

Embedded - IC & Automation Fortronic

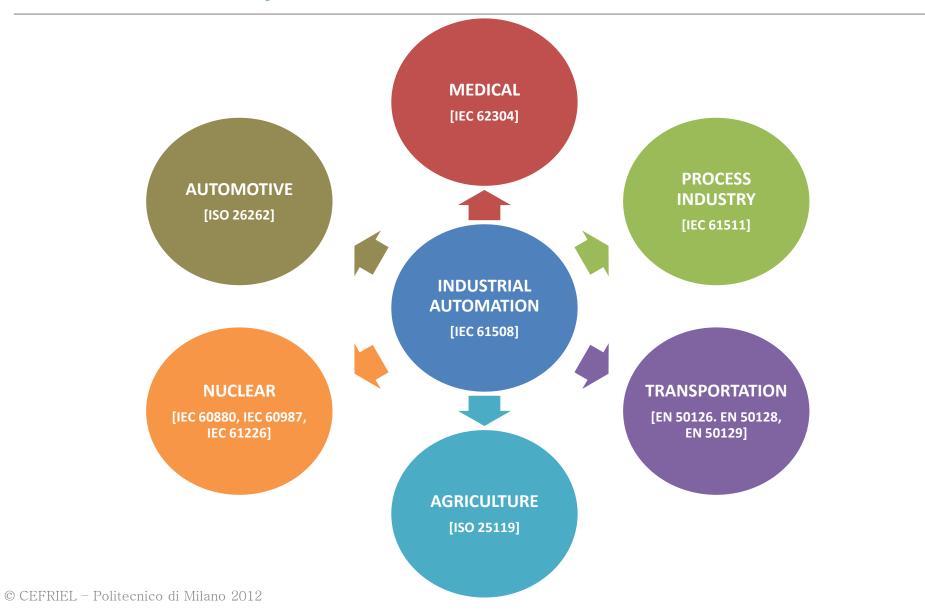
June 21st, 2012 Centro Congressi Milanofiori - Milan

Introduction to Functional Safety

Enrico Silani *CEFRIEL – Politecnico di Milano*

Forging Innovation FORGING INNOVATION S

Introduction to Functional Safety by CEFRIEL – Politecnico di Milano is licensed under a Creative Commons Attribution – Noncommercial – No Derivative Works 3.0 Unported License.


What is Functional Safety? What is Functional Safety about?

- IEC 61508 Definition:
 - **Safety** is the freedom from unacceptable *risk* of physical injury or of damage to the health of people, either directly, or indirectly as a result of damage to property or to the environment.
 - **Risk** is a combination of the probability of occurrence of *harm* and the severity of that harm.
 - **Functional Safety** is part of the overall safety that depends on a system or equipment operating correctly (i.e. perform a **safety function**) in response to its inputs.

- **Functional Safety** is thus about achieving "absence of unreasonable risk due to *hazards* (potential source of harm) caused by malfunctioning behavior of the electrical/electronic/programmable electronic (E/E/PE) systems".
- **Failures** are the main impairment to safety:
 - **Systematic Failures**: failure related in a deterministic way to a certain cause that can only be eliminated by a change of the design or of the manufacturing process, operational procedures, documentation or other relevant factors.
 - **Random HW Failures**: failure that can occur unpredictably during the lifetime of a hardware element and that follow a probability distribution.

Functional Safety standards

IEC 61508 standard

- In general, Functional Safety Standards impose a *structured way* for the industry to proceed
- **IEC 61508** is a standard for the effectiveness of *safety system* in E/E/PE systems:
 - Originated in the process control industry
 - Basic Functional Safety standard that covers the complete *safety life cycle*
 - Derivatives later created for specific markets such as railways, automotive,...
- IEC 61508 is in use since 1998, amendments added since 2000
- New version (2010) now in FINAL status and mandatory for new developments
- Used in more than 60 countries
- The standard addresses:
 - Architectural & Functional aspects
 - Procedural aspects (including safety life cycle)
 - Faults avoidance and faults control
 - Systematic faults and HW random faults
- Rigorous documentation serves as evidence for complying to the safety standard

Safety Function vs Safety Integrity

- Key Concepts in IEC 61508 standard are RISK and SAFETY FUNCTION
 - **Risk** is a function of frequency (or likelihood) of the hazardous event and the event consequence severity
 - Risk is reduced to a *tolerable level* by applying **safety function**.
 - The **SIL** (Safety Integrity Level) is the measure of the "risk reduction level" of the Safety Function.

