Game Theory
Lecture 07/

Introduction to Computing
Game-Theoretic Solution Concepts



A matrix view of zero-sum games

A finite 2-person zero-sum (2p-zs) strategic game I,
Is a strategic game where:

e For players i € {1,2}, the payoff functions
u; : S +— R are such that for all s = (s1,s9) € 5,

ui(s) +us(s) =0
I.e., ’lLl(S) — —’lLQ(S).

u;(s1,59) can conveniently be viewed as a my x mo
payoff matrix A;, where:

wy(1,1) ... uy(1,mo)
A = | | |
] ul(ml, 1) ...... ’Ml(ml;mz) _
Note, A> = —A;. Thus we may assume only one

function wu(sq, so) iIs given, as one matrix, A = Aj.
Player 1 wants to maximize u(s), while Player 2
wants to minimize it (i.e., to maximize its negative).




matrices and vectors

As just noted, a 2p-zs game can be described by an
m1 X Mo Matrix:

where Aj j = u(?j)

For any (n1 x no)-matrix A we'll either use a; ; or

(A); ; to denote the entry in the i'th row and j'th
column of A.

For (ny X no) matrices A and B, let

A>DB
denote that for all 7,7, a; ; > b; ;.
Let

A>DB

denote that for all 7,7, a; ; > b; ;.

For a matrix A, let A > 0 denote that every entry is
> (. Likewise, let A > 0 mean every entry is > 0.



more review of matrices and
vectors

Recall matrix multiplication: given (n; X no)-matrix
A and (n9 x nz)-matrix B, the product AB is an
(n1 X ng)-matrix C', where

'?12

Ci,j = E Qi J; * bk.,j
k=1

Fact: matrix multiplication is “associative’: I.e.,

(AB)C = A(BC)

(Note: for the multiplications to be defined, the
dimensions of the matrices A, B, and C need to be
“consistent”: (n1 X ns), (n2 X n3), and (n3 X ny),
respectively.)

Fact: For matrices A, B, (C, of appropriate
dimensions, if A > B, and C' > 0, then
AC > B(C, and likewise, CA > CB.

(C's dimensions might be different in each case.)




more on matrices and vectors

For a (n1 xn9) matrix B, let B! denote the (nyxny)
transpose matrix, where (B'); ; := (B);..

i y(1) )

We can view a column vector, y = | , as a

- y(m)
(m x 1)-matrix. Then, y* would be a (1 xm)-matrix,
1.e., a row vector.

Typically, we think of “vectors” as column vectors
and explicitly transpose them if we need to. We'll
call a length m vector an m-vector.

Multiplying a (n1 X ng)-matrix A by a no-vector y is
just a special case of matrix multiplication:
Ay is a ny-vector.

Likewise, pre-multiplying A, by a nq-row vector y',
s also just a special case of matrix multiplication:
y! A is a no-row vector.

For a column (row) vector y, we use (y); to denote
the entry (y),1 (respectively, (y)1.;).



Example

Suppose we have a 2p-zs game given by a
(M1 X msy)-matrix, A.

Suppose Player 1 chooses a mixed strategy x1, anc
Player 2 chooses mixed strategy xo (assume a7 anc
ro are given by column vectors). Consider the
product

vl Ao
It you do the calculation,

mi1 Mmo

AEQ—ZZ r1(2) *x x2(])) * a; ;

=1 9=1

But note that (xq(7) * x2(j)) is precisely the
probability of the pure combination s = (7, 7). Thus,
for the mixed profile x = (1, x2)

:E?A:EQ — Ul(IE) — —UQ(ZE)

where Uj(xz) is the expected payoff (which Player
1 I1s trying to maximize, and Player 2 is trying to
minimize).




minimax as an optimization
problem

Consider the following “optimization problem”:

Maximize v

Subject to constraints:

(x1A); > v for j =1.

r1(my) =

It follows that an optimal solution (z7,v*) would
give precisely the maxmin value v*, and a

minmaximizer x7 for Player 1.

We are optimizing a “linear objective”,
under “linear constraints” (or “linear inequalities” ).

That's what Linear Programming is.

Fortunately, we have good algorithms for it.



A toy example of linear program

max ri + o

four (linear) constraints:

NO
3
_|_
S
AN VIV

. direction of
20) + 12 < 1 objective function

OPT = (4,1)

 Geometrically, the objective function asks for the feasible
point furthest in the direction of the coefficient vector (1,1) -
the most “northeastern” feasible point.

» Put differently, the level sets of the objective function are

parallel lines running southwest to northeast.

* Eyeballing the feasible region, the optimal point is (1/3,1/3)
for an optimal objective function value of 2/3.
* This Is the “last point of intersection” between a level set of

the objective function and the feasible region (as one
sweeps from southwest to northeast).

