Lecture 03
Convex Sets




Affine set

line through x4, x9: all points

r=0x1+ (1 —0)xs (0 € R)

0
0
affine set: contains the line through any two distinct points in the set

example: solution set of linear equations {x | Az = b}

(conversely, every affine set can be expressed as solution set of system of
linear equations)



Convex sets

Convex set: C' C R"™ such that

r,yeC = te+(1—-t)yeC forall 0 <t <1

In words, line segment joining any two elements lies entirely in set

O &

Convex combination of x1,...x; € R™: any linear combination
0121+ ...+ 0Lz

with 8; > 0,:=1,...k, and Z?:l 0; = 1. Convex hull of a set C,
conv(C), is all convex combinations of elements. Always convex



Examples of convex sets

Trivial ones: empty set, point, line

Norm ball: {x : ||| < r}, for given norm || - ||, radius r
Hyperplane: {x : alxz = b}, for given a,b

Halfspace: {z :a’z < b}

Affine space: {x : Az = b}, for given A,b



; Lp norms and their unit balls

Recall the Lp norm for - c R™
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|zllp = (ZZJP) , P € [1,00)
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Max Norm (Infinity Norm) L1 Norm (Manhattan Distance)

L2 Norm (Euclidean Norm)




‘ Lp norms and their unit balls
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Hyperplanes and halfspaces

hyperplane: set of the form {z | a’2 = b} (a # 0)

e ¢ is the normal vector

e hyperplanes are affine and convex; halfspaces are convex



e Polyhedron: {z : Az < b}, where inequality < is interpreted
componentwise. Note: the set {x : Ax < b,Cx = d} is also a
polyhedron (why?)

e probability simplex:

conv{er,...ept ={w:w>0,1Tw=1}



“Unit simplex” (probability simplex) is a convex set

The (k-1)-dimensional unit simplex is the set of k-vectors whose components are all

{ k
_ X R, is the nonnegative orthant of R¥
.&kl—<xeﬂ%k'2x—l Ny
e {erRRk:‘v’ie{l,...,k},x,-ZO}.
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Cones

A set ' C R" is a cone when with every x € C, the whole ray {\z | A> 0} also belongs
to the set C', i.e.,
A e for all z € C" and A > 0.

cones in general need not be convex. For example,

the set {x € R* | 129 = 0} is a cone that|and it is nonconvex.

The non-negative orthant R!! = {z € R" | # > 0} is a cone that|is convex.

X

A non-convex cone
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Convex Cone

A set C is a convex cone if it is convex and a cone, which means that

for any x1, o € €' and 61, 65 > 0, we have
01101 + boxo € C.
Points of this form can be described geometrically as forming the two-dimensional

pie slice with apex 0 and edges passiﬁg through :bl and xo.

o

0
The pie slice shows all points of the form 0121 + 0222, where 0. 05 > 0.
The apex of the slice (which corresponds to #; = 62 = 0) is at 0;

its edges (which correspond to 61 =0 or #2 = 0) pass through the points 1 and 2. b



Conic Combination

A point of the form 6121 + -+ + Oz with 61,...,0; > 0 is called a [conic combination
(or a nonnegative linear combination) of xqi,...,Tk.

If x; are in a convex cone C, then every conic combination of x; is in C.

Conversely, a set C' is a convex cone if and only if it contains all conic combinations of its elements.

The|conic hulljof a set C' is the set of all conic combinations of points in ', i.e.,

{lel—l__l_ekxk ‘ZU@EC, 92207 ’i:l,...,k},

which is also the smallest convex cone that contains C' -

=)




Example Convex Cone: Ice-Cream Cone

A norm cone is the set of the form
O ={(z,t) eR" xR | ||| < t}, |

where the norm || - || can be any norm in R".

The norm cone for Euclidean norm is also known as ice-cream cone. or second-order cone.

Boundary of second-order cone in R?, {(z1,72,t) | (#14+23)"/? < t}.

14



Example Convex Cone: PSD Cone

The set S” (The sct of all positive semidefinite matrices ) is a convex cone:
if 01,02 > 0and A, B e S, then §,A+0,B € S’ .

