Game Theory
Lecture 08

The Simplex Method for
Solving Linear Programs



Introduction

 If you only remember one thing about Ilinear
programming, make it this:

Linear programs can be solved efficiently, in both
theory and practice.

» By “in theory," we mean that linear programs can be solved
In polynomial time In the worst-case. By “in practice,” we
mean that commercial solvers routinely solve linear
programs with input size in the millions. (Warning: the

algorithms used in these two cases are not necessarily the
same.)

* In 1947 George Dantzig developed both the general
formalism of linear programming and also the first
general algorithm for solving linear programs, the

simplex method.

 Amazingly, the simplex method remains the dominant
paradigm today for solving linear programs.



Geometry

* In Lecture #7 we developed geometric intuition about
what it means to solve a linear program, and one of our
findings was that there Is always an optimal solution at a
vertex (i.e., corner") of the feasible region.

X*

« This observation implies a finite (but bad) algorithm for
linear programming. (This Is not trivial, since there are an
Infinite number of feasible solutions.)

» The reason Is that every vertex satisfies at least n
constraints with equality (where n Is the number of
decision variables).

» The finite algorithm is then:
= Enumerate all (finitely many) subsets of n linearly
Independent constraints, check If the unique point
of R" that satisfies all of them Is a feasible solution
to the linear program, and remember the Dbest

feasible solution found In this way. .



geometric idea of simplex

e Input: Given (f,0pt.C'), and given some start
‘vertex' x € K(C) C R™
(Never mind, for now, that we have no idea how
to find x € K(C') -or even whether C is Feasible!-
let alone a “vertex" x.)

While (2 has some “neighbor vertex”, @' € K(C),
such that f(z') > f(x))

— Pick such a neighbor 2’. Let 2 := 2’.
— (If neighbor at “infinity”, Output: “Unbounded”.

Output: z* := x, and f(x*) is optimal value.

Question: Why should this work? Why don't we
get “stuck” in some “local optimum’ ?

Key reason: The region K(C') Is convex, meaning

it x,y € K(C) then every point z on the "line
segment’ between x and y is also in K (C'). (Recall:
K is convex iff .,y € K = Ar + (1 — \)y € K, for
A € 10,1].) On a convex region, a “local optimum”
of a linear objective is always the “global optimum™.

Ok. The geometry sounds nice and simple. But
realizing it algebraically is not a trivial matter!



LP’s in “Primal Form”

Using the simplification rules from the last lecture,
we can convert any LP into the following form:

Maximize ¢y 21 +co 290 +...+ ¢, x,, + d

Subject to:

1121 +012Z2 1+ ...+ a1 n Ty
491 L3 1+ @29.89 - «u 030 Ty < b9



slack variables

We can add a “slack” variable y; to each inequality,
to get equalities:

Maximize ¢y vy ~coxo+ ...+ ¢, ., +d

Subject to:
111 TAad1 22+ ... 71T U1 n Ln T Y1 — bl
(21 L1 TAad22 2+ ... T U2 n Ly T Y2 — bz

A1 T1 T A; 22+ ... T Ump Ty + Yy = bm

T,y =200 Y100 Ym = 0

The two LPs are “equivalent”. (Explanation.)
The new LP has some particularly nice properties:

1. Every equality constraint C; has at least one
variable on the left with coefficient 1 and which
doesn't appear in any other equality constraint.

2. Picking one such variable for each equality, we
obtain a set of m variables B called a Basis. An

obvious basis above is B = {y1,...,ym}.

3. Objective f(x) involves only non-Basis variables.

Let us call an LP in such a form a “dictionary”.




Basic Feasible Solutions

Rewrite our dictionary (renaming “y;", “r,+i") as:

Maximize ¢y 1 +co a0+ ...+ ¢, a2, + d
Subject to:

Tp41 = bl —a11 X1 — A1 22 — ... — U1 pn Ty
Tn49o — bg — U1 1 —A22 X3 — ... — U2 n Tp
Ln+m — b-m. — Um,1 L1 —U;2 L2 — ... = Unpn Iy
L1yeoeyLntm :_> 0

Suppose, somehow, b; > 0 forall i =1.,.... m.

