1. 5503 +2

Let

$$A = \left[\begin{array}{cc} I & B \\ B^* & I \end{array} \right]$$

with $||B||_2 < 1$. Show that

$$||A||_2 |A^{-1}|_2 = \frac{1 + ||B||_2}{1 - ||B||_2}.$$

2. 5504 +2

Let

$$A = \begin{bmatrix} a_1 & b_1 & & 0 \\ c_1 & a_2 & b_2 & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & b_{n-1} \\ 0 & & & c_{n-1} & a_n \end{bmatrix},$$

where $b_i c_i > 0$. Then there exists a diagonal D such that $D^{-1}AD$ is a symmetric tridiagonal matrix.

3. 5012 +2

Let

$$B_k = B_{k-1} + B_{k-1}(I - AB_{k-1}), \quad k = 1, 2, \cdots.$$

Show that if $||I - AB_0|| = c < 1$, then

$$\lim_{k \to \infty} B_k = A^{-1}$$

and

$$||A^{-1} - B_k|| \le \frac{c^{2^k}}{1-c} ||B_0||.$$

4. 5001

Let $A \in \mathbb{C}^{n \times n}$, $x \in \mathbb{C}^n$ and $X = [x, Ax, \dots, A^{n-1}x]$. Show that if X is nonsingular, then $X^{-1}AX$ is an upper Hessenberg matrix.

5. 5508 +2

Consider the polynomial recurrence

$$p_{k+1}(x) = (x - \alpha_{k+1})p_k(x) - \beta_{k+1}^2 p_{k-1}(x), \quad k = 0, 1, 2, \dots$$

where $p_0 = 1$, $p_{-1} = 0$, and α_k and β_k are scalars.

Show that the roots of $p_k(x)$ are the eigenvalues of the tridiagonal matrix

$$J_k = \begin{pmatrix} \alpha_1 & \beta_2 & & \\ \beta_2 & \alpha_2 & \beta_3 & & \\ & \ddots & & \\ & & \beta_{k-1} & \alpha_{k-1} & \beta_k \\ & & & & \beta_k & \alpha_k \end{pmatrix}.$$

6.5009

Let A' be a given, $n \times n$, real, positive definite matrix partitioned as follows:

$$A' = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix},$$

where A is an $m \times m$ matrix. First, show:

(a) $C - B^T A^{-1} B$ is positive definite.

7. 5502

Let A, B be Hermitian square matrices and

$$H = \begin{bmatrix} A & C \\ C^H & B \end{bmatrix}.$$

Show: For every eigenvalue $\lambda(B)$ of B there is an eigenvalue $\lambda(H)$ of H such that

$$\left|\lambda(H) - \lambda(B)\right| \leq \sqrt{\operatorname{lub}_2(C^H C)}.$$

$$\begin{bmatrix} I & 0 \\ -AH^{-1} & I \end{bmatrix} \begin{bmatrix} H & A^T \\ A & -C \end{bmatrix} \begin{bmatrix} I & -H^{-1}A^T \\ 0 & I \end{bmatrix} = \begin{bmatrix} H & 0 \\ 0 & S \end{bmatrix}, \quad (2.4.3)$$

where $S = -(C + AH^{-1}A^T)$ is symmetric negative semidefinite. It therefore

Numerical Linear Algebra Exam (Final)

Department of Mathematics, Iran University of Science and Technology 19-June-2010 (1389/3/29)

Time: 180 minutes

- 1. Prove the following:
 - a) $||x||_q \le ||x||_p$ for $p \le q$
 - b) $||A||_p = ||A^T||_q$ where $\frac{1}{p} + \frac{1}{q} = 1$ (Hint: Use Hölder inequality).
- 2. Given the matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$. Prove
 - a) The normal equations $A^T A x = A^T b$ are consistent.
 - b) The vector x minimizes $||b Ax||_2$ if and only if the residual vector r = b Ax is orthogonal to the range of A, i.e., $A^T(b Ax) = 0$.
- 3. Consider the real system of linear equations

$$Ax = b \tag{1}$$

where A is a nonsingular matrix and satisfies $\langle v, Av \rangle > 0$ for all real vector v.