Proof: This can be seen directly from the definition of positive semidefiniteness:

for any x € R", we have

xT(91A + 0o B)x = 012t Az + G2 Bx > 0,

1

ifAEO,BEO&DdQl,QQZO.

0.5

Example  pggitive semidefinite cone in S*. We have 0

X:{i z]esi — >0 2z>0, >

Boundary of positive semidefinite cone in S2.
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Key properties of convex sets

e Separating hyperplane theorem: two disjoint convex sets have
a separating between hyperplane them

Formally: if C, D are nonempty convex sets with C'N D = (),
then there exists a, b such that

CC{z:a"z<b}
DQ{x:aszb}
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e Supporting hyperplane theorem: a boundary point of a convex
set has a supporting hyperplane passing through it

Formally: if C'is a nonempty convex set, and xy € bd(C),
then there exists a such that

C CHx: alz < ang}
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Operations preserving convexity

e Intersection: Convexity is preserved under intersection:
if S1 and S5 are convex, then S; NSy is convex.

This property extends to the intersection of an infinite number of sets:

it S, is convex for every o € A, then (). 4 Sa is convex.
As a simple example, a polyhedron is the intersection of halfspaces and

hyperplanes (which are convex), and therefore is convex.

e Scaling and translation:

If SCR"is convex, « € R, and ¢« € R", then

the sets a5 and S + a are convex, where

aS ={axr|x e S}, S+a={x+al|lreS}
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Operations preserving convexity

e Affine images

Recall that a function f: R" — R"™ is affine if it is a sum of a linear function and

a constant, 7.e., if it has the form

f(x) = Ax + b, where A€ R™*" and b € R".

Suppose S € R" is convex and f : R" — R is an affine function.

Then the image of S under f,
f(S) =4f(x) [z € 5},

1S convex.
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Operations preserving convexity
e Affine preimages:

if f:R" — R" is an affine function, the inverse image of S under f.

[H(S) ={z | f(x) € S}.

1S convex.

o / {\J
7 4
S

20



Example: linear matrix inequality solution set

Given Ay,... A, B € 8", a linear matrix inequality is of the form
r1A1 +20A2 + ...+ 2 A < B

for a variable z € R*. Let's prove the set C of points x that satisfy
the above inequality is convex

Proof:
let f: RF — 87, f(x) = B — Z _ A
a // _ﬁ““m

A j ___J-" 'Ill
/« . I "’.',-/
Ir/ L s /‘ .."ll >B . Zf;:l T@A1 i 0 |
f | vy
-

4
|
. 5
Ty «
”*-._ _./a,fﬁne function

Note that C' = f _1(51)? affine preimage of convex set.
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Operations preserving convexity
 Projection: The projection of a convex set onto some of its coordinates is convex:

if § C R"™ xR" is convex, then

T={x1 € R" | (xr1,29) € S for some 25 € R"}

1S convex.
e Sum: The sum of two sets is defined as

Si+Se={r+y|zeS ye St

If S; and S5 are convex, then S; + Sy is convex.
Proof: To see this, if S; and Sy are convex, then so is the Cartesian product
S1 x So = {({L‘ljafg) ‘ xr1 € Slj To & SQ}

The image of this set under the linear function f(x1,22) = 21 + 29

is the sum S; + 55.
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More operations preserving convexity

e Perspective images and preimages: the perspective function is
P:R" x Ry; — R™ (where R, denotes positive reals),

Plz,z)=x/z

for z > 0. If C C dom(P) is convex then so is P(C), and if
D is convex then so is P~1(D)

e Linear-fractional images and preimages: the perspective map
composed with an affine function,

B Ax + b

/() = e +d

is called a linear-fractional function, defined on ¢!z +d > 0.
If C' C dom(f) is convex then so if f(C'), and if D is convex
then so is f~1(D)
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Example: conditional probability set

Let U,V be random variables over {1,...n} and {1,...m}. Let
C' C R™ be a set of joint distributions for U,V i.e., each p € C

defines joint probabilities
pij =P(U =4,V =)

Let D C R™ contain corresponding conditional distributions, i.e.,
each g € D defines

qij = P(U =i|V = j)

Assume C' is convex. Let's prove that D is convex. Write

D = {qGR”’m:Qz’j = npij , for some pEC} = f(C)
> _k=1Pkj

where f is a linear-fractional function, hence D is convex
24



Appendix

Some notes from linear algebra
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Affine Combination

We refer to a point of the form

o1 + - + Oray, where 01 + -+ + 0, = 1.

as an affine combination of the points x1, ..., k.

