Game Theory

Lecture 03:
Nash Equilibrium




Nash Equilibrium: When players’ beliefs are correct

« Consider the two-player game in the figure: |

» All pure outcomes survive the iterated elimination
. . . U 5,5
of strictly dominated strategies.

4,4

» Because there are only two players, this is also the
set of rationalizable pure strategy profiles. D 4,4

5,5

« Let's see why the strategy profile (U,r) is rationalizable:

R U) R plays U,

R 6 () R believes 6 will play /,
R € R WU R believes 6 believes R will play U.

€ i € plays r,
€ R D) %@ believes R will play D,

G R € () 6 believes R believes 6 will play 7.




R (U € 0 I r

R € ) € R D ul 5,5 4,4

R € R ) € R €
D 4,4 5,5

 After this game is played,

» each player will realize €x pOst that her beliefs about her opponent’s play
were incorrect and, further, each will regret her own choice in the light of
what she learned about her opponent’s strategy.

* R believed that C would play I, but C instead chose r-
> Had R known that C would choose I, she would have chosen D instead.
 Similarly, C believed that R would play D, but R played U instead.

» Had C known that R would play U, he would have preferred to have chosen I.

In this (U,r) outcome, then, each player was choosing a best response to her beliefs
about the strategy of her opponent, but each player’s beliefs were wrong! 5




Nash Equilibrium: When players’ beliefs are correct

* Now consider the strategy profile (U,l): | r
R () i 6 () Ul 5,5 4,4
RC € R W)

‘ o o 4,4 5,5
RC R W) T CRC (] 0

« When the game is played this way—viz. Row plays Up and Column plays left—
each player’s prediction of her opponent’s strategy was indeed correct.

» Since each player was playing a best response to her correct beliefs,
neither player regrets her own choice of strategy.

When rational players correctly forecast the strategies of their opponents they
are not merely playing best responses to their beliefs about their opponents’ play;
they are playing best responses to the actual play of their opponents.

When all players correctly forecast their opponents’ strategies, and play best responses
to these forecasts, the resulting strategy profile is a Nash equilibrium.



Nash Equilibrium (NE)

A pure-strategy Nash equilibrium of a strategic-form game is a pure-strategy
profile ™ € § such that “every player is playing a best response to the strategy
choices of her opponents.” More formally, we say that §™ is a Nash equilibrium if:

(Viel) s;™ is abest response to s_ ..

or, equivalently, In NE, best-response correspondences intersect!
(Viel) 5;+*:EBR,+(5”_‘];).F)
or, more notationally, (Viel) (Vs;€S;) 1;(s;".s2) 2 u;(s;.s2.).
« Note that when a player | judges the optimality of her part of the equilibrium
prescription, she does assume that her opponents will play their part s-; of the

prescription.
- Therefore, she is asking herself the question: Does there exist a unilateral

deviation Si for me such that | would strictly gain from such defection given that
the opponents held truly to their prescriptions?




A game need not have a pure-strategy Nash equilibrium.
« Consider the matching pennies game:

Player 1 \ Player 2  heads tails
heads (-1,1) (1,-1)
tails (1,-1) (-1,1)

* No matter how the players think the game will be played (i.e. what pure-
strategy profile will be played), one player will always be distinctly unhappy
with her choice and would prefer to change her strategy.

* This nonexistence problem when we restrict ourselves to pure strategies was
historically a major motivation for the introduction of mixed strategies into game

theory:
 We will see that the:

The existence of mixed-strategy Nash equilibrium is guaranteed.
6



Mixed-Strateqgy Nash Equilibrium.

[Definition

A Nash equilibrium of a strategic-form game is a mixed-strategy profile o™ eX
such that “every player is playing a best response to the strategy choices of her
opponents.” More formally, we say that o™ is a Nash equilibrium if

(Viel) o, is abest response to o_;™,
or, equivalently,
(Viel) suppo,;*cBRj(o_;™).

or, more notationally,

Viel) (Vs;€S;) o o %) > uﬂ@, o_").