Then we have what's called a “feasible dictionary’
and a feasible solution for it, namely,
et v,,;, = b;, fori=1,.... m, and

etx; =0, forj=1,..., n. The valueis f(0) = d!
Call this a basic feasible solution(BFS),with basis B.

Geometry: A BFS corresponds to a "vertex' .

(But different Bases B may yield the same BFS!)

Question: How do we move from one BFS with
basis B to a "neighboring” BFS with basis B’?

Answer: Pivoting!



Pivoting

Suppose our current dictionary basis (the variables
on the left) is B = {x;,....,x; }, with z;_ the
variable on the left of constraint (.

The following pivoting procedure moves us from basis
B to basis B := (B \ {x;.})U{x,;}.

Pivoting to add x; and remove x; from basis B:

1. Assuming C'. involves z;, rewrite C} as x; = «.

2. Substitute « for z; in all other constraints (7,
obtaining C7.

3. The new constraints '/, have a new basis:

B":=(B\{x; })U{z,}.

4. Also substitute o for z; in f(x), so that f(x)
again only depends on variables not in the new

basis B’.

This new basis B’ is a “possible neighbor” of B.

However, not every such basis B’ is eligible!




sanity checks for pivoting

To check eligibility of a pivot, we have to make sure:

1.

The new constants b, remain > 0, so we retain a
“feasible dictionary”, and thus B’ yields a BFS.

. The new BFS must improve, or at least

must not decrease, the value d" = f(0) of the new

objective function. (Recall, all non-basic variables
are set to 0 in a BFS, thus f(BFS) = f(0).)

. We should also check for the following situations:

e Suppose all non-basic variables involved in

f(x) have negative coefficients. Then
any increase from 0 in these variables will
decrease the objective.  We are thus (it

turns out) at an optimal BFS z*. Output:
Optimal solution: * and f(z*) = f(0) = d'.
e Suppose there is a non-basic variable =z,
in f(x) with coefficient ¢; > 0, and such
that the coefficient of z; in every constraint
C'". iIs also > 0. Then we can increase
r;, and the objective value, to “infinity’
without violating any constraints. So, Output:

“Feasible but Unbounded" .




finding and choosing eligible
pIVOtsS

In principle, we could exhaustively check the sanity
conditions for eligibility of all potential pairs of
entering and leaving variables. There are at most
(n * m) candidates.

But, there are much more efficient ways to choose
pivots, by inspection of the coefficients in the

dictionary.

We can also efficiently choose pivots according to
lots of additional criteria, or pivoting rules, such
as, e.g., 'most improvement in objective value”,

etc.

There are many such “rules”, and it isn't clear

a priori what is "best’ .

10



The Simplex Algorithm

Dantzig's Simplex algorithm can be described as
follows:

Input: a feasible dictionary;

Repeat

1. Check if we are at an optimal solution, and
if so, Halt and output the solution.
2. Check if we have an “infinity’ neighbor, and

if so Halt and output “Unbounded”.
3. Otherwise, choose an eligible pivot pair of
variables, and Pivot!

Fact If this halts the output is correct: an output
solution is an optimal solution of the LP.

Oops! We could cycle back to the same basis for
ever, never strictly improving by pivoting.

There are several ways to address this problem (see slide 25)



Simplex Algorithm on a Toy Example

We will now discuss the best-known algorithm (really, a family of
algorithms) for solving a program, the simplex algorithm.

