Rail Industry Guidance Note
GEGN8650

Issue: One

Date: March 2017

Guidance on High-
Integrity Software-Based
Systems for Railway
Applications

Synopsis

This document provides guidance on the
procurement and specification of high-
integrity software.

Copyright in the Railway Group documents is owned by Rail
Safety and Standards Board Limited. All rights are hereby
reserved. No Railway Group document (in whole or in part)
may be reproduced, stored in a retrieval system, or
transmitted, in any form or means, without the prior written
permission of Rail Safety and Standards Board Limited, or as
expressly permitted by law.

RSSB members are granted copyright licence in accordance
with the Constitution Agreement relating to Rail Safety and
Standards Board Limited.

In circumstances where Rail Safety and Standards Board
Limited has granted a particular person or organisation
permission to copy extracts from Railway Group documents,
Rail Safety and Standards Board Limited accepts no
responsibility for, nor any liability in connection with, the use
of such extracts, or any claims arising therefrom. This
disclaimer applies to all forms of media in which extracts
from Railway Group documents may be reproduced.

Published by RSSB

© Copyright 2017
Rail Safety and Standards Board Limited

Rail Industry
Guidance Note
GEGN8650

Issue: One

Date: March 2017

Guidance on High-Integrity Software-
Based Systems for Railway Applications

Issue Record

Issue

Date

Comments

One

04/03/2017

Original document. To provide industry with the good practice
guidance for procuring high-integrity software that resulted
from T1047.

This document will be updated when necessary by distribution of a complete replacement.

Superseded Documents

This Rail Industry Guidance Note does not supersede any other Railway Group documents.

Supply

The authoritative version of this document is available at www.rssb.co.uk/railway-group-standards. Enquiries
on this document can be forwarded to enquirydesk@rssb.co.uk.

Page 2 of 27

RSSB

http://www.rssb.co.uk/railway-group-standards
mailto:enquirydesk@rssb.co.uk

Guidance on High-Integrity Software- Rail Industry

. . . Guidance Note
Based Systems for Railway Applications GEGN8650
Issue: One
Date: March 2017

Contents

Part 1 Introduction

1.1 Purpose

1.2 Background

1.3 European standards relevant to this guidance note
1.4 Approval and Authorisation

Part 2 What are High-Integrity Software and Software-Based Systems?

2.1 High-integrity software
2.2 High-integrity software-based systems
2.3 Measuring integrity
2.3.1 Random failures versus systematic failures
2.4 Software development life cycle

Part 3 Guidance on the Procurement of High-Integrity Software and Software-Based Systems

3.1 Introduction

3.2 Requirement development

3.3 Documenting the design choices

3.4 Documenting the selection of V&V activities

3.5 Maintenance plan

3.6 Procurement of high-integrity software or software-based systems

Part 4 Guidance on the Preparation of High-Integrity Software Specifications

4.1 Determining the software SIL
4.2 Adequate requirement specification
4.3 Principles for complete requirements
4.3.1 Safety analysis during requirement development
4.3.2 Requirement categorisation
4.4 Principles for correct requirements
4.4.1 Documenting the system’s operating environment
4.4.2 Documenting what the software must and must not do
4.5 Principles for consistent requirements
4.5.1 Managing changes in software requirements
4.5.2 Verification of requirements

Part 5 Management of Software Suppliers for Software-Based Systems

5.1 Introduction
5.2 Principles for managing suppliers
5.2.1 Technical requirements for contracts
5.2.2 Need for independent certification of software
5.2.3 Generating evidence of V&V activities
5.2.4 Specifying notations to be used

[=))]

[o] NoO oo

[@ Ve Vo Vo lye.]

13

13
13
13
13
14
14

16

16
16
16
16
16
17
17
17
18
18
18

19

19
19
19
20
20
20

RSSB Page 3 of 27

Rail Industry
Guidance Note

Guidance on High-Integrity Software-

GEGN8650 Based Systems for Railway Applications

Issue: One
Date: March 2017

5.2.5 Role of the customer 21

5.3 Principle for managing suppliers for the maintenance of the software 21

Definitions 22

Abbreviations 25

References 26
Page 4 of 27 RSSB

Guidance on High-Integrity Software- Rail Industry

Guidance Note

Based Systems for Railway Applications GEGN8650

Issue: One
Date: March 2017

List of Figures

Figure 1: Simplified V model for software development life cycle 10

RSSB Page 5 of 27

Rail Industry Guidance on High-Integrity Software-

Guidance Note . . .
GEGN8650 Based Systems for Railway Applications
Issue: One

Date: March 2017

Part 1 Introduction

1.1 Purpose

1.1.1 This document gives guidance on high-integrity software-based systems, as set out in 2.7 for railway
applications. This document does not set out requirements.

1.1.2 This document has been developed to assist with:

a) The process for the procurement of high-integrity software and software-based systems.
b) The preparation of specifications for high-integrity software and software-based systems.
¢) The contractual arrangements for software suppliers for software-based systems.

1.1.3 This document gives guidance to those in procurement and project teams who procure, receive and
review high-integrity software or software-based systems, but do not have a detailed knowledge of software
development processes.

1.1.4 Commercial Off-the-Shelf (COTS) software is not considered specifically in this document as it is not
considered high-integrity. If the COTS software is customised to perform safety functions, then the
guidance set out in this document may be followed.

1.1.5 This document does not constitute a recommended method to achieve fault-free high-integrity
software. Software development processes are set out in European standards as set out in 7.3.

1.2 Background

1.2.1 There are key safety benefits and technological drivers to introduce programmable technologies in
the industry. High-integrity programmable controllers (hardware) rely on high-integrity software to perform
safety functions.

1.2.2 High-integrity software and software-based systems are being used more frequently on the railways,
so there is increased potential for safety-critical failures. The High Integrity Systems Group (HISG) was set
up by RSSB to support the industry’s understanding of these issues. The group commissioned the research
report T1047 ‘Industry Guidance on High-Integrity Software’, which has been used to inform this guidance
note (GN).

