Game Theory

Lecture 00: Course Overview

Game Theory-- Intro

- Classical Definition: Game theory is "the study of mathematical models of conflict and cooperation between intelligent rational decision-makers."
- More Modern Engineering Definition: Game theory is about interacting agents whose actions affect one another's state of well-being, so that actions taken by one agent has spillover effects on other agents in the system. These externalities create a complex environment of action-reaction. What we are interested is the dynamics of the system (game) and what kind of equilibria the system will tend to.
- Model: *n* agents , each chooses some x_i ∈ R, and has a utility function u_i(x), x ∈ Rⁿ, or equivalently,

$$U_i(x_i; x_{-i} = x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)$$

- ★ What are the possible outcome?
- Steady-state, stable operating point, characteristics?
- * How do you get there (learning dynamics, computation of equilibrium)?

Descriptive Agenda

> Assumptions

- The players are "self-interested" "rational" agents
- Utility functions are part of the modeling process (not a design choice)
- Distributed algorithmic rules can only be "suggested" to the players not (forcibly) "dictated"

> Main Challenge

- The tension between the private goals of the players and the goal of the designer who is concerned with social welfare
 > Objective
 - To influence the behavior of the players to realize the social goal
 - By Mechanism Design: e.g., social norms or conventions, monetary payments, reputation mechanisms, etc.

Engineering Agenda

- Recently, game theory has emerged as a valuable tool for controlling or prescribing behavior in distributed engineered systems.
- ➤ The rationale for this new perspective stems from the parallels between the underlying decision making architectures in both societal systems and distributed engineered systems.
 - In particular, both settings involve an interconnection of decision making elements whose collective behavior depends on a compilation of local decisions that are based on partial information about each other and the state of the world.

Engineering Agenda

> Assumptions

- The players are not necessarily rational agents
- Utility functions are considered as design choices
- Unlike mechanism design, the agents in the engineered agenda are programmable components. Accordingly, there is no concern that agents are not truthful in reporting information or obedient in executing instructions.

➢ Main Challenge

- To synthesize distributed algorithmic rules for reaching efficient game-theoretic equilibria
- > Justifications for a Game-Theoretic Formulation
 - Coupling between the agents' utility functions
 - ✤ A systematic attempt to distributed performance optimization
 - Information sharing induces high signaling overhead
 - Guarantees some form of consensus between the agents and guides the system towards a stable operating point (consistent with some notion of sub-optimality)

Motivating Scenarios: coupled distributed optimization

Participating in a shared service

Players: nodes i, i', i"
Action: forward/drop
Utility: coverageRatio-α(forwardingCost)

Using a shared resource

Players: FUE k, k'
Action: power level
Utility: Shannon rate (physical throughput)

More Advanced Scenarios:

coupled distributed "stochastic" optimization

Players: nodes k, k' Action: forward/drop Utility: coverageRatio- α (forwardingCost)

Slowly time-varying (due to slow fading channels)

Players: Relays 1, ..., k,... K Action: power level Common Utility:

Average Delay of the Source Buffer

Motivating Scenarios: Faithful implementation of Distributed Algorithmic Rules

An RF Energy-Harvesting Relay

Multiple Users with Bursty Traffic Arrival

Orthogonal Fading Channels

Simultaneous Wireless Information and Power Transmission

Decode and Forward Relaying Protocol

Power Splitting between "Decoding" and "Harvesting" Units

Popular Figures in Game theory

John von Neumann (left) and Oskar Morgenstern (right) Known for: Theory of Games and Economic Behavior

Robert Aumann Known for: Correlated Equilbrium

John Harsanyi Known for: Bayesian Games

Roger Myerson Known for: Mechanism Design

A Taxonomy of Games

Spatial

> Dimensionality of the Strategy, Player, or State Spaces

Temporal

- Simultaneous (one-shot, static, normal)
- Sequential (multi-stage/extensive)

Informational

- Perfect vs. Imperfect Monitoring
- Perfect vs. Imperfect Recall
- Complete vs. Incomplete Information

• Player Cooperation

Non-cooperative Vs. Coalitional

Uncertainty

Stochastic vs. Deterministic

• Part I. Fundamentals of Game Theory

> Normal-Form Games, Utility Functions, Strategies (pure, mixed), Best Response, etc.

- Famous Solution Concepts
 - Iterated Elimination of Strictly Dominated Strategies (IESDS),
 - Rationalizability (Iterated Elimination of Never-a-Best-Response Strategies)
 - ✤ Nash Equilibrium (NE)
- Solution Concepts Beyond NE
 - Correlated Equilibrium
 - minimax strategies
 - minimax regret, etc.
- Computational Aspects of Game-Theoretic Equilibria
 - Mathematical programs and equilibrium computation algorithms
 - computational complexity, etc.

> Special Games: weakly acyclic, potential, congestion, supermodular, graphical, etc.

• Part I. Fundamentals of Game Theory

Extensive-Form Games

- Game Trees
- Perfect Information Games
- Subgame Perfect Equilibrium, Backward Induction
- Imperfect Information and Imperfect Recall Games, Information Sets, etc.
- Behavioral and Mixed Strategies

Repeated Games

- Infinite Horizon Repeated Games, Cumulative Payoffs, etc.
- Tit-for-Tat and Grim-Trigger Strategies, etc.
- Folk-Theorems
- Stochastic Games
- Bayesian Games
- Coalitional Games

• Part II. Learning and Dynamics

- Evolutionary Games
 - Evolutionary Stable Sets (ESS)
 - Replicator Dynamics
- Multi-Agent Learning
 - Bayesian Rational Learning
 - Boundedly-Rational Learning
 - Fictitious Play
 - No-Regret Learning
 - Learning MinMax Strategies in Zero-Sum Games
 - Learning CE Strategies in General-Sum Games
 - Discussion of Convergence

• Part III. Mechanism Design

Auction basics

Second-Price Auctions, Truthful Equilibrium in Dominant Strategies

- Sponsored Search Auctions (Google AdWords, etc.)
- First-Price Auctions
- > Maximizing Social Welfare: VCG Mechanism
- Reputation-Based Incentive Mechanisms

Text-Book References

- □ "Game Theory" by Drew Fudenberg and Jean Tirole, MIT Press, 1991.
- "An Introduction to Game Theory" by Martin J. Osborne, Oxford University Press, 2003
- □ "Game Theory: An Introduction" by Steven Tadelis, Princeton University Press, 2013.
- Game theory" by S. Zamir, M. Maschler, and E. Solan, Cambridge: Cambridge University Press, 2013.
- Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge, U.K.:Cambridge Univ. Press, 2008.
- "" "Algorithmic Game Theory," N. Nisan, T. Roughgarden, É Tardos, and V. Vazirani, Eds. Cambridge, U.K.: Cambridge Univ. Press, 2007.

Administrative details

- Email: <u>iust.courses@gmail.com</u>
- Courseware:
 - All students must sign up in <u>Edmodo.com</u>
 - Get registered via the following "join code":

u7k9ae

• Keep up with announcements!

Grading Scheme