SAFETY FUNCTION	SAFETY INTEGRITY
Function, which is intended to achieve or maintain a <i>safe state</i> for the equipment under control (EUC) in respect to a specific hazardous event.	 Probability of a <i>safety-related system</i> satisfactorily performing the required safety function under all stated conditions within a stated period of time (<i>process safety time</i>) Four Level of safety integrity (SIL 1 to 4) Consider all causes of failures (random HW faults and systematic failures) which lead to an unsafe state

SAFETY-RELATED SYSTEM

Designated system that both:

- Implements the required safety functions necessary to achieve and maintain a safe state for the EUC
- Is intended to achieve, on its own or with other E/E/PE safety-related systems, other technology safety-related systems or external risk reduction facilities, the necessary safety integrity for the required safety functions

Fault avoidance and Fault Control

FAULT AVOIDANCE

Systematic failures caused by faults originating **before** system installation

For example specification and program faults, incomplete verification and validation, etc.

Addressed by the **process** (off target)

FAULT CONTROL

Systematic hardware errors (harderrors) and random hardware errors (soft-errors) caused by faults originating **after** system installation

For example broken hardware and a temporary bit-flip due to radiation

Addressed by **diagnostics / techniques** (on target)

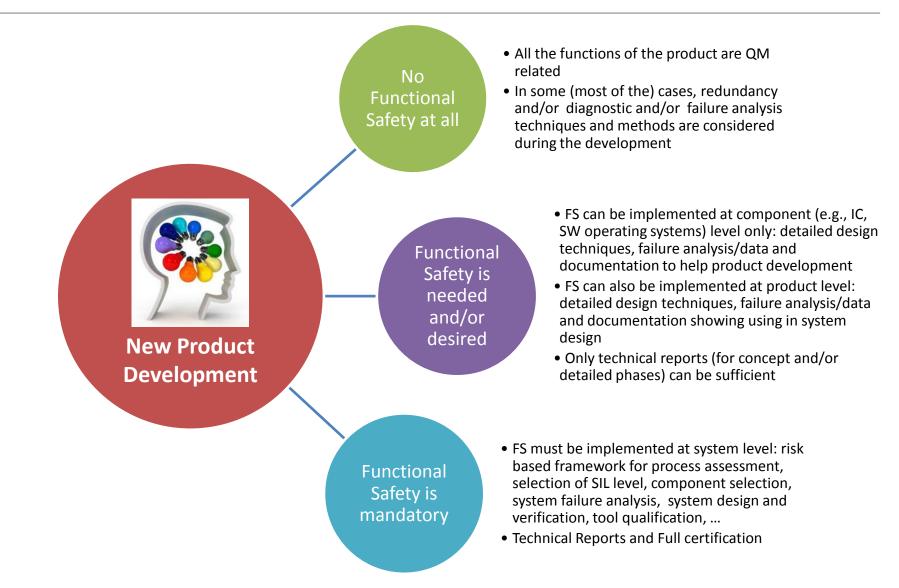
What are the main Functional Safety drivers?

- Customer Requirements (*)
 - Customers may demand functional safety evaluation before purchasing equipment
 - Customers may use it as a Technical Quality Specification (a single statement in their specification results in several requirements for the supplier)
 - NOTE: In some cases, Customers wants products with documented safety characteristics (including failure rates and failure mode data) not really "safety products"
- Regulations (*)
 - Some regulatory bodies require or encourage functional safety evaluation
- Internal Requirements:
 - Legal protection / Product Liability
 - Internal organization Safety & Reliability requirements
- Market Acceptance
 - Having a functional safety certification maintains a product's competitiveness in the marketplace
- Legislation
 - Legislative requirements, such as some European Directives, require a functional safety evaluation
- Insurance companies
 - Insurers may require a FS evaluation before equipment is installed in the workplace, or may provide discounted premiums for using products evaluated for functional safety

(*) Buyers and Authorities in some cases sees FS as one Reference to reduce their uncertainties on complex systems