1.2.3 Inrecent years there have been safety incidents involving software-based systems in operational use
on the Great Britain (GB) railway where software faults have been a contributory factor. Two of these,
Milton Keynes and Desborough, were investigated by the Rail Accident Investigation Branch (RAIB) and its
reports for these incidents are in the references.

1.2.4 More details of principles concerning software engineering practices can be found in section G of
research report T1047. These are not included in this GN as they are covered by European standards and
are outside the scope of this document, as set out in 7.7.

1.3 European standards relevant to this guidance note
1.3.1 BSEN 50128:2011 is currently the only European standard that includes detailed requirements for

software for the rail industry and it addresses communication, signalling and control and protection
systems. Software for use on rolling stock will be covered by prEN 50657, which is currently being developed.

Page 6 of 27 RSSB

Guidance on High-Integrity Software- Rail Industry

Guidance Note

Based Systems for Railway Applications GEGN8650

Issue: One
Date: March 2017

1.3.2 BS EN 50155:2007 includes some generic requirements for software which are particularly applicable
to COTS products.

1.3.3 BS EN ISO 9001:2015 provides requirements on quality management of software.
1.3.4 BS EN 50159:2010 includes some generic requirements for software relating to transmission systems.

1.3.5 BS EN 50126:1999 sets out the requirements for system Safety Integrity Levels (SILs) and safety
management requirements.

1.3.6 BSEN ISO 13849-2:2012 includes some requirements for software for machinery. On Track Machines
and On Track Plant have to comply with the Machinery Directive and may use BS EN ISO 13849-2:2012 as
a presumption of conformance.

1.4 Approval and Authorisation

1.4.1 The content of this document was approved by the Control Command and Signalling Standards
Committee on 27 October 2016.

1.4.2 This document was authorised by RSSB on 27 January 2017.

RSSB Page 7 of 27

Rail Industry Guidance on High-Integrity Software-

Guidance Note . . .
GEGN8650 Based Systems for Railway Applications
Issue: One

Date: March 2017

Part 2 What are High-Integrity Software and Software-Based
Systems?

2.1 High-integrity software

2.1.1 High-integrity software is software that has gone through a rigorous development process with the
aim of giving a high level of confidence that the software will perform as intended. The need to always
perform as intended is paramount, as otherwise the result is likely to lead to large financial costs, disruption
or physical harm. High-integrity software can therefore be considered to be the same as safety-critical
software.

2.1.2 Rigour is defined in terms of how faithful the transformations from requirements to code are, and the
assurance activities in the different phases of the development.

2.1.3 The following methods are used to support rigour:

e Validation and verification (V&V) process.

e Top down design methods.

e Modularity.

e Clear documentation and traceability.

¢ Robust configuration management and change control.

o Cross-discipline co-operation.

e Appropriate consideration of organisation and personnel competency issues.

2.1.4 The V&V process is applied during the development life cycle, according to good practices, to reduce
the potential for functional failures as a result of errors or faults in the software. The V&V process is set out
in BS EN 50126-1:1999.

2.1.5 Software verification provides objective evidence that the design outputs of a particular phase of the
software development life cycle meet all of the specified requirements for that phase and maintain
compliance of the product against overall product specification.

2.1.6 Software validation provides confirmation by examination and provision of objective evidence that
software specifications conform to user needs and intended uses, and that the particular requirements
implemented through software can be consistently fulfilled.

2.1.7 Systematic verification and validation techniques need to be applied, ideally during the software
development, or during integration of already existing pieces of software. For COTS products, validation
techniques can be applied for assurance purposes.

2.1.8 The potential for software faults, which result in failures, increases with the complexity of software,
and predicting all of the different ways of failure is generally not feasible. While it is not possible to identify
all failures, the developer attempts to identify the failure modes as part of the development process.

2.1.9 Itis not possible to test all behaviours generated by any complex software using dynamic testing
alone. Exhaustively testing all binary states to add two integer inputs of 32-bits (yielding 2°“ distinct test
cases) would take hundreds of years, even if tests were performed at a rate of thousands per second. Static
analysis techniques can analyse the code more quickly but also does not identify all faults. Software testing,
in all its forms, is therefore only one part of the validation of the software.

2.1.10 In modern safety-critical systems, high-integrity software performs safety functions to mitigate risks
that have been identified by safety analysis. Other functionality provided by high-integrity software could
pose a risk if it fails.

Page 8 of 27 RSSB

Guidance on High-Integrity Software- Rail Industry

. . . Guidance Note
Based Systems for Railway Applications GEGN8650
Issue: One
Date: March 2017

2.1.11 High-integrity software or software-based systems can only be produced if the software is built
correctly by the development team and the software is verifiable efficiently. For example, selecting an
appropriate programming language and development tools that minimise the introduction of errors will
have a much bigger impact on the defect density of software than adding more dynamic tests.

2.1.12 Software SILs are an indication of the rigour required of the activities of validation and verification
of the software. The higher the software SIL, the higher the need for a reduction in the likelihood of
software errors; hence, the more rigorous the software development.

2.1.13 Inthe context of the railway, BS EN 50128:2011 distinguishes five different software SILs:

e SIL O (lowest integrity).
e SIL1.

o SIL2.

e SIL3.

o SIL 4 (highest integrity).

Note: SIL 3 and SIL 4 are generally regarded as high-integrity.

2.1.14 As the acronyms of software Safety Integrity Level and system Safety Integrity Level are the same,
they are referred to as software SIL and system SIL in this GN.

2.1.15 High-integrity software can be procured separately or as an integrated part of a system.

2.2 High-integrity software-based systems

2.2.1 High-integrity software-based systems are those integrated systems of hardware and software where
the software is high-integrity.

2.2.2 The procurement of these systems may include the processes set out in this GN for high-integrity
software, in addition to the standard procurement processes for the system. It is expected that the same
documentation will be delivered for the system as it would be if the software was being procured separately.

2.3 Measuring integrity

2.3.1 Random failures versus systematic failures

2.3.1.1 In the context of safety-critical systems, two categories of failures are identified:

a) ‘Random failures’ which are caused by random hardware faults and can be measured quantitatively.
b) ‘Systematic failures’ which are caused by systematic faults / design faults and can only be assessed
qualitatively.