 The geometric intuition above remains valid for general
linear programs, with an arbitrary number of dimensions
(.e., decision variables) and constraints. 8



The General Linear Program

Definition: A Linear Programming or Linear Optimization
problem instance

(f,0pt,C)
consists of

1. A linear objective function f : R" — R, given by:

flx1,...,xp)=cr o1+ o0+ ... +Cpxn +d

where we assume the coefficients ¢; and constant
d are rational numbers.

2. An optimization criterion:
Opt € {Maximize,Minimize}.

3. A set (or ‘system”) C(x1,...,x,) of m
linear constraints, or linear inequalities/equalities,

Ci(x1,y.ovxy), i=1,..., m,

where each C;(x) has the form:
i 1 L1 + i 2 L2 + ... T Ui n Ln A b?ﬁ

where A € {<,. >, =1},
and where a; ;'s and b;'s are rational numbers.




What does it mean to solve an
LP?

For a constraint Cj(xy,...,2,), we say a vector
v=(v1,...,v,) € R" satisfies C;(x) if, plugging in
v for the variables © = (x1,...,x,), the constraint
C'i(v) holds true. E.g., (3,6) satisfies —x1 + x5 < 7.

A vector v € R" Is called a solution to the system
C'(x), if v satisfies every constraint C; € C. l.e.,
Ci(v) A ... N Ch(v) holds true.

Let K(C) C R"™ denote the set of all solutions to
the system C'(x). We say C' is feasible if K(C') is
not empty.

An  optimal solution, for Opt = Maximize
(Minimize), is some z* € K(C') such that

f(z*) = max f(x)

re K(C)
(respectively, f(2*) = min,cx oy f(x)).

Given an LP problem ( f, 0Opt, ('), our goal in principle
is to find an “optimal solution”.

Oops!! There may not be an optimal solution!
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Things that can go wrong

At least two things can go wrong when looking for
an optimal solution:

1. There may be no solutions at alll l.e., C' is not
feasible, i.e., K(C') is empty. Consider:

Maximize x
Subject to:
r <3 and x > 5

2. max /minge g ¢y f(x) may not exist! because
f(x) is unbounded above/below in K(C').
Consider:

Maximize x
Subject to:
T > D

Note: If we allowed strict inequalities, e.g., z < 5,
there would have been yet another problem:

Maximize x
Subject to:
r < O

11



The LP Problem Statement

Given an LP problem instance (f,0pt, (') as input,
output one of the following three:

1. “The problem is Infeasible.”

2. "The problem is Feasible But Unbounded.”

3. “An Optimal Feasible Solution (OFS) exists.
One such optimal solution is ™ € R".
The optimal objective value is f(z*) € R.”

Oops!! It seems yet another thing could go wrong;:

“What if every optimal solution x* € R™ is irrational?
How can we “output” irrational numbers?
Likewise, what if the Opt value f(x*) is irrational?”

Fact

As we will soon see, this problem never arises.
The above three answers cover all possibilities,
and furthermore, as long as all our coefficients
and constants are rational, if an OFS exists,
there will be a rational OFS #* and the optimal
value f(z*) will also be rational.




Simplified forms for LP problems

1. In principle, we only need to consider
Maximization, because

min f(z) = —max — f()

2. In principle, we only need an objective function
f(x1,...,x,) = x;, for some x;, because we can

e [ntroduce new variable xy. Add constraint
f(x) = xo to the constraint set C'.
e Make the new objective “Optimize " .

3. We don't need equality constraints, because
a = [ if and only if (a« < 3 and a > 3).

4. We don't need “"a« > b", where b € R,
because o > b it and only if —a < —b.

5. We can constrain every variable x; to be x; > 0:

Introduce two variables x;", x; for each variable

r;. Replace each occurence of x; by (z] — x;),

and add the constraints 2;” > 0, 2, > 0.
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A lovely but terribly inefficient
algorithm for LP

Input: LP instance (zg.0pt, C(zg, x1,....2y,)).

1. For 2 = n downto 1

(a) Rewrite every constraint involving x; as either:
a<z; oras xz; <03

Let these be:
O P 00 = B Y e B S
(Retain these constraints, H;, for later.)

(b) Remove H;, i.e., all constraints involving x;.
Replace them with all constraints:

2. Only zg (or no variable) remains. All constraints
have the forms a; < xg, 29 < by, or a; < by,
where a;'s and 0b;'s are constants. It's easy
to check “feasibility” & “boundedness” for this
one(or zero)-variable LP, and to find an optimal

x; if 1t exists.