- a) Show that $\langle v, Av \rangle = \langle v, Mv \rangle$ for all real vector v where $M = \frac{1}{2}(A + A^T)$ which is the symmetric part of A.
- b) Prove that

$$\frac{\langle v, Av \rangle}{\langle v, v \rangle} \ge \lambda_{min}(M) > 0$$

where $\lambda_{min}(M)$ is the smallest eigenvalue of M (Hint: Use Principal Axes Theorem).

c) Now consider the following iteration for computing an approximation solution to (1)

$$x_{k+1} = x_k + \alpha r_k$$

where $r_k = b - Ax_k$ and α is chosen to minimize $||r_{k+1}||_2$ as a function of α .

Prove

$$\frac{\|r_{k+1}\|_2}{\|r_k\|_2} \le \left(1 - \frac{(\lambda_{\min}(M))^2}{\lambda_{\max}(A^T A)}\right)^{\frac{1}{2}}$$

4. Prove that the infinite series

$$I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots + \frac{A^n}{n!} + \dots$$

converges for any square matrix A.

Denote the sum of the series by e^A .

- a) If $A = P^{-1}BP$, show that $e^A = P^{-1}e^BP$.
- b) Let $\lambda_1, \lambda_2, \dots, \lambda_n$ denote the eigenvalues of A, repeated according to their multiplicity, and show that the eigenvalues of e^A are $e^{\lambda_1}, e^{\lambda_2}, \dots, e^{\lambda_n}$.
- 5. A symmetric matrix A has dominant eigenvalue λ_1 and corresponding eigenvector x_1 . Show that the matrix $B = A \lambda_1 x_1 x_1^T$ has the same eigenvalues as A except that λ_1 is replaced by zero.
- 6. Assume A is real, symmetric, positive definite, and of order n. Define

$$f(x) = \frac{1}{2}x^T A x - b^T x \quad x, \ b \in \mathbb{R}^n$$

- a) Show that the unique minimum of f(x) is given by solving Ax = b.
- b) Consider the general iterative method

$$x_{k+1} = x_k + \alpha_k d_k$$

where $x_k, d_k \in \mathbb{R}^n$ and $\alpha_k \in \mathbb{R}$. For given x_k and d_k , show that the value of α_k which minimizes $f(x_k + \alpha d_k)$ (as a function of α) is given by

$$\alpha_k = \frac{\langle r_k, d_k \rangle}{\langle d_k, A d_k \rangle}$$

where $r_k = b - Ax_k$.

Hope the best Nikazad

$$\begin{array}{c} 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 119$$

Pager

2-a
$$\overline{A} b \in \mathbb{R}(\overline{A}) = \mathbb{R}(\overline{A}\overline{A})$$

(2-b) Let & be a vector for which a (b-Az) = o. Then for any yETR" b-Ay=(b-Ax) + M(x-y). Squaring this and using AAX=AB we obtain $\|b - Ay\|_2^2 = \|b - Ax\|_2^2 + \|A(x - y)\|_2^2 \ge \|b - Ax\|_2^2$ on the other hand assume that $\partial^T(b - \partial x) = 2 \neq 0$. Then if x-y = - EZ we have for sufficiently small Eto $\|b - Ay\|^2 = \|b - Ax\|^2 - 2 \|2\|^2 + \varepsilon \|A^2\|^2 < \|b - Ay\|^2$ 50 x does not minimize 116-Ax112. $(3-\alpha)$ $\langle \mathcal{V}, \mathcal{M}\mathcal{V} \rangle = \langle \mathcal{V}, \frac{1}{2} (\partial + \partial^T) \mathcal{V} \rangle$ = シイン, スレン+シイン, ガン> = = (v, Av) + = (v, Av) = (V, AV)

$$\frac{(3-b)}{(v,v)} = \frac{(v, nv)}{(v,v)} = \frac{v nv}{v v}$$
Using P.A.T wehave $M = Q I Q$
orthogonal diagonal
then