2.3.1.2 Systematic failures occur under deterministic conditions as a result of a fault or a sequence of
faults that have been introduced during software development. Systematic faults can be created at any
stage of the system’s life cycle, including specification, design, development, operation and maintenance.

2.3.1.3 Unlike traditional engineering, not all behaviours of software-based systems can be predicted, and
testing trials are not sufficient to predict all systematic failures. For this reason, random and systematic
faults introduced during the development of the software, and software-based systems, need different
kinds of mitigations, and controls, against safety risks.

2.3.1.4 Therisk arising from systematic failures can be mitigated by following a rigorous verification and
validation process that is associated with a design and production process with the appropriate
methodology and techniques according to the software SIL. This aims to eliminate systematic or design
faults. In this context, the software SIL has a qualitative meaning.

RSSB Page 9 of 27

Rail Industry Guidance on High-Integrity Software-

Guidance Note . . .
GEGN8650 Based Systems for Railway Applications
Issue: One

Date: March 2017

2.4 Software development life cycle

2.41 Figure 1 is a simplified version of the V cycle model for the software development life cycle set out in
BS EN 50128:2011. This model illustrates the intermediate phases between the beginning and the end of
the development life cycle. In each phase of the development, there is the possibility for a design error to be
introduced.

Note: This is one of many software development life cycles that may be used. This guidance does
not recommend any particular life cycle.

| Procurement " Reguirements l e e A e —p | Safety Assessment | | Maintenance

I~ ~ Sotware ! Software
| Architecture | validation/testing

- N -~ e S

O (BEREETL) | othercots) | béb
% N
(9/. A‘b’
“ ™~ Eofware ! ™ ~Component !
72| component design | aldationtesting |
I~ “Components !

Customer primarily responsible and described
in this document

N
| Supplier primarily responsible and not
| | described in this document

Figure 1: Simplified V model for software development life cycle

2.4.2 Some common design faults that can be introduced in each phase of the development are:

a) Omissions in the (safety) requirements.

b) Incorrect specification of the software architecture.

c) Incorrect design of the software or its components.

d) Undetected coding error during implementation.

e) Lack of design in the code to deal with erroneous or unexpected parameters.
f) Misinterpretation of the requirements by the software designer.

2.4.3 Unlike physical systems where the majority of faults are introduced during manufacture and
maintenance, most of the faults in software are design errors introduced during the development phase.
Software does not suffer from wear-and-tear — it will not change until it is upgraded or otherwise modified.
Therefore, once the software is shipped, the design faults — or ‘bugs’ — will be hidden and remain latent
until activation.

Note: Software may also change as the result of modifications by malicious software or changes in
the software operating environment.

2.4.4 As with any complex system, discovering the design faults through testing is very difficult and may
not be feasible, as set out in 2.7.9.

2.4.5 To reduce the cost of the modifications it is always better to perform rigorous verification of the
software design and the test specifications, but this is not always enough to avoid design changes.
Regression testing is therefore required every time a safety function is affected. Modern simulation

Page 10 of 27 RSSB

Guidance on High-Integrity Software- Rail Industry

. . . Guidance Note
Based Systems for Railway Applications GEGN8650
Issue: One
Date: March 2017

techniques allow validation of a model of the design quite early in the process, thus reducing the amount of
rework and facilitating the impact analysis on the design of any required change.

2.4.6 Testing alone is not sufficient to eliminate software faults, for two main reasons:

a) Faults can be introduced in any phase of the software life cycle, yet only code can be extensively tested.
Identifying faults introduced from previous phases of the development life cycle from testing code alone
can be challenging or nearly impossible in any complex software.

b) The number of all possible software faults is too big to be tested.

2.4.7 Rigorous development techniques assist in reducing the number of faults introduced during the
design phase and provide information to support V&V activities. Annex A in BS EN 50128:2011 sets out
development techniques for different software SIL levels.

2.4.8 Employing appropriate V&V techniques provides assurance about the level of integrity of the
software. Table A5 of BS EN 50128:2011 sets out guidance on V&V techniques for each software SIL level.

2.4.9 Vadlidation techniques can be applied post-development, for example for COTS software, and could
provide assurance about the integrity of the software. Obtaining sufficient evidence for full validation can
be problematic, so this is often only suitable for lower integrity COTS software.

2.410 The verification process and associated verification activities applied to each phase of the life cycle
of the software substantially help in eliminating design errors and faults as the development progresses.

2411 BSEN 50128:2011 sets out a number of ways to perform the V&V activities. V&V activities are not
easily interchangeable and some methods / activities are more formal than others and are appropriate in
specific development circumstances. Verification methods to reduce faults in the code and the data vary,
from code inspections by independent developers to automatic formal proofs using methods set out in

BS EN 50128:2011 Table A 11.

2.412 The verification methods applied to the software process reduce the number of faults in the final
software product.

2413 Formal methods are the most rigorous ways for proving the conformance of software (in the final
phase of the development) with the specification / requirements (initial phase).

2414 The V&V process does not help in assessing if the intended requirements, which address the original
problem, have been adequately captured. Methods for assessing this are set out in Part 4.

2.415 Formal methods, as set out in D.28 of BS EN 50128:2011, use mathematically-based notations and
tools to:

a) Formally verify the functional requirements of a system (or of the individual components of a system).

b) Refine (via a sequence of refinement phases, each of which is formally proven correct) the functional
requirements into a ‘low-level’ implementation of those requirements.

¢) Validation of the requirements and the fulfilment of the safety requirements if simulation techniques
are available.

2.416 The application of formal methods requires a well-understood and defined set of requirements.
Historically, the application of formal methods required a highly skilled workforce trained in these methods.
There are now tools that do not require these skills as they hide all the mathematical analysis from the user.
These tools can also be used to entirely remove low-level programming errors and security holes.

2.417 Mathematically-based notations are best used in small, well-understood and specific projects such
as interlocking design, due to the skills and resources required to apply them, unless the tools described in
2.4.16 are used.