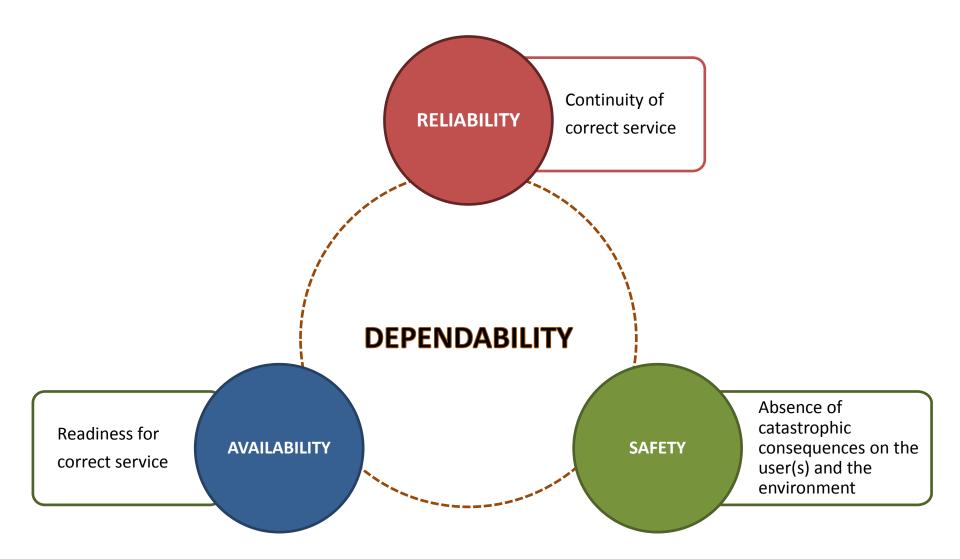
Forces and Trends?

- Certainly not all industrial products require certification... but more are requiring it.
 What is happening?
- Mechanical products evolving to electronic products
- Manually operated products evolving to automatic products
- Growth of software quantity and complexity
- More government regulations
- Software differentiates and defines their product to customers:
 - Less expensive than physical implementation
 - More features
 - More flexible and scalable
 - Sometimes the primary visible portion of the product



Certification and Safety Case

- What is Certification?
 - No legally binding definition
 - Typically: assessment by third party / independent assessment body (TÜV Sud, TÜV Nord, EXIDA, etc.) against certification criteria
 - Practically: document stating that an assessment report exists listing the certification criteria
 - The IEC 61508 does not require certified product for Functional Safety
- Different types of Certification:
 - Functional Safety Management certificate: confirms compliance of presented FS management system, products not included
 - **Type Approval** certificate: confirms compliance of the presented type or prototype
 - **Product** certificate: confirms compliance of the product as produced, includes surveillance of the production of the certified product
- How to obtain the Certification:
 - Compliance to the relevant standard required
 - Safety Case to argue compliance in a written form: i.e., customers present their case to an Assessor and "prove" their SIL claim



At which "level" Functional Safety can be implemented?

Safety vs Availability vs Reliability

Functional Safety of Electrical, Electronic and Programmable Electronic Systems

Training Course: An introduction to Functional Safety

con il patrocinio di

© CEFRIEL - Politecnico di Milano 2012

Introduction and General Requirements

Introduction Functional Safety

Concept of functional safety Risk: tolerability and assessment

Introduction to ISO/IEC safety norms

General structure of the standards Overview of IEC61508 and ISO26262 standard

General requirements

Overview of the safety lifecycle Concept and Detailed implementation phases Hazard and risk analysis Definition od the Safety Integrity Level Definition and allocation of safety requirements

Hardware requirements

System architecture requirements Failure Mode and Effect Analysis Failures

Random and systematic failure Safe failure fraction Common cause failures Hardware design requirements overview

Day 2

9:00 - 18:00

Hardware & Software Design

Software requirements

The software lifecycle Software architecture requirements Languages and tools Failure Systematic failures Isolation and propagation Criticality analysis Software design requirements overview

Techniques and methods

Hardware design Overview of design techniques Reference tables Software design Overview of design techniques Reference tables

Date:

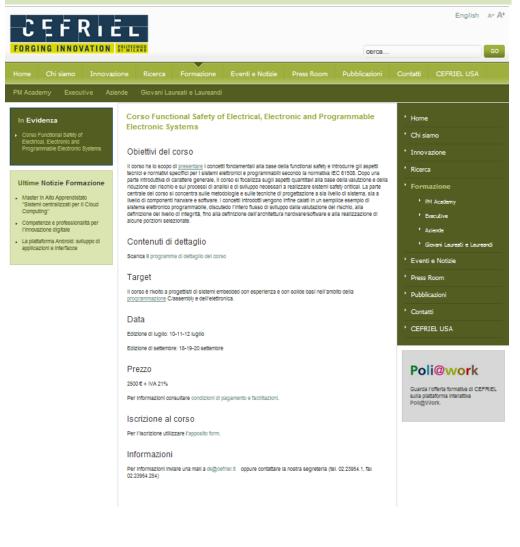
14-21 Settembre 2012

Costo: 1.500€

Sconto: 20% per le aziende associate a Assodel

Sede:

CEFRIEL Via R.Fucini 2, 20133 Milano Tel. 02.23954.1


Info:

Web	www.cefriel.it
Mail	<u>dk@cefriel.it</u>
Tel.	02.23954.1

http://www.cefriel.it/index.php/it/formazione/2163-fs