Then
$$\langle \nu, A\nu \rangle = \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2$$

$$\frac{\nabla ut \ QV =: x \ Horefore}{v = QTx}, \ \sqrt{T} = \overline{x}Q$$
and
$$\frac{\sqrt{T}QT}{\sqrt{T}Q}, \ \sqrt{T}QT = \overline{x}T, \ \sqrt{T} = \overline{x}Q$$

$$\frac{\sqrt{T}QT}{\sqrt{T}QT}, \ \sqrt{T}QT = \frac{\overline{x}Tx}{\sqrt{T}QT} = \frac{\overline{x}Tx}{\sqrt{T}QT}$$

But

$$\chi \wedge \chi = \lambda_1 \chi_1^2 + \lambda_2 \chi_2^2 + \dots + \lambda_N \chi_n^2 = \sum_{i=1}^N \lambda_i \chi_i^2$$

then $\frac{\chi \wedge \chi}{\chi^T \chi} = \frac{\sum_{i=1}^N \lambda_i \chi_i^2}{\sum_{i=1}^N \chi_i^2} \ge \lambda(M)$
 $\frac{\chi^T \chi}{\chi_1^2} = \frac{\chi_1(M)}{\sum_{i=1}^N \chi_i^2} \ge \chi_1(M)$
From point @ $\lambda_1(M) > 0$

$$\frac{3-c}{\|r_{k+1}\|_{2}^{2}} \text{ page 4} \qquad \left(\frac{\gamma_{max}}{|r_{k+1}|_{2}^{2}} \right)^{2}$$

$$\frac{\|r_{k+1}\|_{2}^{2} = \|b - \Re x_{k+1}\|_{2}^{2} = b - \Re x_{k} - \alpha \Re r_{k}\|_{2}^{2}$$

$$= \|r_{k} - \alpha \Re r_{k}\|_{2}^{2}$$

$$= \|r_{k} - \alpha \Re r_{k}\|_{2}^{2}$$

$$= \langle r_{k} \circ r_{k} \rangle - 2\alpha \langle \Re r_{k} \circ r_{k} \rangle + \alpha^{2} \langle \Re r_{k} \circ \Re r_{k} \rangle$$

$$\Rightarrow f_{(n+1)}^{\prime} - 2 \langle \Re r_{k} \circ r_{k} \rangle + 2\alpha \langle \Re r_{k} \circ \Re r_{k} \rangle = 0$$

$$\alpha = \frac{\langle \Re r_{k} \circ r_{k} \rangle}{\langle \Re r_{k} \circ \Re r_{k} \rangle} \implies 0$$

$$\beta(n) = \|r_{k+1}\|_{2}^{2} = \langle r_{k} \circ r_{k} \rangle - \frac{\langle \Re r_{k} \circ r_{k} \rangle^{2}}{\langle \Re r_{k} \circ \Re r_{k} \rangle} \implies 0$$

$$\frac{\|r_{k+1}\|_{2}^{2}}{\|r_{k} \circ R_{k} \rangle} = 1 - \frac{\langle \Re r_{k} \circ r_{k} \rangle^{2}}{\langle r_{k} \circ r_{k} \rangle} = 1 - \frac{\langle \Re r_{k} \circ r_{k} \rangle}{\langle r_{k} \circ r_{k} \rangle} = 1 - \frac{\langle \Re r_{k} \circ r_{k} \rangle}{\langle r_{k} \circ r_{k} \rangle}$$

$$\text{Using part(b) unget}$$

$$\frac{\|r_{n+1}\|_{2}}{|r_{k}\|_{2}} \ll \left(1 - \frac{\lambda_{\min}(n)^{2}}{\lambda (n^{2} n)}\right)^{\frac{1}{2}}$$