We will demonstrate it on an example.

maximize 311 + 219
subject to
Adr1 + 2o < 16

—2$2§8
—£E2§5
r1 = 0;20 =20

To run the simplex algorithm, we introduce a slack variable w; for each
constraint i, so that we can rewrite the linear program in equality form,

as follows: maximize 3xq + 2x-

subject to
wy = 16 — 4oy — 229

Wo =8 — 1 — 229
ws D — L1 — T2
w1, WwWo, W3, L1,I92 2 0

If we set x1 = 29 = 0, we get a feasible solution to this linear program.

(Of course, this is not the case for every linear program, and we will see

what to do if this is not the case later on.)

Our goal 1s to improve this solution. 19



Simplex Algorithm on a Toy Example

maximize 3x1 + 2x-
subject to
wy = 16 — 4oy — 229

Wo = 8 — 1 — 229
W3 = 0 — XT| — T9
w1, WwWo, W3, L1,I92 2 0

If we increase either x1 or xo, then the objective value will increase.
L.et us start by increasing x;.

At some point, one of the constraints will be violated—that is, one of
the slack variables will become negative.

Specifically, if we increase a1 to 4, then the first constraint 42, + 22o < 16
will be just barely satisfied, that i1s, wy will be 0. so we cannot increase

further. (The other constraints are still satisfied at this point.)

The objective value at this current solution of 1 =4, 25 =0 1s 12, a good

start but we are not yet at optimality.

13



Simplex Algorithm on a Toy Example

maximize 3x1 + 2x-
subject to
wy = 16 — 4oy — 229

Wo = 8 — 1 — 229
w3 — D — L1 — 9
w1, WwWo, W3, L1,I92 2 0

The key trick of the simplex algorithm is that at this point, we rewrite

the linear program, changing the roles of some of the original and
slack variables.

After we do so, the current solution will once again correspond to the origin.

Specifically, we remove 21, whose value is no longer 0, from the objective and

the right-hand sides of the equalities:
we replace 1t with an expression mvolving wi, whose value is now 0.

Specifically, from the first constraint, we know that w; = 16 — 421 — 229, Or

equivalently, 1 = 4—0.25w; — 0.5x5.
We replace the first constraint with this new equality.
We also rewrite the objective as
311 + 209 = 3(4 — 0.25w; — 0.529) 4+ 229 = 12 — 0.75w; + 0.525.
We rewrite the second constraint and the third constraint

14



Simplex Algorithm on a Toy Example

T'his results i the following linear program, which is equivalent to our original
linear program:

maximize 12 — 0.75wq, + 0.5x5
subject to
L1 — 4 — 0.251}_}1 — 051‘2

w9 4 + 0.25@[}1 — 151‘2
ws = 1+ 0.25w1 — 0.529
Wy, Wz, W3, L1, L2 2 0

Our current solution consists of setting w; = 0,25 = 0.
Because both of these are 0, the other values are easy to read off:
the current objective value is 12, ¢ 1s 4, we 1s 4, and w3 1s 1.
We call a linear program written in this way a dictionary:;

the left-hand side variables are called the basic variables, and the

right-hand side variables (which are set to 0 in the current solution)

the nonbasic variables.

When we moved from the first dictionary to the second dictionary,
we performed a pivot; in this pivot
xr1 was the entering variable (going from nonbasic to basic)

and w; was the leaving variable (going from basic to nonbasic).
15



Simplex Algorithm on a Toy Example

maximize 12 — 0.75w; + 0.525
subject to
r1 =4 — 0.25w1 — 0.529

wo = 4 + 0.25w1 — 1.5x9
ws = 1+ 0.25w1 — 0.529
Wy, Wy, Wy, 1. To > 0

It 1s easy to see that we have not yet arrived at an optimal solution:
the coefficient of 25 in the objective is positive, meaning that by

Increasing ro we can increase the objective value.

In contrast, there is no sense in increasing wy because its coeffient in the

objective is negative.
So, we will increase x5 as much as we can without violating a constraint.