Example: Mixed NE

I:[a]  r:[1-q]
U:[p] 1,1.5 3,1
Up(U;q) =1xq+3x(1—q)=3—-2q @
-[1- 4,2
Un(Diq) =4xq+3x(1—q)=q+3 D:{1-p]
R
D >2xr U Ur(D;q) =2 Ug(U;q) s l"
q+323—2q:>q20 07 1
iG]
g 054
-1 . I . P
T I | 0,3 0.5 0.7y 08




Example (cont’d)

I:[q]  r:[1-q]
U:[p] 1,1.5 3,1
U(p; ) =15xXp+2%x(1—p)=2-0.5p
Up;r)=1Xp+3x(1—p)=3—-2p D:[1-p] | 4.2 @
lzer o Us(l;p) = Up(r;p) 0a | T :
2 07 +
2-05p23-2p=>p>3 s
g 05 +

ol 4

K
[

-1 - | | | | |
1.1 i, | 0,3 0.5 0.7 04
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* The intersection of the graphs of A's and B’s best-response correspondences is a
line segment along which B plays g=0 and A mixes with any
probability p on [0,2/3].

« We note that the unique pure-strategy Nash equilibrium we identified earlier is
the left endpoint of this set. 11—

A A
09 +
: : 07 +
I'[q] r'[]'-q] - Ty
: gip)
U:[p] 1,1.5 3,1 g 12T
(L, r}
13 | payofll = (3,3}
D:[1-p] 4,2 @ /
o1 4 '.
.. sl ENrrrris s s RS EE R RSP EEEEE S mmnnrnn J1 (6]
This is a game with a o . | ot

continuum of equilibria! y . 0.3 05 07 0.3



Pareto Optimality

e We've defined some canonical games, and thought about how
to play them. Now let’s examine the games from the outside

e From the point of view of an outside observer, can some
outcomes of a game be said to be better than others?

® can’t say one agent’s interests are more important than another’s
¢ imagine trying to find the revenue-maximizing outcome when you
don’t know what currency is used to express each agent’s payoff

e Are there ways to still prefer one outcome to another?

11



Pareto Optimality

e |dea: sometimes, one outcome o is at least as good for every
agent as another outcome ¢, and there is some agent who

strictly prefers o to ¢’ (
Y PrEER . , 0 (%3
e in this case, it seems reasonable to say that o is better than o n v
inates of (3 2
e we say that o Pareto-dominates o'. @ 1T,

Definition (Pareto Optimality)

An outcome o* is if there is no other outcome that

Pareto-dominates it.

e can a game have more than one Pareto-optimal outcome? 1,1 | 1,1
Yes: | 1,1 | 1,1

e does every game have at least one Pareto-optimal outcome? 2
Yes: 3

12



Ol0

Pareto Optimal Outcomes in Example Games
Left Right

Left @ 0,0 B
Right | 0,0 @ F

Heads Tails

e [ < [
=D[O)] [ OS

The paradox of Prisoner’s dilemma:
the Nash equilibrium is the only non-Pareto-optimal outcome!




Nash equilibria can be vulnerable to multiplayer deviations

- The definition of NE only requires the absence of any profitable unilateral

deviations by any player.

« A Nash equilibrium is not guaranteed to be invulnerable to deviations by

coalitions of players however.

I

There are two pure-strategy NE: U

(U,l,A) and (D,r,B) where:

-5,-5,10

(U,I,A) Pareto dominates (D,r,B). D -5,-5,0

1,1,-5

A

U
D

| I

-2,-2,0 | -5,-5,0

-5,-5,0 [(-1,-1,5
B

« Consider the (U, I,A) equilibrium. No player wants to deviate unilaterally.

* Now, fix Matrix’s choice at A and consider the joint deviation by Row and Column
from (U, I) to (D,r). Both would profit from such a shift in their strategies, yet

(U,l,A) is still a Nash equilibrium.

A strategy profile is a strong equilibrium if no coalition (including
the grand coalition, i.e. all the players collectively) can profitably deviate

14 from the prescribed profile.



Strong Equilibria: Coalition-Proof Equilibria

By definition, any strong equilibrium is both Pareto optimal and a
Nash equilibrium.

A strong equilibrium need not exist!

Also note that (D,r,A) to which the coalition of Row and Column might defect is
itself not even a Nash equilibrium.