2.418 Formal methods for modelling requirements can be used to help uncover hidden and unintended
assumptions. Once the requirements are fixed, the V&V process can only assess whether the software
conforms to the specifications.

RSSB Page 11 of 27

Rail Industry Guidance on High-Integrity Software-

Guidance Note . . .
GEGN8650 Based Systems for Railway Applications
Issue: One

Date: March 2017

2.419 Formal methods and modelling techniques are proven tools to deliver a better understanding of the
system boundaries, functional states and behaviours. The use of these techniques will enable a more
accurate and clear requirements definition.

Note: Formal methods are only highly recommended in BS EN 50128:2011 for high-integrity
software, as other methods are available.

2.4.20 As software development is an iterative process, a good change management process is used to
ensure traceability of the requirements throughout the life cycle of the software.

Page 12 of 27 RSSB

Guidance on High-Integrity Software- Rail Industry

. . . Guidance Note
Based Systems for Railway Applications GEGN8650
Issue: One
Date: March 2017

Part 3 Guidance on the Procurement of High-Integrity Software and
Software-Based Systems

3.1 Introduction

3.1.1 Procuring software against incomplete or incorrect requirements significantly increases the costs and
time for software development. It is therefore important that requirements are adequately captured,
researched and documented before placing a contract.

3.1.2 Changes in requirements at late stages of the software development life cycle will lead to additional
costs, due to the effort involved in revising the work and V&V activities from earlier phases.

3.1.3 Since change is often inevitable, it is recommended that the change management process is included
in the contract.

3.1.4 The following sections provide guidance on the procurement of high-integrity software.

3.2 Requirement development

3.21 Requirements are the starting point for the software development life cycle, as shown in Figure 7.
Even if the software is fault-free, the code will behave exactly as specified in the requirements with
inadequate requirements delivering inadequate software.

3.2.2 As with hardware systems, the technical specification of high-integrity software and software-based
systems relies on technical experts who have a deep understanding of the safety and integrity principles,
and of how the system needs to behave in the domain of application, including the overall business needs
(service performance, reliability and operability / maintenance).

3.3 Documenting the design choices

3.3.1 At each phase of the development life cycle shown in Figure 7, design choices are made to ensure
the description of the original requirements is gradually transformed into code. It is important that the
original requirements can be easily traced into the code, to facilitate V&V activities. Documenting the
traceability of the requirements at each phase during the development of the software facilitates the
tracing of mistakes / errors / ‘bugs’ and changes made in each phase of the development life cycle. Tracing
requirements retrospectively from the code is both very time consuming and costly. Annex D.58 of BS EN
50128:2011 provides guidance on traceability of requirements.

3.3.2 Safety analysis determines the safety requirements for the software. As part of any change to the
requirements the impact of the change is considered on the software SIL level and therefore if the V&V
techniques need to be changed or the process repeated.

3.4 Documenting the selection of V&V activities

3.41 Documenting the V&V activities at each phase of the software development is an integral part of
being able to independently assess if the process to achieve the required software SIL has been followed.

3.4.2 BSEN50128:2011 sets out a choice of V&V activities to meet the appropriate software SIL.

RSSB Page 13 of 27

Rail Industry Guidance on High-Integrity Software-

Guidance Note . . .
GEGN8650 Based Systems for Railway Applications
Issue: One

Date: March 2017

3.4.3 Good practice is for the supplier to justify the choice of V&V activities. Typically, the justification
takes into account:

a) Complexity of the software.

b) Software development life cycle model chosen.

¢) Coding language chosen for the software (section 6.7 in BS EN 50128:2011).
d) Availability of the tools needed to perform the V&V activities.

3.4.4 Methods of adequately documenting the verification activities are set out in section 6.2.4 of BS EN
50128:2011.

3.4.5 Methods of adequately documenting the validation activities are set out in section 6.3.4 of BS EN
50128:2011.

3.4.6 Itisimportant when procuring software, to obtain possession of the V&V documentation to facilitate
future development of the software and, if required, independent assessment of the software SIL level.

3.4.7 The higher the software SIL that is required, the more rigorous the V&V process is and the more
stringent the maintenance plan, as set out in section 9.3 of BS EN 50128:2011.

3.5 Maintenance plan

3.5.1 To preserve the software SIL throughout the lifetime of the software used in a safety-critical system,
maintenance and obsolescence plans are used to record amendments and changes, providing traceability
to be assessed. The maintenance plan also shows the current status of the software.

3.5.2 The higher the SIL that is required, the more rigorous the V&V process is and the more stringent the
maintenance plan, as set out in section 9.3 of BS EN 50128:2011.

3.5.3 The maintenance plan may also include information about:

e Configuration management.
o Disposal of the software.

o Retirement of the software.
e Bug fixes.

3.5.4 Obsolescence plans and strategies need to take place at development stages (hardware and
software). COTS hardware obsolescence will potentially drive software retest and / or re-design with
significant cost implications.

3.6 Procurement of high-integrity software or software-based systems

3.6.1 Before beginning the procuring of high-integrity software, the specification is prepared in draft. This
starts with a hazard analysis of the system, by the system and / or software designer and ideally with user
input, to determine the tolerable or acceptable failures for the safety function belonging to the system. In
turn, failure criteria are assigned to each component or sub-system, including software-based components.

3.6.2 The principles for writing the software requirements and specification are set out in Part 4.

3.6.3 The principles for supplier management, including software maintenance and V&V activities, are set
outin Part 5.

3.6.4 Detadils of suggested requirements in the contract are set out in 5.2.7.

3.6.5 This process facilitates the correct software specification and therefore supports the contract
management.

Page 14 of 27 RSSB

Guidance on High-Integrity Software- Rail Industry

. . . Guidance Note
Based Systems for Railway Applications GEGN8650
Issue: One
Date: March 2017

3.6.6 Where COTS software is being considered, the participation of all stakeholders in the decision
provides confidence that it is sufficient to meet the system requirements; that is, meet the minimum
requirements of clause 7.3.4.7 of BS EN 50128:2011. Stakeholders could include:

e System supplier.

e System operator.

e Safety department.

e COTS supplier.

e Others, as appropriate.