$$\begin{aligned}
\begin{aligned}
\mathbf{5} \\
\widehat{\mathbf{A}} = \widehat{\mathbf{Q}} D \widehat{\mathbf{Q}}^{T} \quad \widehat{\mathbf{Q}} = (\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{z}_{1}, \mathbf{x}_{1}) \\
\stackrel{\text{follower vector}}{(\lambda, 0)} \\
\widehat{\mathbf{C}} = \underbrace{\mathbf{Q}} D \widehat{\mathbf{Q}}^{T} - \mathbf{z}_{1} \lambda_{1} \mathbf{x}_{1}^{T} \\
\stackrel{\text{h}}{\mathbf{x}}_{2} \mathbf{x}_{1}^{T} + \dots + \lambda \mathbf{x}_{n} \mathbf{x}_{n}^{T} \\
\stackrel{\text{h}}{\mathbf{x}}_{2} \mathbf{x}_{1}^{T} + \dots + \lambda \mathbf{x}_{n} \mathbf{x}_{n}^{T} \\
= \lambda_{1} \mathbf{x}_{1} \mathbf{x}_{1}^{T} + \left(\underbrace{e_{1}}_{\mathbf{x}} \mathbf{x}_{2} \cdots \mathbf{x}_{n} \right) \overline{\mathbf{D}} \left(e_{1} \mathbf{x}_{2} \cdots \mathbf{x}_{n} \right)^{T} - \mathbf{x}_{1} \lambda_{1} \mathbf{x}_{1}^{T} \\
= \overline{\mathbf{Q}} \overline{\mathbf{D}} \overline{\mathbf{Q}}^{T} \\
\underbrace{e_{1}}_{\mathbf{Q}} = \frac{1}{2} \left\langle \widehat{\mathbf{A}} \mathbf{x}_{n} \mathbf{x} \right\rangle - \left\langle \mathbf{x}_{1} \mathbf{b} \right\rangle - \frac{1}{2} \left\langle \widehat{\mathbf{A}} \overline{\mathbf{a}} \mathbf{b}_{n} \overline{\mathbf{a}} \mathbf{b} \right\rangle \\
+ \left\langle \widehat{\mathbf{a}} \mathbf{b}_{1} \mathbf{b} \right\rangle \\
\stackrel{\text{othogonal}}{= \frac{1}{2} \left\langle \widehat{\mathbf{A}} \mathbf{x}_{n} \mathbf{x} \right\rangle - \left\langle \mathbf{x}_{n} \mathbf{b} \right\rangle + \frac{1}{2} \left\langle \mathbf{b}_{1} \mathbf{a}^{T} \mathbf{b} \right\rangle = \mathbf{I} \\
\text{Let} \left\{ \mathbf{x}_{1} \right\}_{i=1}^{n} \quad \text{be eigen vectors of } \widehat{\mathbf{A}}_{2} \quad \{\lambda_{1} \}_{i=1}^{n} \\
\stackrel{\text{eigen } \nabla \mathbf{a}_{1} \mathbf{a}_{2} \cdots \overrightarrow{\mathbf{x}_{n}} \right\} \\
\stackrel{\text{bet}}{= \sum_{i=1}^{n}} \frac{\left(\mathbf{w}_{1} \lambda_{1} \cdot \mathbf{e}_{1} \right)^{2}}{\mathbf{z} \lambda_{1}} \\
\stackrel{\text{bet}}{= 0}
\end{aligned}$$

$$f(z_{k}+ad_{k}) = \frac{1}{2} \langle z_{k}+ad_{k}, Az_{k}+aAd_{k} \rangle - \langle b, z_{k}+ad_{k} \rangle$$

$$= \frac{1}{2} \langle d_{k}, Ad_{k} \rangle + a \langle d_{k}, Az_{k} \rangle - a \langle b, d_{k} \rangle$$

$$+ \frac{1}{2} \langle z_{k}, Ad_{k} \rangle + a \langle d_{k}, Az_{k} \rangle - a \langle b, z_{k} \rangle$$

$$\frac{d}{da} f(z_{k}+ad_{k}) = a \langle d_{k}, Ad_{k} \rangle + \langle d_{k}, Az_{k} \rangle - \langle b, d_{k} \rangle = 0$$

$$a \langle d_{k}, Ad_{k} \rangle = \langle d_{k}, b - Az_{k} \rangle = \langle d_{k}, f_{k} \rangle$$

$$a = \frac{\langle d_{k}, f_{k} \rangle}{\langle d_{k}, Ad_{k} \rangle}$$

·----

Numerical Linear Algebra (final exam) Iran University of Science and Technology, School of Mathematics, Applied Mathematics Department

1.