» Therefore one could question whether it should be used as the basis for
rejecting (U,l,A).

| r | r

u -5,-5,10 | U [ -2,-2,0 | -5,-5,0

p| -5-50 | 1,1,-5 [ D | -5-50 [(-1,-1,5
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Selfish Routing & Braess' Paradox

Suppose there are 4000 commuters
who have to travel from A -> D. n=4000

The paths A->B and C->D are very
narrow and the time it takes for n .\

persons to travel through them is \
given by: n/100 minutes. @ @
The paths B->D and A->C are very @-’

broad and it takes a constant time of \ @ j

45 minutes to travel through them.

Which route should they take? 16



Selfish Routing & Braess' Paradox

A immediate solution is that 2000 take
the route: A->B->D and the other 2000
take the route A -> C -> D. Why? n=4000

If 1 of them decides, say the one who

was earlier taking the route

A -> B -> D, to shift to A->C->D then: / \

the time now takes him to travel: @ @
45 + 2001/100 = 65.01 mins, \ AM

while earlier it took him only
45 + 2000/100 = 65 mins.

So why should he deviate ? No reason!
He will not and this is a:

Nash equilibrium (NE)



Selfish Routing & Braess' Paradox

Now consider that being a good
transport minister you build one two
-way road BC, which is so wide that it n=4000

takes only a constant time of 1 min

to go from B->C or C->B. / \
Now, what path will the commuters

take?

This time all 4000 of them will take \ E M

the path: A->B->C->D. @ ’

The Time taken by each person:
4000/100 + 1 + 4000/100 = 81 mins.
Why?!




Selfish Routing & Braess' Paradox

 |f one of them decides to deviate and takes the
path (w.l.g.):

A->B->D, ~
* Then, the total time it takes for him: n=4000

4000/100 + 45 = 85 mins.
* If he takes the path:
A->C->B->D, \

e Then the total time it takes for him:
45+ 1 + 45 = 91 mins. M
* So no one will deviate and { : /-L

A->B->C->D is a Nash Equilibrium.

As you can see building an extra path B <->C
increased the overall commuting time. Though
this is counter-intuitive, try to think it through!



Selfish Routing & Braess' Paradox

* Now, the interesting fact:

* Many bridges/roads have been closed/broken because of this
phenomenon known as Braess Paradox.

In Seoul, South Korea, a speeding-up in traffic around the city was seen
when a motorway was removed as part of the Cheonggyecheon
restoration project.

In Stuttgart, Germany after investments into the road network in 1969,
the traffic situation did not improve until a section of newly built road was
closed for traffic again.

In 1990 the closing of 42nd street in New York City reduced the amount of
congestion in the area.

In 2008 Youn, Gastner and Jeong demonstrated specific routes in Boston,
New York City and London where this might actually occur and pointed

out roads that could be closed to reduce predicted travel times.



Selfish Routing & Braess' Paradox

Braess's paradox was discovered in 1968 by
mathematician Dietrich Braess.

He noticed that adding a road to a congested road traffic
network could mcrease overall Journey time, and it has &

when existing major roads are closed.

His idea was that if each driver is making the optimal self-interested

decision as to which route is quickest, a shortcut could be chosen too often
for drivers to have the shortest travel times possible.

More formally, the idea behind Braess' discovery is that the Nash
equilibrium may not equate with the best overall flow through a network!




Selfish Routing & Braess' Paradox

« Adding extra capacity to a network when the
moving entities selfishly choose their route can in
some cases reduce overall performance.

 That is because the Nash equilibrium of such a
system is not necessarily optimal.

* The paradox may have analogues in electrical
power grids and biological systems.




Tragedy of the commons

f. .
Irst describeg by Garrett Hardin jn a

1968 article in <.
In Science. Ry .
that a shareq resourc, Sriefly, it says

F'Uin Ce is : .
ed by Uncontrojegq ) lnewtably
Se,

* Assume there are N players (fishers, ~ Non-cooperative fisheries game

fishing firms, countries, groups of
countries) harvesting a common fish

resource X

e Each player maximises her own
economic gains from the resource by

choosing a fishing effort S; €[0,1].