3.6.7 Where software-based systems are being procured, the same process is followed if the software is
being specified as part of the system. In the case where the software is already written and being
integrated into a system, it is expected that the documentation described in this GN is provided with the
system.

3.6.8 Where software or software-based systems are being customised for a particular use, the same
process as set out in this GN is required, but some of the tasks assigned to the supplier in this GN may
actually transfer to the customer if they are the party responsible for the customisation.

RSSB Page 15 of 27

Rail Industry Guidance on High-Integrity Software-

Guidance Note . . .
GEGN8650 Based Systems for Railway Applications
Issue: One

Date: March 2017

Part 4 Guidance on the Preparation of High-Integrity Software
Specifications

4.1 Determining the software SIL

4.1.1 The hazard analysis, undertaken prior to the start of the procurement process (see 3.6.7) combined
with the information in clause 4 of BS EN 50128:2011, helps with the allocation of the software SIL, which
in turn determines the selection of V&V activities, as set out in 3.4.

4.2 Adequate requirement specification

4.21 Adequate requirements are complete, correct, and consistent and include the identification of safety
functions. Any requirement that is incorrect, unclear, ambiguous or omitted is a systematic fault.

4.2.2 Complete requirements are typically supported by documentation that describes the source and
reason for the requirement and its development history.

4.3 Principles for complete requirements

4.3.1 Safety analysis during requirement development

4.3.1.1 High-integrity software is often developed for safety-critical systems; therefore, safety
requirements need to be adequately elicited, documented and validated. Undertaking this analysis at the
very early stage in the development of software gives confidence that the safety function will be achieved.

4.3.1.2 Safety analysis can be undertaken according to the process defined in the Common Safety Method
for Risk Evaluation and Assessment (CSM RA). Guidance on CSM RA is set out in GEGN8640, GEGN8641,
GEGN8642, GEGN8643, GEGN8644 and GEGN8645.

Note: Alternative safety management systems may be used where CSM RA is not applicable.

4.3.2 Requirement categorisation

4.3.2.1 Itis unlikely that all requirements can be derived without an iterative process. The criteria for
requirements and the related documentation are set out in clause 7.2 of BS EN 50128:2011.

4.3.2.2 In order to check the completeness of the requirements, it is useful to consider different categories
of requirements. Examples include:

a) Functional.

b) Safety.

c) Security, for example protection from cyber attacks and the access rights.

d) Operational, for example interaction with other systems and user interface.

e) Software performance, for example speed of processing and compatibility with other system processes.
f) Input and output data.

g) Reliability.

h) Maintainability.

i) Compatibility with other software applications and communication protocols.

j) Data access connectivity (database connection compatibility).

Page 16 of 27 RSSB

Guidance on High-Integrity Software- Rail Industry

. . . Guidance Note
Based Systems for Railway Applications GEGN8650
Issue: One
Date: March 2017

4.3.2.3 Identifying all stakeholders in a project and understanding how they are related to different
categories of requirements helps to prevent important details being omitted.

4.3.2.4 Inthe case of a new software development, or in the case of integration of different pieces of
software, the involvement of software engineers in the process of specifying the requirements can assist
with the supplier’s understanding of the requirements.

4.4 Principles for correct requirements

4.4.1 Documenting the system’s operating environment

4.41.1 Itis the customer’s responsibility to collect and appropriately document information (requirements
and assumptions) about interfaces and interactions with the operating environment. This is because it is the
customer who has the knowledge about the operating environment of the system that the software is
designed to work in.

4.41.2 Typically, the operating environment of a software-based system contains:

a) Operators / users.
b) External interfaces (interfaces with equipment or interfaces with people).
c) Externally connected equipment or systems.

4.4.1.3 Inconsistent or incomplete specifications of any of the interfaces could lead to failures.

4.41.4 A ‘data dictionary’ may be created and maintained as part of the system specification to facilitate
understanding of the data items used in the software. The data dictionary describes the meanings and the
formats (dimensions, units and representations) of static and dynamic data items that the software-based

system either receives from, or transmits to, its intended operating environment.

4.41.5 A data dictionary reduces the potential for different parties making different assumptions about
the meanings and formats of data items, and provides an objective and agreed point of reference for
checking the dimensional correctness of the calculations specified to be performed within the software-
based system.

4.41.6 The data dictionary supports the implementation of defensive programming, as set out in Annex D.
14 of BS EN 50128:2011, which is a useful technique to prevent failure due to unexpected inputs.

4.4.2 Documenting what the software must and must not do

4.4.2.1 Itis possible for software to create hazards in the system's operating environment if it does not
perform as intended. It is therefore necessary for the customer to identify the limits of operation of the
software and specify this to the supplier.

4.4.2.2 Identifying the limits of the inputs, for example, minimum and maximum values, allows invalid
inputs to be identified and fault messages created.

4.4.2.3 A systems engineering approach can be used to aid this process, particularly for safety-functions.
Example steps are:

a) Define what is the objective or safety-target for the function.
b) Identify and list input variables and expected outputs.
c) Define and document test-cases or scenarios that will demonstrate expected results:

i) Expected inputs result in expected outputs.
ii) Unexpected inputs do not result in undesired outputs.

4.4.2.4 An example of a good requirement that defines the limits of operation is "When button x is pressed,
the speed of the train is displayed in miles per hour'.

RSSB Page 17 of 27

Rail Industry Guidance on High-Integrity Software-

Guidance Note . . .
GEGN8650 Based Systems for Railway Applications
Issue: One

Date: March 2017

4.5 Principles for consistent requirements

4.5.1 Managing changes in software requirements

4.51.1 Keeping track of changes to software requirements during the specification development can be
challenging.

4.5.1.2 Principles, to keep requirements consistent include:

a) Documenting the requirements and the rationale for choosing each specific requirement.
b) Keeping requirements under strict version control.

c) Using an automatic tool to document changes in requirements.

d) Modelling the requirements at the appropriate level of abstraction, if possible.

