
1

The Simplex Method for
Solving Linear Programs

Game Theory
Lecture 08

2

• If you only remember one thing about linear

programming, make it this:

Linear programs can be solved efficiently, in both

theory and practice.

Introduction

 By “in theory," we mean that linear programs can be solved

in polynomial time in the worst-case. By “in practice," we

mean that commercial solvers routinely solve linear

programs with input size in the millions. (Warning: the

algorithms used in these two cases are not necessarily the
same.)

• In 1947 George Dantzig developed both the general

formalism of linear programming and also the first

general algorithm for solving linear programs, the

simplex method.

• Amazingly, the simplex method remains the dominant

paradigm today for solving linear programs.

3

Geometry
• In Lecture #7 we developed geometric intuition about

what it means to solve a linear program, and one of our

findings was that there is always an optimal solution at a

vertex (i.e., corner") of the feasible region.

• This observation implies a finite (but bad) algorithm for

linear programming. (This is not trivial, since there are an

infinite number of feasible solutions.)

 The reason is that every vertex satisfies at least n

constraints with equality (where n is the number of

decision variables).

 The finite algorithm is then:

 Enumerate all (finitely many) subsets of n linearly

independent constraints, check if the unique point

of Rn that satisfies all of them is a feasible solution

to the linear program, and remember the best

feasible solution found in this way.

4

5

6

7

8

9

10

11

(See slide 25)

12

Simplex Algorithm on a Toy Example

13

Simplex Algorithm on a Toy Example

14

Simplex Algorithm on a Toy Example

15

Simplex Algorithm on a Toy Example

16

Simplex Algorithm on a Toy Example

17

Simplex Algorithm on a Toy Example

• Again, our current solution corresponds to setting the

non-basic variables w1 and w3 to 0.

• We can easily read off that the current value of our

solution is 13, and that x1= 3, x2= 2.

• The next step would be to increase either w1 or w3 to

increase the objective.

 However, the coefficient on both of these variables in

the objective is negative, so there is no point to doing

this: it will only decrease the objective.

 So the simplex algorithm terminates.

 In fact, this last dictionary gives a proof that our

current solution is optimal: because w1 and w3must be

nonnegative, clearly the objective value can be at most

13, and our current solution achieves this.

18

A Richer Example
• To illustrate some additional phenomena involving the simplex

algorithm, we now consider the following richer example:

• We now write this linear program in equality form:

• Again, this is a feasible dictionary, in the sense that setting all of the

non-basic variables to 0 corresponds to a feasible solution.

• Now we need to choose an entering variable.

 All of the xj have a positive coefficient in the objective, so we can

choose any one of them.

 A natural heuristic is to choose the one with the greatest coefficient,

as we want to improve the objective as much as possible.

19

A Richer Example

• So we choose x4 as the entering variable.

 Once we increase x4 to 1, w1,w2, and w4 all simultaneously

become 0. That means that in this case, we can choose any

one of them as the leaving variable.

• We now have a choice between x2 and x5 as the next entering
variable;

• x2 has a larger coefficient in the objective, let us choose x2.

 Let us choose w1 as the leaving variable. The resulting pivot

produces the following new dictionary:

20

A Richer Example

• Now, something strange happens:

 we cannot increase x2 at all without violating one of the

constraints, because the current value of w2 is already 0 and

we have −x2 on the right-hand side.

 Still, in some sense, w2 is the first basic variable that

becomes 0, so we choose it as the leaving variable.

• We note that in this last pivot, the objective remained at 7

(whereas “normally” the objective increases).

• Such a pivot is called a degenerate pivot.

 This results in the following dictionary:

21

A Richer Example
• Degenerate pivots can cause difficulties in general:

 for example, it is possible that a sequence of degenerate

pivots returns us to the same dictionary that we started with,

resulting in an infinite loop. (This cannot happen with

nondegenerate pivots, because the strict increases in the

objective make it impossible to return to the same dictionary.)

 We will see how to deal with this in general later;

 however, “usually” degenerate pivots do not cause any

problems, and, as it turns out, it does not cause any trouble in

our example:

• Let x3 be the next entering variable, so that w3 becomes the

next leaving variable.

• We obtain the following dictionary from this

(nondegenerate!) pivot:

22

A Richer Example

• Finally, we choose x5, which is the only variable with a positive

coefficient in the objective, as the entering variable, so that w4

becomes the leaving variable.