» This means that each player
chooses her optimal startegy taking
into account other players’ strategy

23



Fisheries Game: Building Objective Functions of the Players

B The size of the fish stock at time t is denoted by X(t), which evolves over
time according to:

Agent I’s catch at time t
Logistic growth function (X) Z hi—" h.=s:x
(See study.com) i=1
F(X)= Rx(l——)

B For simplicity, assume a steady state (—t_o R=K=1 & standard logistic):
Stock biomass

depends on all Ty = (]_ Z S. )
fishing efforts

B Players maximize their catch h from the fishery:

Objective r- n R
function T pi(s) = < si(1 — Zj:l Sj) it ijl s; <1
Of player | 0 otherwise ”

\


http://study.com/academy/lesson/logistic-population-growth-equation-definition-graph.html

Tragedy of the commons (Cont'd)

* \We can write the payoff function in a more compact way as:

n
pi(s) := max(0, s;(1 — Z si)).
Jj=1
To find a Nash equilibrium of this game, fix ¢ € {1,...,n} and s_; and
denote > ., s; by f. Then p;(s;, s—;) = max(0, s;(1 —f— s;)).

. 2,
By elementary calculus player ;’s payoff becomes maximal when d—};‘ = 0 and C;:;‘ <0
dp, 1-f _1-Xjxss)
ds; =2 ST 2

This action is the best response for player i given s* for i=1,2,...,n
then s is a Nash equilibrium.

This system of n linear equations has a unique solution
n

n n
. n n
Summing over allzglﬁ‘ :n_nzgj“ = ) §; = 7= si=1-— 1 fori € {1.....n}.
players: o = =1 n n |

25




Tragedy of the commons (Cont'd)

* Fishery game’s NE: s; = n—qlq for i € {1,...,n}.

1-n/(n+1) 1
n+1  (n+1)2>

In this strategy profile each player’s payofl is

n
(n+1)2"

so 1ts social welfare 1s

There are other Nash equilibria. Indeed, suppose that forallz € {1,...,n}
we have Y .. s; > 1, which is the case for instance when s; = - for
NE= n—1
e {1,...,n}.

» Itis straightforward to check that each such strategy profile is a Nash
equilibrium 1n which each player’s payoff is 0 and hence the social
welfare is also O.

» It s easy to check that no other Nash equilibria exist.

26



Tragedy of the commons (Cont'd)

To find a strategy profile in which social optimum is reached fix a strategy

profile s and let s := ", ;.

First note that if £ > 1. then the social welfare is 0.
So assume that / < 1. Then Y 7, p;(s;) = s(1 —1).

By elementary calculus this expression becomes maximal precisely

when f = % and then it equals i.
Comparing with the social welfare of the NE
for all n > 1 we have ﬁ < i.
So the social welfare of each solution for which >7" | s; = 5 is superior

to the social welfare of the Nash equilibria.

In particular, no such strategy profile is a Nash equilibrium. 27



Tragedy of the commons (Conclusion)

In conclusion, the social welfare is maximal, and equals j when precisely

half of the common resource is used.

In contrast, in the ‘best’ Nash

the social welfare is (5B
1s used.

+l)

So when the number of players increases, the social welfare of the

best Nash equilibrium becomes arbitrarily small, while the fraction

of the common resource being used becomes arbitrarily large.

The analysis carried out reveals that for the adopted payoff functions the common
resource will be overused, to the detriment of the players (society).

The same conclusion can be drawn for a much larger of class payoff functions that
properly reflect the characteristics of using a common resource.

28



Price of Anarchy (PoA)

The Price of Anarchy (PoA) Is a concept in economics and game
theory that measures how the efficiency of a system degrades due to
selfish behavior of its agents.

Consider a game G = (NN, S, u), defined by a set of players N, strategy sets S; for each
player and utilities u; : S — R (where S = S7 X... X S,, also called set of outcomes). We can
define a measure of efficiency of each outcome which we call welfare function W : § — R.

Natural candidates include the sum of players utilities (utilitarian objective) W(s) = Z U; (3),
teN

minimum utility (fairness or egalitarian objective) W(s) = 1_11::1?\1} U; (s), ..., or any function that is
——— 1€

meaningful for the particular game being analyzed and is desirable to be maximized.