4.5.2 Verification of requirements

4.,5.2.1 Verifying software requirements provides confidence that the correct requirements have been
elicited from the software requirements specification. Useful methods of verification include:

a) Prototyping (useful for systems with user interfaces).

b) Simulating the requirements and assessing them for consistency against the core requirements.
c) Scenario based walk-throughs.

d) State machines.

e) Animation and model simulation.

f) Model-based design tools.

Page 18 of 27 RSSB

Guidance on High-Integrity Software- Rail Industry

. . . Guidance Note
Based Systems for Railway Applications GEGN8650
Issue: One
Date: March 2017

Part 5 Management of Software Suppliers for Software-Based
Systems

5.1 Introduction

5.1.1 When issuing a contract for the development, or integration, of a software-based system, it is the
customer’s responsibility to ensure that the contract is written so that the customer’s intentions and
requirements are made explicit. This includes the specification of activities set out in this GN.

5.1.2 The customer may consider performing a project risk analysis of what might go wrong during the
software development, and monitoring the true state of the project so that early corrective action can be
undertaken.

5.1.3 For high-integrity software contracts, the creation and delivery of adequate documentation and plans
during the development phase is critical. These plans may then be updated during the integration phases,
as appropriate. Clause 5.3.2.4 of BS EN 50128:2011 identifies the following documentation:

a) Software Assurance Quality Plan, which documents the choices for the software development model and
for the rationale of the decisions in each phase of the software development.

b) V&V Plans, which document the rationale for the choices made for the V&V tasks in the V&V process.

¢) Configuration and Management Plan, which documents the data needed to correctly run the software
and any activities during the operational use of the software, including how to deal with error reporting,
error patching and the supplier’s support to ensure the adequate running of the software.

d) Other documents appropriate to the software SIL level, as set out in Table A1 of BS EN 50128:2011.

e) Software architecture.

5.1.4 Documentation of the development of software is useful in reducing costs in the event of a change of
supplier. It is very costly to reverse engineer undocumented complex code. Documentation that provides
traceability of activities, requirements, and architectures in each phase of the software development,
facilitates both changes in the project and in the supplier.

5.1.5 Formal methods, as set out in 2.4, for the V&V process may require staff with specialised skills in
software engineering. To assess the validity of the choices of the V&V process, consideration may be given
to hiring an independent specialist to provide these skills.

5.1.6 Selecting the right supplier is also an important part of ensuring that high-integrity software is
delivered to specification. The most important aspect of selecting the right supplier is ensuring that they
have experience of delivering software to the required, or a higher, SIL level and preferably in the rail
domain. It is often difficult to make the change from one SIL level to a higher one. Supplier selection for
software follows the same structured process as for hardware, with the details above being one of the
criteria.

5.2 Principles for managing suppliers

5.2.1 Technical requirements for contracts

5.2.1.1 ltis useful to include contractual clauses that provide:

a) Support during the identification of the different categories of requirements.
b) Support during the requirements definition.

¢) Support during the testing and / or simulation phase.

d) Adequate management of the agreed changes in the requirements.

RSSB Page 19 of 27

Rail Industry Guidance on High-Integrity Software-

Guidance Note . . .
GEGN8650 Based Systems for Railway Applications
Issue: One

Date: March 2017

e) Documentation that defines all the requirements in a structured manner.

f) Documentation that lists error codes (and solutions).

g) Documentation that lists the log messages to be generated, displayed and logged by the system.
h) Training during introduction of the software.

i) Continued technical support for the software (helpdesk).

j) Provision of updates to the software.

k) Definition of the delivery method for upgrades to the software.

[) Definition of the Intellectual Property Rights (IPR) or ownership of the software.

m) Lifetime support for the software (obsolescence management).

n) The software functional safety report or the evidence for the software independent safety assessment.
0) Management of cyber security.

Note: IPR may be managed through the use of an escrow agreement. Guidance on this is given in
GEGN8607.

Note: Guidance on cyber security has been written by the Department for Transport (DfT) in 'Rail
Cyber Security - Guidance to Industry'.

5.2.2 Need for independent certification of software

5.2.2.1 The requirements for assessment of software are set out in BS EN 50128:2011. Higher-integrity
software always requires an assessment by an assessor who has the qualifications set out in Table B.8 of
BS EN 50128:2011 and is independent, as set out in clause 5.1.2 of the same standard.

5.2.2.2 If the technical changes related to introducing the software or system are significant, as defined in
article 4 of the CSM RA, then the risk assessment for CSM RA requires an independent assessment. The
independent assessment applies to the whole change, not a specific certification for the software. A duty
holder could ask an independent assessor to evaluate the documentation produced by the software
suppliers as part of the compliance with CSM RA.

5.2.2.3 Independent assessment can also be requested by the customer; therefore, good practice is to
consider whether independent assessment is required and provision for it included in the contract.

5.2.2.4 Where software already has an independent certification, the customer may review the
independent certification to determine the applicability of the certification to their use of the software, and
may request additional independent certification.

5.2.3 Generating evidence of V&V activities

5.2.3.1 There are two necessary separate aspects to software correctness:

a) The correctness of the transformation of the requirements into source code (verification).

b) The correctness of the software source code meets the needs of the user, as set out in the software
requirements (validation).

5.2.3.2 Both processes are documented to provide evidence that the software meets its requirements.
5.2.3.3 The production of a Factory Acceptance Test (FAT) report as part of the evidence enables the

customer to progress with User Acceptance Testing (UAT) with confidence.

5.2.4 Specifying notations to be used

5.2.41 Notations are the way in which software is written, for example, the language used. More rigorous
notations cost more as they require more time and specialised skills. Therefore the notations to be used
should be specified to match the requirements of the software SIL.

5.2.4.2 BSEN 50128:2011 sets out the different notations that could be used for each software SIL.

Page 20 of 27 RSSB

Guidance on High-Integrity Software- Rail Industry

. . . Guidance Note
Based Systems for Railway Applications GEGN8650
Issue: One
Date: March 2017

5.2.4.3 There is benefit in the supplier specifying the notations that are to be used so that they use
notations that they are familiar with. The selected notation type is recorded in the contractual documents.