3. Once you have z{, plug it into Hy. Solve for z7.
Then use x;, 27 in Hy to solve for a3,

. 5 TIEB B5sw nyl r;_, in H; to solve for z;. ...
x* = (x5, ....x,;) 1s an optimal feasible solution.
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Example

As an example, let us consider the following system of 5 inequalities in
3 variables:

20 — by + 4z < 10

3r — oy + 3z < 9 (1)
br + 10y — 2z < 15

—r + Sy — 2z < —7
-3z + 2y + 6z < 12

In the first step we would like to eliminate z.

For a moment let us imagine that ¥ and 2z are some fixed real numbers,

and let us ask under what conditions we can choose a value of 2 such that
together with the given values y and z it satisfies (1)

The first three inequalities impose an upper bound on x, while the remaining
two impose a lower bound.

To make this clearer, we rewrite the system as follows:

r < 5——%3}—2,2*
r < 34+ 2y - =z
r < 3—2y+%z
x> 7 4+ dy — 2z
m2—4——%y+ 2Z.
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Example (Cont’d)

r< 5+ 3y — 22
r < 3+ 2y - =z
r < 3—23/—1—%2:
x> 7+ o5y — 2z
:1?2—4——%y—|— 2%

So given y and z. the admissible values of o are exactly
those in the interval from

max(7+5y—2z, —4+2y+22)

to [min(5+

W] Iy

y—2£33+2y—z,3—2y+%z).

If this interval happens to be empty, there is no admissible .

So the inequality

max(7 + 5y — 2z, —4 + %y + 22) (2)
< min(5 + %y —22.3+2y— 2,3 —2y + %z)

1s equivalent to the existence of x that together with the

the considered y and 2 solves (1)
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Example (Cont’d)

max(7 + 5y — 22, —4 + 2y + 22) | (2)
< min(5 + %z/ — 22,342y —2,3—2y+ %:)

The key observation in the Fourier—Motzkin elimination is that

(2) can be rewritten as a system of linear inequalities in

the variables v and z.

'The inequalities simply say that each of the lower bounds is less than

or equal to each of the upper bounds:

(+oy—2z2 < 5+ 35y — 22
(+5y—22 < 342y —=z
T+5y—22 < 3-2y+ 2z
4+ 3y +22 < 545y -2z
—4——%3}——23 < 342y —2z
—4——%‘3}——23 < 3—2y+ =2
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Example (Cont’d

If we rewrite this system in the usual form Ax < b. we arrive at

ol < =2
3y — 2z < —4
Ty — Fz < 4 (3)
—Ly 4+ 4z <9
—2y + 32 < 7
(R A
This system has a solution exactly if the original system (1) has one,

but it has one variable fewer.
you may continue with this example, eliminating y and then z.

We note that (3) gives 4 upper bounds for y and 2 lower bounds,

and hence we obtain 8 inequalities after eliminating .

For larger systems the number of inequalities generated by the

Fourier— Motzkin elimination tends to explode.

This wasn’t so apparent for our small example, but if we have m

inequalities and, say, half of them impose upper bounds on the first

variable and half impose lower bounds. then we get about m?2/4
inequalities after eliminating the first variable, about m’ /64 after

eliminating the second variable (again, provided that about half of
the inequalities give upper bounds for the second variable and
half lower bounds), etc. 18




remarks on the lovely algorithm

e [his algorithm was first discovered by Fourier
(1826). It was rediscovered in the 1900's, by

Motzkin (1936) among others.

e It is called Fourier-Motzkin Elimination, and
can be viewed as a generalization of Gaussian
Elimination, used for solving systems of linear
equalities.

e Why is Fourier-Motzkin so inefficient? In the
worst case, If every variable x; i1s Involved In
every constraint, each iteration of the "For loop”
squares the number of constraints. So, toward
the end we could have roughly m2" constraints!!

e In 1947, Dantzig invented the celebrated
Simplex Algorithm for LP. It can be viewed as
a much more refined generalization of Gaussian
Elimination. Next time, Simplex!
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further remarks

e Immediate Corollary of Fourier-Motzkin:

If an LP has an OFS, then it has a rational OFS, =™

and f(x™) is also rational.

Proof: We used only addition, multiplication, &
division by rationals to arrive at the solution.

e Although Fourier-Motzkin is bad in the worst case,
it can still be quite useful.
It can be used to remove redundant variables.
Redundant constraints could also be removed,
and sometimes the worst-case may not arise.

e Generalizations of Fourier-Motzkin are actually
used in competitive tools (e.g., [Pugh,’'92]) to
solve “Integer Linear Programming’', where we
seek an optimal solution ™ not in R"™, but in Z".
ILP is a much harder problem! (NP-complete.)

e [For ordinary LP however, Fourier-Motzkin can't
compete with Simplex.

20