Show that if $X \in \mathbb{R}^{n \times r}$ with $r \leq n$, and $||X^T X - I||_2 = \tau < 1$, then

$$\sigma_{\min}(X) \ge 1 - \tau,$$

where σ_{\min} denotes the smallest singular value.

2.

Given an $m \times n$ matrix Λ with m > n and a positive number λ , a regularized least squares solution \mathbf{x}_{λ} may be computed by solving

$$\min \| \begin{pmatrix} \mathbf{A} \\ \mu I \end{pmatrix} \mathbf{x} - \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix} \|_2,$$

where $\mu = \sqrt{\lambda}$.

- a. Derive the normal equations for the *regularized* least squares problem given above.
- b. Show $\mathbf{\Lambda}^T \mathbf{\Lambda} + \lambda \mathbf{I}$ is symmetric and positive definite for every positive value of λ . Prove that the regularized least squares solution x_{λ} is unique for every postive value of λ .
- c. Use the Singular Value Decomposition of A to express the solution x_{λ} to the problem

$$min \| \begin{pmatrix} \mathbf{A} \\ \mu \mathbf{I} \end{pmatrix} \mathbf{x} - \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix} \|_2$$

where $\mathbf{b} \in \mathbf{R}^m$ and $\mu^2 = \lambda$.

d. Prove that $\lim_{\lambda\to 0^+} \mathbf{x}_{\lambda} = \mathbf{x}_{LS}$ the minimum norm least squares solution (Regardless of the rank of Λ).

3.

Use the singular value decomposition to show that if $A \in \mathbb{R}^{m \times n}$ with $m \ge n$, then there exist a matrix $Q \in \mathbb{R}^{m \times n}$ with $Q^T Q = I$ and a positive semi-definite matrix $P \in \mathbb{R}^{n \times n}$ such that A = QP.

4.

Let

$$A = \left[\begin{array}{cc} I & B \\ B^* & I \end{array} \right]$$

with $||B||_2 < 1$. Show that

$$||A|_2 ||A^{-1}||_2 = \frac{1 + ||B||_2}{1 - ||B||_2}.$$

5.

 Let

where $b_i c_i > 0$. Then there exists a diagonal D such that $D^{-1}AD$ is a symmetric tridiagonal matrix.

Let $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ be symmetric and satisfy

(1)
$$a_{ii} > 0, \quad i = 1, 2, \cdots, n,$$

(2) $a_{ij} \le 0, \quad i \ne j,$
(3) $\sum_{i=1}^{n} a_{i1} > 0,$
(4) $\sum_{i=1}^{n} a_{ij} = 0, \quad j = 2, 3, \cdots, n$

Prove that the eigenvalues of A are nonnegative.

7.

Consider Ax = b where

$$A = \left[\begin{array}{rrr} 1 & 0 & \alpha \\ 0 & 1 & 0 \\ \alpha & 0 & 1 \end{array} \right].$$

(1) For which α , is A positive definite?

(2) For which α , does the Jacobi method converge?

(3) For which α , does the Gauss-Seidel method converge?

8.

Let

$$B_k = B_{k-1} + B_{k-1}(I - AB_{k-1}), \quad k = 1, 2, \cdots$$

Show that if $||I - AB_0|| = c < 1$, then

$$\lim_{k \to \infty} B_k = A^{-1}$$

and

$$||A^{-1} - B_k|| \le \frac{c^{2^k}}{1-c} ||B_0||.$$

9.

Let $A \in \mathbb{C}^{n \times n}$, $x \in \mathbb{C}^n$ and $X = [x, Ax, \dots, A^{n-1}x]$. Show that if X is nonsingular, then $X^{-1}AX$ is an upper Hessenberg matrix.

6.

10.