If we Increase xp to 2, then ws will be equal to 0 (and the other two

basic variables will still be positive.)
S50, 9 1s our entering variable, and ws is our leaving variable.
We know that ws = 1 + 0.25w; — 0.529. or equivalently,
ro = 2+ 0.5wy — 2ws.
so we replace the last constraint with this expression.

. . . .
We also use this expression to replace occurrences of x5 in the

objective and the right-hand sides of the constraints. 16



Simplex Algorithm on a Toy Example

We obtain: maximize 13 — 0.5w; — w3
subject to

wo = 1 — 0.5w + 3ws
ro = 2+ 0.5w; — 2ws
wy, Wy, w3, 1,9 > 0
* Again, our current solution corresponds to setting the
non-basic variables w, and w,to 0.

 We can easily read off that the current value of our
solution Is 13, and that x,= 3, X,= 2.

* The next step would be to Increase either w,or w,to
Increase the objective.

» However, the coefficient on both of these variables In
the objective Is negative, so there Is no point to doing
this: 1t will only decrease the objective.

» S0 the simplex algorithm terminates.

» In fact, this last dictionary gives a proof that our
current solution Is optimal: because w, and w,must be
nonnegative, clearly the objective value can be at most
13, and our current solution achieves this.

17



A Richer Example

* To Iillustrate some additional phenomena involving the simplex
algorithm, we now consider the following richer example:

maximize 4xq + dbxo + 4xg + Tx4 + T
subject to

-3 T X4 < 1

L9 L4 < 1

- 3 < 1

- Ty < 1

T1,T2,x3,L4,T5 = 0

maximize 4y + dxo +4xs + Txy + 5
subject to

w1 =1 —x1 — 23— T4

Wo =1 —x1 —To — 24

w3 1 Lo — I3

wy=1—2x4 — 25

W1, W2, W3, Wy, L1, T2, T3, Lg,T5 = 0

* Again, this Is a feasible dictionary, In the sense that setting all of the
non-basic variables to 0 corresponds to a feasible solution.

»  Now we need to choose an entering variable.

» All of the x; have a positive coefficient in the objective, so we can
choose any one of them.

» A natural heuristic Is to choose the one with the greatest coefficient,
as we want to improve the objective as much as possible. 18



A Richer Example

maximize 4rq + dxro + 4xs + Txy + 5
subject to
Wi =1—x1 —2x3 — 24

Wo =1 —T1 —To — 24

w3 = 1 Lo — I3
wy =1 —24 — Ts
Wi, W2, W3,Wyq, L1, X2, T3, L4,L5 2 0

 So we choose X, as the entering variable.

» Once we Increase X, to 1, w,,w,, and w, all simultaneously
become 0. That means that in this case, we can choose any

one of them as the leaving variable.

> Let us choose w, as the leaving variable. The resulting pivot
produces the following new dictionary:
maximize 7 — 7wy — 3x1 + Dxro — 313 + T5

subject to
reg=1—w1 —2x1 — 23

Wo = W1 — T + T3

w3 = 1 — Lo — I3

Wqg =wW; +T1 +T3— T

w1, W, W3, Wy, L1, T2, T3, T4, L5 = 0

« We now have a choice between x, and x; as the next entering
variable;

* X, has a larger coefficient in the objective, let us choose X.. 19



A Richer Example

maximize 7 — 7wy, — 311
subject to
:1:4:1—-1(;1—:1:1—:1:3

Wo = W1 — T2 + T3
'u?:g:l—ilfg—.fg

Wy = W1 +2T1 +T3 — Ts

wy, W2, W3, W4, L1, X2, L3, L4, L5 >0

* Now, something strange happens:

» Wwe cannot Increase X, at all without violating one of the
constraints, because the current value of w, Is already 0 and

we have —x, on the right-hand side.