29



PoA (cont'd)

We can define a subset E C S to be the set of strategies in equilibrium (for example, the set of

Nash equilibria). The Price of Anarchy is then defined as the ratio between the optimal
'centralized’ solution and the 'worst equilibrium’:

maXgcs W(S)

PoA =
ming. g W(s)

If, instead of a 'welfare' which we want to 'maximize’, the function measure efficiency is a 'cost

function' C' : § — R which we want to 'minimize' (e.g. delay in a network) we use (following the
convention in approximation algorithms):

Py — DAXscE C(s)

min,cg C(s)

30



Price of Stability (PoS)

A related notion is that of the Price of Stability (PoS) which measures the ratio between the
'best equilibrium' and the optimal 'centralized’ solution:

PoS — mMaXgsc s W(S)

mMaXgsc g W(S)

or in the case of cost functions:

Pog — min,.g C(s)

min, g C(s)

We know that 1 < PoS < PoA by the definition. It is expected that the loss in efficiency due to
game-theoretical constraints is somewhere between 'PoS' and 'PoA'.

31



Example

Prisoner’'s dilemma

Consider the 2x2 game called prisoner's dilemma, given by the following cost matrix:

Cooperate  Defect
Cooperate 1, 1 7,0
Defect 0,7 5,5

and let the cost function be C(s1, 82) = u1 (81, 82) + u2(81, 82). Now, the minimum cost
would be when both players cooperate and the resulting costis 1 + 1 = 2. However, the only
Nash equilibrium occurs when both defect, in which case the costis 5 + 5 = 10. Thus the Price
of Anarchy of this game will be 10/2 = 5.

32



Example: Job Scheduling
There are IN players and each of them has a job to run.
They can choose one of M machines to run the job.

Each machine has a speed s1,..., sy > 0.
Each job has a weight wy,...,wy > 0.
A player picks a machine to run his or her job on.

So, the strategies of each player are A; = {1,2,...,M}.

. . Ez‘:a:j Wi
Define the Joad on machine ytobe:  I,(a) = -
Sj
The cost for player ¢ is ¢;(a) = L,, (@), i.e., the load of the machine they chose.
We consider the egalitarian cost function

MS(a) = max L;(a), here called the makespan.

J 33



Definition| |Lexicographic Sort

If L; is the load of machine i, the vector: (L4, ..., Ly) < (L}, ..., Lyy)
if until a certain index 1 the loads are equal, and at inder i L; < L’i

A configuration @ is said to be less than a' if:
the load vector associated with @ is less than that of a’.
We would like to take a socially optimal action profile a*.

This would mean simply an action profile whose makespan is minimum.

There may be several such action profiles leading to a variety of different loads
distributions (all having the same maximum load).

Among these, we further restrict ourselves to one that has a minimum second-largest load.

Again, this results in a set of possible load distributions, and we repeat until the Mth-largest

load, where there can only be one distribution of loads (unique up to permutation). iy



Example: Job Scheduling (Cont'd)

Claim. For each job scheduling game, there exists at least one pure-strategy Nash equilibrium.

Proof. the lexicographic smallest sorted load vector is a pure-strategy NE.

Reasoning by contradiction, suppose that

some player % could strictly improve by moving from machine j to machine k.

This means that the increased load of machine k after the move is still smaller
than the load of machine 7 before the move.

As the load of machine 7 must decrease as a result of the move and no other

machine s affected, this means that the new configuration is guaranteed to have
reduced the jth-largest (or higher ranked) load in the distribution.

This, however, violates the assumed lexicographic minimality of a.
35 Q.E.D.



Claim. For each job scheduling game, the pure PoA is at most M .

Proof: Let s* = max; s;. In the worst case any Nash equilibrium is bounded by:

MS(a) < ==L
8>F

(Otherwise, a player that observes a higher load than W can move to a machine with speed

=W

S™ for which its load after the migration is always less than W).

Z? 1 uu

TR
=1 i

(Which is the case if we can distribute each player's weight in equally over all machines).

We also have that [MS (CL) >

Using the above bounds, we get:
M

2 e 1’%/3 _ 2j=15
N Zz 1%’@/2 S*

Since S; < .S*, for every machine Jj- 36

PoA < < M