Let $H = \{x \in \mathbb{R}^n \mid \langle a, x \rangle = b\}$ (hyperplane). Compute orthogonal projection of $z \in \mathbb{R}^n$ onto H.

11.

Consider the polynomial recurrence

 $p_{k+1}(x) = (x - \alpha_{k+1})p_k(x) - \beta_{k+1}^2 p_{k-1}(x), \quad k = 0, 1, 2, \dots$

where $p_0 = 1$, $p_{-1} = 0$, and α_k and β_k are scalars. Show that the roots of $p_k(x)$ are the eigenvalues of the tridiagonal matrix

$$J_k = \begin{pmatrix} \alpha_1 & \beta_2 & & \\ \beta_2 & \alpha_2 & \beta_3 & & \\ & \ddots & & \\ & & \beta_{k-1} & \alpha_{k-1} & \beta_k \\ & & & & \beta_k & \alpha_k \end{pmatrix}$$

12.

A symmetric matrix A has dominant eigenvalue λ_1 and corresponding eigenvector x_1 . Show that the matrix $B = A - \lambda_1 x_1 x_1^T$ has the same eigenvalues as A except that λ_1 is replaced by zero.

- Please send your answers to tnikazad@iust.ac.ir
- The deadline is 1/12/91

Numerical Linear Algebra (final exam) Iran University of Science and Technology, School of Mathematics, Applied Mathematics Department

1.

Show that if $X \in \mathbb{R}^{n \times r}$ with $r \leq n$, and $||X^T X - I||_2 = \tau < 1$, then

 $\sigma_{\min}(X) \ge 1 - \tau,$

where σ_{\min} denotes the smallest singular value.

2.

Given an $m \times n$ matrix **A** with m > n and a positive number λ , a regularized least squares solution \mathbf{x}_{λ} may be computed by solving

min
$$\|\begin{pmatrix} \mathbf{A}\\ \mu I \end{pmatrix}\mathbf{x} - \begin{pmatrix} \mathbf{b}\\ 0 \end{pmatrix}\|_2$$
,

where $\mu = \sqrt{\lambda}$.

- a. Derive the normal equations for the *regularized* least squares problem given above.
- b. Show $\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I}$ is symmetric and positive definite for every positive value of λ . Prove that the regularized least squares solution x_{λ} is unique for every postive value of λ .
- c. Use the Singular Value Decomposition of A to express the solution x_{λ} to the problem

$$min \| \begin{pmatrix} \mathbf{A} \\ \mu \mathbf{I} \end{pmatrix} \mathbf{x} - \begin{pmatrix} \mathbf{b} \\ 0 \end{pmatrix} \|_2$$

where $\mathbf{b} \in \mathbf{R}^m$ and $\mu^2 = \lambda$.

d. Prove that $\lim_{\lambda\to 0^+} \mathbf{x}_{\lambda} = \mathbf{x}_{LS}$ the minimum norm least squares solution (Regardless of the rank of **A**).

3.

Use the singular value decomposition to show that if $A \in \mathbb{R}^{m \times n}$ with $m \ge n$, then there exist a matrix $Q \in \mathbb{R}^{m \times n}$ with $Q^T Q = I$ and a positive semi-definite matrix $P \in \mathbb{R}^{n \times n}$ such that A = QP.

Let

$$A = \left[\begin{array}{cc} I & B \\ B^* & I \end{array} \right]$$

with $||B||_2 < 1$. Show that

$$||A||_2 ||A^{-1}||_2 = \frac{1 + ||B||_2}{1 - ||B||_2}$$

5.

Let

where $b_i c_i > 0$. Then there exists a diagonal D such that $D^{-1}AD$ is a symmetric tridiagonal matrix.

6.

Let $A = [a_{ij}] \in \mathbb{R}^{n imes n}$ be symmetric and satisfy

(1)
$$a_{ii} > 0, \quad i = 1, 2, \cdots, n,$$

(2) $a_{ij} \le 0, \quad i \ne j,$
(3) $\sum_{i=1}^{n} a_{i1} > 0,$
(4) $\sum_{i=1}^{n} a_{ij} = 0, \quad j = 2, 3, \cdots, n.$

Prove that the eigenvalues of A are nonnegative.