Using induction from the definition of affine set (i.e., that it contains every

affine combination of two points in it), it can be shown that

@n affine set contains every affine combination of its points: \

&

If C'is an affine set, and
T1,...,2 € C, and

Oy 440, =1, then

the point 8121 + - - - + 0z also belongs to C/
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Linear Combination and Independence

The vectors xq,....x,, are said to be lincarly dependent when the zero vector can be

obtained as a nonzero linear combination of these vectors.

Formally, x1, ..., z,, are lincarly dependent when there exists scalars ... .. a,, not all equal

to zero and such that

a1+ ...+ o1, = 0.

The vectors xy....,r,, are said to be linearly independent when they are not linearly
dependent.

Formally, they are independent when the equality

11+ ...+ o, =0

holds only for oy = 0,...,q,, = 0.

xo, ..., L are affinely independent means xri — xg. ..., T — 2o are linear independent.
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By restricting the coefficients used in linear combinations, one can define the
related concepts of affine combination, conical combination, and
convex combination:

Type of combination Restrictions on coefficients

Linear combination no restrictions
Affine combination Z a; =1
Conical combination a; > 0

Convex combination a; = 0 and Zai =1
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Quadratic Forms and Positive Semidefinite Matrices

Given a square matrix A € R™" and a vector z € R”, the scalar value|z! Az |is called a

quadratic form).

Written explicitly, we see that

T T Tl T T
v Ar = i--z(Ai-)-s. — T Ai-.? il =) ) Ai—.’f T
i=1 i=1 =1 i=1 j=1

Note that.
TAr = (2T Ax)! =27 A"

T AT
the transpose of a SC&I&:J

is equal to itself
= 2xTAx = xTAx+xTATx = xT(4 + A)x

1
= xTAx = xTE (A+ AD)x

_ — - _ , — Is always symmetric no
For this reason, we often implicitly assume that the \i» atter what matrix A

matrices appearing in a quadratic form are symmetric. would bel
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Positive Semidefinite and Positive Definite Matrices

e A symmetric matrix A € 8" is Eositi've deﬁnite\ (PD) if for all non-zero vectors

re R", ‘;ITTAI > O.‘

This is usually denoted A > 0 (or just A > 0), and

e A symmetric matrix A € 8" is |;Uosz'tz've semzadefinite (PSD)‘ if for all vectors|z! Az > 0.

This is written A = 0 (or just A > 0), and
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Positive Semidefinite and Positive Definite Matrices

We use the notation S™ to denote the set of symmetric n x n matrices,

Sn _ {X c RTEX’H.- ‘ X — )(T}j

We use the notation S’ to denote the set of symmetric positive semidefinite matrices:

S7 = {X €8"| X = 0},

and the notation S’ to denote the set of symmetric positive definite matrices:

ST, ={XeS"| X >0}

(This notation is meant to be analogous to R., which denotes the nonnegative

reals, and R, which denotes the positive reals.)
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Negative Semidefinite, Negative Definite, and Indefinite Matrices

e Likewise, a symmetric matrix A € " islnegative definite (ND)I denoted A < 0 (or

just A < 0) if for all non-zero x R”,‘ITA;E < O.‘

e Similarly, a symmetric matrix A € S" is |negat'ive semadefinaite (NSDj, denoted

A =0 (or just A < 0)if for all 2 € R |oT Az < 0f

e Finally, a symmetric matrix A € S" 15| indeﬁnitelj if it is neither positive semidefinite

nor negative semidefinite — i.e.,

if there exists x1, x5 € R™ such that 33‘?1435’1 > (0 and x%nAmg < 0.
32



It should be obvious that if A is positive definite, then
— A 1s negative definite and vice versa.

Likewise, it A is positive semidefinite then

— A 1s negative semidefinite and vice versa.

If A is indefinite. then so is —A.
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