file.o : file.c file.h library.h book.h
 gcc -c ${coptions} file.c

library.o : library.c library.h book.h
 gcc -c ${coptions} library.c

book.o : book.c book.h
 gcc -c ${coptions} book.c

clean :
 rm -f library ${objects}

Implicit rule

■ Make has an implicit rule for updating a “.o” file from a
correspondingly named “.c” file.

■ Although I don't recommend you using it, I'm showing
them to because will see them used frequently.

objects = main.o library.o file.o book.o

diskdemo : ${objects}
 gcc ${coptions} -o library ${objects}

main.o : file.h library.h book.h
file.o : file.h library.h book.h
library.o : library.h book.h
book.o : book.h

clean :
 rm -f library ${objects}