»> Still, In some sense, w, IS the first basic variable that

becomes 0, so we choose it as the leaving variable.
> This results in the following dictionary:

maximize 7 — 2wy — ows — 31 + 223 + T
subject to
by :1—'?1}1—3?1—3?3

o = W1 — W9 + T3

Wy — 1 — W1 + W9 — 2T‘3
Wwq4 = W1 + 21 +23 — Ts
wy, W2, W3, W4, L1, L2, L3,L4,L5 >0

« We note that in this last pivot, the objective remained at 7
(whereas “normally” the objective increases).

» Such a pivot is called a degenerate pivot.

20



A Richer Example

» Degenerate pivots can cause difficulties in general:

> for example, it is possible that a sequence of degenerate
PIVOLS returns us to the same dictionary that we started with,
resulting In an Infinite loop. (This cannot happen with

nondegenerate pivots, because the strict increases in the
objective make It impossible to return to the same dictionary.)

» We will see how to deal with this in general later;

> however, “usually” degenerate pivots do not cause any
problems, and, as It turns out, it does not cause any trouble In
our example:
maximize 7 — 2w — Dwo — 311 + 213 + x5
subject to
ra=1—wi —x1 — 23
To = W1 — W9 + I3

wsg = 1 — w1 + wo — 223
Wwq4 = W1 + 21 +23 — Ts
Wy, W2, W3, Wy, L1, T2, T3, Ly, T5 = 0

» Let X, be the next entering variable, so that w, becomes the
next leaving variable.

« We obtain the following dictionary from this

(nondegenerate!) pivot:
21



A Richer Example

maximize 8 — 3w — 4wo — wa — 311 + x5
subject to

rs = 0.0 — 0.5w1 — 0.0w9 + 0.0w3 — x4

ro = 0.0+ 0.5w1 — 0.50wo — 0.5w3

ra = 0.5 — 0.5w1 + 0.5wo — 0.5ws
wg = 0.9+ 0.0w1 + 0.0we — 0.5w3 + 11 — x5
Wi, W, W3, W4, L1, T2, T3, Ty, Ty = 0

* Finally, we choose Xz, which Is the only variable with a positive
coefficient in the objective, as the entering variable, so that w,
becomes the leaving variable.

* We end up with the following dictionary:

maximize 8.5 — 2.5w1 — 3.5wo — 1.5wg — w4 — 221
subject to
.’1?4200 0. u1—05wg+05wg—m1

ro = 0.0+ 0.0w1 — 0.5wo — 0.5w3

rg = 0.0 — 0.0w1 + 0.0wo — 0.5ws

rs = 0.5+ 0.0w1 + 0.0ws — 0.0w3 — wa + 21
Wi, W, W3, W4, L1, T2, T3, La, Ty = 0

* Now, all of the coefficients In the objective are negative, so we
know that it I1s Impossible to obtain a better solution than 8.5,
and we have arrived at the optimal solution which sets X, = X,
=X, =Xz = 0.5.

22



General Comments

* In general, we can choose any non-basic variable
with positive coefficient In the objective as the
entering variable.

* As the leaving variable, we must choose the basic
variable that drops to zero first as the entering
variable increases.

» It there are multiple basic variables that drop to
zero first, we can choose any one of them.

» It may be the case that no basic variables will
ever drop to zero; In this case, the linear program
IS unbounded.

* Rules for making the above choices are called
pivoting rules.

23



General Comments

* |n the previous examples, we were lucky In the sense that
whenever we changed a variable from non-basic to basic,
It never changed back; as a result, iIn some sense, we
traversed the shortest possible path of pivots.

» Unfortunately, in general, this Is not the case.

» In fact, for the common pivoting rules, there are
examples of linear programs where the simplex
algorithm goes through a path of exponentially many
dictionaries (Klee-Minty cubes are a common example
of such linear programs).

» It 1s not known If there Is a pivoting rule that only
requires poly-nomially many pivots on any example; in
fact 1t 1S not known If there Is always a path of only
polynomially many pivots to the optimal solution.

» In practice, however, the simplex algorithm tends to be
extremely fast.