5.2.4.4 Rigorous notation facilitates the fault detection process.

5.2.5 Role of the customer

5.2.5.1 The customer should expect to be involved throughout the software development process to
respond to technical queries. The involvement will be through mutual agreement.

5.3 Principle for managing suppliers for the maintenance of the software

5.3.1 TItis useful to include contractual obligations that enable the future maintenance of the software.
The maintenance could either be done collaboratively with the developer or the contract could enable a
third party to do the maintenance. The items to consider in the contract include:

a) IPR for the source code, final software applications, any associated tools to run or test the code
(compilers, simulators etc) and its documentation (including training modules). Where this is not
possible, a software escrow agreement can be used instead.

b) Documentation for the software development, as set out in Part 4.

¢) Documentation for the V&V activities, including the activity selection justification.

d) Documentation of all tests performed with the expected outcome and their results.

e) Arrangements for the deployment and maintenance of versions of the software-based system in its
operating environment, including, for example, arrangements to allow the customer to prepare and
modify application data for instances of the software system without the involvement of the supplier.

f) A maintenance plan to support the future development of the software.

g) Training in the use of the software.

5.3.2 Requirements for a maintenance plan are set out in section 9.3 of BS EN 50128:2011.

RSSB Page 21 of 27

Rail Industry
Guidance Note
GEGN8650

Issue: One

Date: March 2017

Guidance on High-Integrity Software-
Based Systems for Railway Applications

Definitions

Cant Deficiency

CSM RA

Error

Failure

Fault [Software]

Integrity [Software]

The difference between actual cant and the
theoretical cant that would have to be applied to
maintain the resultant of the weight of the vehicle
and the effect of centrifugal force, at a nominated
speed, such that it is perpendicular to the plane of
the rails.

Common Safety Method for Risk Evaluation and
Assessment. COMMISSION REGULATION (EU) No
2015/1136 of 13 July 2015 amending
Implementing Regulation (EU) No 402/2013 on the
common safety method for risk evaluation and
assessment.

Discrepancy between a computed, observed or
measured value or condition, and the true, specified
or theoretically correct value or condition.
IEV192-03-02

Note: Note to entry 1. An error within a
system may be caused by failure of one or
more of its components, or by the
activation of a systematic fault.
IEV192-03-02

Loss of ability to perform as required. IEV192-03-01

Note: Note to entry 1. A failure of an item is
an event that results in a fault of that item.

Note: Note to entry 2. Qualifiers, such as
catastrophic, critical, major, minor, marginal
and insignificant, may be used to categorise
failures according to the severity of
consequences, the choice and definitions of
severity criteria depending upon the field of
application.

Note: Note to entry 3. Qualifiers, such as
misuse, mishandling and weakness, may be
used to categorise failures according to the
cause of failure.

A fault is an incorrect software system state that
prevents it from performing as required. It may
result from failures in system components, design
errors, environmental interference, or operator
errors.

Software functional integrity refers to the fidelity of
the code to the intended specifications, that is,
functions implemented in the software would
behave as intended in the requirements.

Page 22 of 27

RSSB

Guidance on High-Integrity Software-
Based Systems for Railway Applications

Rail Industry
Guidance Note
GEGN8650

Issue: One

Date: March 2017

Procuring

Reliability

Risk analysis

Risk assessment

Safety

Safety critical

Safety integrity

Safety Integrity Level (SIL)

Software safety integrity level (Software SIL)

Sub-System

System

System safety integrity level (System SIL)

Traceability

Validation [Software]

Procuring is a process of identifying, planning, and
benchmarking goods and services that are
purchased. The procurement process includes
defining the outcomes that are being sought, and
determining whether there is agreement between
buyers and suppliers on an optimum service design.

The ability of an item to perform a required function
under given environmental conditions for a given
period of time. BS EN 50128:2011

The systematic use of all available information to
identify hazards and to estimate the risk. CSM RA

The overall process comprising a risk analysis and a
risk evaluation. CSM RA

The freedom from unacceptable risk to the outside
from the functional and physical units considered.
IEV351-57-05

Directly influencing safety (when applied to
equipment or systems). GKGN0802

The ability of a system to achieve its required safety
function under all the stated conditions within a
stated operational environment and within a stated
period of time. BS EN 50129:2003

A number which indicates the required degree of
confidence that a system will meet its specified
safety function. BS EN 50129:2003

A classification number which determines the
techniques and measures that have to be applied to
software. BS EN 50128:2011

A portion of a system that fulfils a specialised
function. BS EN 50129:2003

A set of sub-systems that interact according to a
plan. BS EN 50129:2003

A classification number which indicates the required
degree of confidence that an integrated system
comprising hardware and software will meet its
specified safety requirements. BS EN 50128:2011

Degree to which a relationship can be established
between two or more products of a development
process, especially those having a predecessor/
successor or master/subordinate relationship to one
another. BS EN 50128:2011

A process of analysis followed by a judgment based
on evidence to determine whether an item (for
example, process, documentation, software or
application) fits the user needs, in particular with
respect to safety and quality and with emphasis on

RSSB

Page 23 of 27

Rail Industry Guidance on High-Integrity Software-

Guidance Note . . .
GEGN8650 Based Systems for Railway Applications
Issue: One

Date: March 2017

the suitability of its operation in accordance with its
purpose in its intended environment. BS EN
50128:2011

Verification [Software] A process of examination followed by a judgment
based on evidence that output items (process,
documentation, software or application) of a
specific development phase fulfil the requirements
of that phase with respect to completeness,
correctness and consistency. BS EN 507128:2011

Page 24 of 27 RSSB

Guidance on High-Integrity Software- Rail Industry

. . . Guidance Note
Based Systems for Railway Applications GEGN8650
Issue: One
Date: March 2017

Abbreviations

CCsS Control, Command and Signalling.

COoTS Commercial-Off-The-Shelf.

HISG High Integrity Systems Group.

IEC International Electrotechnical Commission.
IEV International Electrotechnical Vocabulary.
RSSB Rail Safety and Standards Board.