7.

Let $A \in \mathbb{C}^{n \times n}$, $x \in \mathbb{C}^n$ and $X = [x, Ax, \dots, A^{n-1}x]$. Show that if X is nonsingular, then $X^{-1}AX$ is an upper Hessenberg matrix.

8.

Let $H = \{x \in \mathbb{R}^n \mid \langle a, x \rangle = b\}$ (hyperplane). Compute orthogonal projection of $z \in \mathbb{R}^n$ onto H.

Numerical Linear Algebra (1/15/2013) Iran University of Science and Technology School of Mathematics, Applied Mathematics Department

- 1. Show that if $X \in \mathbb{R}^{n \times r}$ with $r \leq n$, and $||X^T X I||_2 = \tau < 1$, then $\sigma_{min}(X) \geq 1 \tau$, where $\sigma_{min}(X)$ denotes the smallest singular value of X.
- 2. Given an $m \times n$ matrix A with m > n and a positive number λ , a *regularized* least squares solution x_{λ} may be computed by solving

$$\min \left\| \left(\begin{array}{c} A\\ \mu I \end{array} \right) x - \left(\begin{array}{c} b\\ 0 \end{array} \right) \right\|_2, \tag{1}$$

where $\mu = \sqrt{\lambda}$ and $b \in \mathbb{R}^m$.

- a. Derive the normal equations for the *regularized* least squares problem given above.
- b. Prove that the regularized least squares solution x_{λ} is unique for every positive value of λ .
- c. Use the Singular value Decomposition of A to express the solution x_{λ} to the problem (1).
- d. Prove that $\lim_{x\to 0^+} x_{\lambda} = x_{LS}$ the minimum norm least squares solution (regardless of the rank of A).
- 3. Use the singular value decomposition to show that if $A \in \mathbb{R}^{m \times n}$ with $m \geq n$, then there exists a matrix $Q \in \mathbb{R}^{m \times n}$ with $Q^T Q = I$ and a positive semi-definite matrix $P \in \mathbb{R}^{n \times n}$ such that A = QP.
- 4. Let $A = \begin{pmatrix} I & B \\ B^* & I \end{pmatrix}$ with $||B||_2 < 1$. Show that $||A||_2 ||A^{-1}||_2 = \frac{1+||B||_2}{1-||B||_2}$ (where '*' shows conjugate transpose operation).
- 5. Let

$$A = \begin{pmatrix} a_1 & b_1 & & & 0 \\ c_1 & a_2 & b_2 & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & b_{n-1} \\ 0 & & & c_{n-1} & a_n \end{pmatrix}$$

where $b_i c_i > 0$. Then there exists a diagonal D such that $D^{-1}AD$ is a symmetric tridiagonal matrix.

6. Let $A \in \mathbb{C}^{n \times n}$, $x \in \mathbb{C}^n$ and $X = [x, Ax, A^2x, \dots, A^{n-1}x]$. Show that if X is nonsingular, then $X^{-1}AX$ is an upper Hessenberg matrix.

Numerical Linear Algebra (04/01/2014) Iran University of Science and Technology School of Mathematics 11 am–13:30 pm

1. Given an $m \times n$ matrix A with m > n and a positive number λ , a regularized least squares solution x_{λ} may be computed by solving

$$\min \left\| \left(\begin{array}{c} A\\ \mu I \end{array} \right) x - \left(\begin{array}{c} b\\ 0 \end{array} \right) \right\|_2,\tag{1}$$

where $\mu = \sqrt{\lambda}$ and $b \in \mathbb{R}^m$.

- a. Derive the normal equations for the *regularized* least squares problem given above.
- b. Prove that the regularized least squares solution x_{λ} is unique for every positive value of λ .
- c. Use the Singular value Decomposition of A to express the solution x_{λ} to the problem (1).
- d. Prove that $\lim_{x\to 0^+} x_{\lambda} = x_{LS}$ the minimum norm least squares solution (regardless of the rank of A).
- 2. A symmetric matrix A has dominant eigenvalue λ_1 and corresponding eigenvector x_1 . Show that the matrix

$$B = A - \lambda_1 x_1 x_1^T$$

has the same eigenvalues as A except that λ_1 is replaced by zero.