• Now, all of the coefficients in the objective are negative, so we

know that it is impossible to obtain a better solution than 8.5,

and we have arrived at the optimal solution which sets x2 = x3

= x4 = x5 = 0.5.

• We end up with the following dictionary:

23

General Comments

• In general, we can choose any non-basic variable

with positive coefficient in the objective as the

entering variable.

• As the leaving variable, we must choose the basic

variable that drops to zero first as the entering

variable increases.

 If there are multiple basic variables that drop to

zero first, we can choose any one of them.

 It may be the case that no basic variables will

ever drop to zero; in this case, the linear program

is unbounded.

• Rules for making the above choices are called

pivoting rules.

24

General Comments

• In the previous examples, we were lucky in the sense that

whenever we changed a variable from non-basic to basic,

it never changed back; as a result, in some sense, we

traversed the shortest possible path of pivots.

• Unfortunately, in general, this is not the case.

 In fact, for the common pivoting rules, there are

examples of linear programs where the simplex

algorithm goes through a path of exponentially many

dictionaries (Klee-Minty cubes are a common example

of such linear programs).

 It is not known if there is a pivoting rule that only

requires poly-nomially many pivots on any example; in

fact it is not known if there is always a path of only

polynomially many pivots to the optimal solution.

 In practice, however, the simplex algorithm tends to be

extremely fast.

25

• Things may be even worse, though: as we mentioned

above, if there are degenerate pivots, then

 There is the possibility that the simplex algorithm gets

stuck in an infinite loop, that is, it cycles.

 Cycling is extremely rare and hardly ever an issue even

if we do not take precautions.

Avoiding Cycling

 As it turns out, it is possible to avoid cycling in the

simplex algorithm.

One way to avoid this is to use Bland’s rule for

pivoting.

 When this rule has a choice among multiple

variables as the entering (or leaving) variable,

it always chooses the one with the lowest

index.

Another way to avoid cycling is to use the

lexicographic method.

 The idea is to slightly perturb the constants so

that degeneracy does not occur but the optimal

solution is not really affected.

26

Unboundedness
• We have skipped over the issue of what happens if the

linear program is unbounded.

• This is best illustrated with an example.

• Let us consider the following unbounded linear program:

• We first choose x1 as the entering variable, resulting in

w1 being the leaving variable:

• Now we must choose x2 as the entering variable.

• However, as we increase x2, none of the basic variables

decrease. Hence, we can increase x2 forever, indicating

that the program is unbounded.

27

Finding a feasible dictionary

• So far, we have assumed that we have an initial

feasible dictionary.

While in many problems, setting all of the

variables to zero corresponds to a feasible

solution, this is certainly not always the case.

 If we do not have an initial feasible dictionary,

we first need to find one, which can also be done

using the simplex algorithm.

• Finding an initial feasible dictionary is generally

referred to as “Phase 1.”

• Going from there to the optimal solution (as we

have done above) is called “Phase 2.”

• Next, we discuss Phase 1.

28

29

Example of Finding a feasible dictionary
• Consider the following linear program:

 To find a feasible solution, we temporarily forget about the

objective.

 Instead, we add an auxiliary variable x0, and we require that

each of the original constraints is violated by at most xo.

 This results in the following linear program:

• This LP has an optimal solution with objective value 0 if and only

if there is a feasible solution to the original LP.

• Now, setting x1 = x2 = 0 is no longer a feasible solution.

30

Example of Finding a feasible dictionary

• In equality form, we have:

• This is still not a feasible dictionary, but we can transform it into

a feasible dictionary by

 choosing x0 as the entering variable and the most negative

basic variable, w4, as the leaving variable.

• This results in the following dictionary:

31

Example of Finding a feasible dictionary

• Next, we choose (say) x1 as the entering variable, so that x0 is the

leaving variable, resulting in:

• Now, all the coefficients in the objective are non-positive, so

we have found the optimal solution to the auxiliary problem.

• We transform this into a feasible dictionary for the original

problem by simply dropping x0 everywhere, and replacing

the objective with the original one:

32

Example of Finding a feasible dictionary

• Because we now have a feasible dictionary (just set x1=2,x2=0),

we can start Phase 2.