SC Standards Committee.

SIL Safety Integrity Level.

Software SIL Software Safety Integrity Level.

SRS System Requirements Specification.
System SIL System Safety Integrity Level.

RSSB Page 25 of 27

Rail Industry Guidance on High-Integrity Software-

Guidance Note . . .
GEGN8650 Based Systems for Railway Applications
Issue: One

Date: March 2017

References

The Catalogue of Railway Group Standards gives the current issue number and status of documents
published by RSSB. This information is also available from http://www.rssb.co.uk/railway-group-
standards.co.uk.

RGSC 01 Railway Group Standards Code
RGSC 02 Standards Manual

Documents referenced in the text

Railway Group Standards

GEGN8607 Guidance on the Use of Escrow Agreements for Rail
Applications

GEGN8640 Guidance on Planning an Application of the
Common Safety Method on Risk Evaluation and
Assessment

GEGN8641 Guidance on System Definition

GEGN8642 Guidance on Hazard Identification and
Classification

GEGN8643 Guidance on Risk Evaluation and Risk Acceptance

GEGN8644 Guidance on Safety Requirements and Hazard
Management

GEGN8645 Guidance on Independent Assessment

GKGNO0802 Glossary of Signalling Terms

RSSB Documents

Rail Cyber Security - Guidance to Industry http://www.rssb.co.uk/Library/improving-industry-
performance/2016-02-cyber-security-rail-cyber-
security-guidance-to-industry.pdf

T1047 Industry Guidance on High Integrity Software
http://www.sparkrail.org/Lists/Records/
DispForm.aspx?ID=11362

Other References

BS EN 50126:1999 Railway applications. The specification and
demonstration of reliability, availability,
maintainability and safety (RAMS). Basic
requirements and generic process

BS EN 50128:2011 Railway applications — Communication, signalling
and processing systems - Software for railway
control and protection systems

Page 26 of 27 RSSB

http://www.rssb.co.uk/railway-group-standards.co.uk
http://www.rssb.co.uk/railway-group-standards.co.uk
http://www.rssb.co.uk/Library/improving-industry-performance/2016-02-cyber-security-rail-cyber-security-guidance-to-industry.pdf
http://www.rssb.co.uk/Library/improving-industry-performance/2016-02-cyber-security-rail-cyber-security-guidance-to-industry.pdf
http://www.rssb.co.uk/Library/improving-industry-performance/2016-02-cyber-security-rail-cyber-security-guidance-to-industry.pdf
http://www.sparkrail.org/Lists/Records/DispForm.aspx?ID=11362
http://www.sparkrail.org/Lists/Records/DispForm.aspx?ID=11362

Guidance on High-Integrity Software- Rail Industry

Guidance Note

Based Systems for Railway Applications GEGN8650

Issue: One
Date: March 2017

BS EN 50129:2003

BS EN 50155:2007

BS EN 50159:2010

BS EN ISO 13849-2:2012

BS EN ISO 9001:2015

prEN 50657

RAIB Desborough

RAIB Milton Keynes

Other relevant documents

Railway Group Standards

None.

RSSB Documents

None.

Other References

None.

Railway applications — Communication, signalling
and processing systems - Safety-related electronic
systems for signalling

Railway applications. Electronic equipment used on
rolling stock

Safety-related communication in transmission
systems

Safety of machinery — Safety-related parts of
control systems. Validation

Quality Management Systems. Requirements

Committee draft for comment Railway Applications
- Rolling Stock Applications - Software on board of
rolling stock, excluding railway control and
protection applications

Rail Accident Report - Passenger door open on a
moving train near Desborough, 10 June 2006
https://www.gov.uk/raib-reports/passenger-door-

open-on-d-moving-train-near-desborough

RAIB review of the railway industry’s investigation
of an irregular signal sequence at Milton Keynes, 29
December 2008. https://www.gov.uk/government/
uploads/system/uploads/attachment_data/file/

528154/SI112010 101223 Milton Keynes.pdf

RSSB

Page 27 of 27

https://www.gov.uk/raib-reports/passenger-door-open-on-a-moving-train-near-desborough
https://www.gov.uk/raib-reports/passenger-door-open-on-a-moving-train-near-desborough
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/528154/SI12010_101223_Milton_Keynes.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/528154/SI12010_101223_Milton_Keynes.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/528154/SI12010_101223_Milton_Keynes.pdf

	Contents
	List of Figures
	Part 1 Introduction
	1.1 Purpose
	1.2 Background
	1.3 European standards relevant to this guidance note
	1.4 Approval and Authorisation

	Part 2 What are High-Integrity Software and Software-Based Systems?
	2.1 High-integrity software
	2.2 High-integrity software-based systems
	2.3 Measuring integrity
	2.3.1 Random failures versus systematic failures

	2.4 Software development life cycle

	Part 3 Guidance on the Procurement of High-Integrity Software and Software-Based Systems
	3.1 Introduction
	3.2 Requirement development
	3.3 Documenting the design choices
	3.4 Documenting the selection of V&V activities
	3.5 Maintenance plan
	3.6 Procurement of high-integrity software or software-based systems

	Part 4 Guidance on the Preparation of High-Integrity Software Specifications
	4.1 Determining the software SIL
	4.2 Adequate requirement specification
	4.3 Principles for complete requirements
	4.3.1 Safety analysis during requirement development
	4.3.2 Requirement categorisation

	4.4 Principles for correct requirements
	4.4.1 Documenting the system’s operating environment
	4.4.2 Documenting what the software must and must not do

	4.5 Principles for consistent requirements
	4.5.1 Managing changes in software requirements
	4.5.2 Verification of requirements

	Part 5 Management of Software Suppliers for Software-Based Systems
	5.1 Introduction
	5.2 Principles for managing suppliers
	5.2.1 Technical requirements for contracts
	5.2.2 Need for independent certification of software
	5.2.3 Generating evidence of V&V activities
	5.2.4 Specifying notations to be used
	5.2.5 Role of the customer

	5.3 Principle for managing suppliers for the maintenance of the software

	Definitions
	 Abbreviations
	References