- 3. Let $v = A^T M(b Az)$ where $z \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ and $M \in \mathbb{R}^{m \times m}$ is a symmetric positive definite matrix. Prove that: if $\langle v, B^s v \rangle = 0$ then v = 0. Here $B = A^T M A$ and $s \in \mathbb{N}$ (any arbitrary natural number).
- 4. Use the singular value decomposition to show that if $A \in \mathbb{R}^{m \times n}$ with $m \geq n$, then there exists a matrix $Q \in \mathbb{R}^{m \times n}$ with $Q^T Q = I$ and a positive semi-definite matrix $P \in \mathbb{R}^{n \times n}$ such that A = QP.
- 5. A matrix of the form $I \alpha x y^T$ ($\alpha \in \mathbb{R}$ and $x, y \in \mathbb{R}^n$) is called an *elementary* matrix.
 - a. Compute all eigenvalues of such matrix.
 - b. Under which condition(s) this kind of matrix is invertible and compute its inverse.
 - c. Show that any lower triangular matrix of size n, with "1" on its diagonal, can be written as the product of n-1 elementary matrices.
- 6. Let $T \in \mathbb{C}^{n \times n}$ such that

$$T = \left(\begin{array}{cc} T_{11} & T_{12} \\ T_{21} & T_{22} \end{array}\right).$$

Define $\Phi : \mathbb{C}^{p \times q} \to \mathbb{C}^{p \times q}, \Phi(X) = T_{11}X - XT_{22}$. Show that Φ is nonsingular if and only if $\lambda(T_{11}) \cap \lambda(T_{22}) = \emptyset$.

Shahid Rajaee Teacher Training University Numerical Linear Algebra Final Exam

1. Let W be a subspace of \mathbb{R}^n . For $x \in \mathbb{R}^n$, define

$$\rho(x) = \inf_{y \in W} \|x - y\|_2.$$

Let $\{u_1, \cdots, u_m\}$ be an orthogonal basis of W, where m is the dimension of W. Extend this to an orthogonal basis $\{u_1, \cdots, u_m, \cdots, u_n\}$ of all of \mathbb{R}^n .

(a) Show that

$$\rho(x) = \left[\sum_{j=m+1}^{n} |\langle x, u_j \rangle|^2\right]^{1/2}$$

and that it is uniquely attained at

$$y = Px$$
 where $P = \sum_{j=1}^m u_j u_j^T$

- (b) Show $P^2 = P$ and $P^T = P$.
- (c) Show $\langle Px, z Pz \rangle = 0$ for all $x, z \in \mathbb{R}^n$.
- (d) Show $||x||_2^2 = ||Px||_2^2 + ||x Px||_2^2$, for all $x \in \mathbb{R}^n$
- 2. Show that the infinite series

$$I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots + \frac{A^n}{n!} + \dots$$

converges for any square matrix A, and denote the sum of the series by e^A .

- (a) If $A = P^{-1}BP$, show that $e^A = P^{-1}e^BP$.
- (b) Let $\lambda_1, \dots, \lambda_n$ denote the eigenvalues of A, repeated according to their multiplicity, and show that the eigenvales of e^A are $e^{\lambda_1}, \dots, e^{\lambda_n}$.
- 3. Suppose that x_0 is an approximation to the solution of non-singular equations Ax = b. Show that

$$\frac{\|\delta x\|}{\|x\|} \le K(A) \frac{\|r_0\|}{\|b\|}$$

where $\delta x = x - x_0$ and $r_0 = Ax_0 - b$.

4. A symmetric matrix A has dominant eigenvalue λ_1 and corresponding eigenvector x_1 . Show that the matrix

$$B = A - \lambda_1 x_1 x_1^T$$

has the same eigenvalues as A except that λ_1 is replaced by zero.

Hope the best

Touraj Nikazad