24



Avoliding Cycling

 Things may be even worse, though: as we mentioned
above, If there are degenerate pivots, then

» There Is the possibility that the simplex algorithm gets
stuck In an infinite loop, that Is, It cycles.

» Cycling Is extremely rare and hardly ever an issue even
IT we do not take precautions.

» As It turns out, It Is possible to avoid cycling In the
simplex algorithm.

d One way to avoid this Is to use Bland’s rule for
pivoting.

= When this rule has a choice among multiple
variables as the entering (or leaving) variable,
It always chooses the one with the lowest
Index.

J Another way to avoid cycling Is to use the
lexicographic method.

= The idea is to slightly perturb the constants so
that degeneracy does not occur but the optimal

solution 1s not really affected. .



Unboundedness

We have skipped over the issue of what happens If the
linear program Is unbounded.

This Is best illustrated with an example.

et us consider the following unbounded linear program:

maximize 311 + 219
subject to

wp = 1

— X1 T+ X9

Wo =
w1, W9

We first choose X, as the

I +x1 — o

L1, L9 > ()

entering variable, resulting In

w, being the leaving variable:

maximize 3 — 3w + Hxo

subject

to

ri =1 — w1+ a9
Wo = 2 — w1
w1, W2,T1,I9 > 0

Now we must choose X, as the entering variable.

However, as we Increase
decrease. Hence, we can

X,, none of the basic variables
Increase X, forever, indicating

that the program Is unbounded.

26



Finding a feasible dictionary

e So far, we have assumed that we have an Initial
feasible dictionary.

» While In many problems, setting all of the
variables to zero corresponds to a feasible
solution, this Is certainly not always the case.

» If we do not have an initial feasible dictionary,
we first need to find one, which can also be done
using the simplex algorithm.

* Finding an iInitial feasible dictionary Is generally
referred to as “Phase 1.”

* Going from there to the optimal solution (as we
have done above) Is called “Phase 2.”

 Next, we discuss Phase 1.

27



checking feasibility via simplex

Consider the following new LP:

Maximize —x

Subject to:
1141 Tad12L2 1T ... T U1 n Ly — L § bl
(21 L1 TU22 L2 T ... T U2 n Ly — L § bg

Ty L1ye.. Ly =0
e ThisLP isfeasible: let 29 = —min{bq,....,b,,, 0},
r; =0, for j =1,....n. We can also set up a

feasible dictionary, and thus initial BFS, for it by
introducing slack variables in an appropriate way.

e Key point: the original LP is feasible if and only if
in an optimal solution to the new LP, = = 0.

e |t also turns out, it is easy to derive a BFS for the
original LP from an optimal BFS for this new LP.

e (In fact, finding an optimal solution given a
feasible solution can also be reduced to checking
whether a feasible solution exists.)

28



Example of FInding a feasible dictionary

* Consider the following linear program:
maximize 311 + 225
subject to
dry + 229 < 16
L1 T 2;1?2 é 8

-9 < 9
—T] — Ty < —2
r1 = 0;209 20

* Now, setting X, = X, = 0 Is no longer a feasible solution.

» To find a feasible solution, we temporarily forget about the
objective.

» Instead, we add an auxiliary variable x,, and we require that
each of the original constraints is violated by at most X,

» This results in the following linear program:
maximize —2I
subject to
Adr1 + 210 — 20 < 16

— 2;1?2 — L0 g 8

- Lo — Lo <O

—T1 — T2 — Ty < —2

To, 21,22 = 0

* This LP has an optimal solution with objective value O If and only
If there 1s a feasible solution to the original LP.

29



Example of FInding a feasible dictionary

maximize —2I
subject to

Ar1 + 2x0 — 29 < 16
- 2'1?2 — X0 § 8

-T2 — 2o <O
—T1 — T2 — Ty < —2
ro, 21,22 = 0

* In equality form, we have:

maximize —Ig

subject to

w1 = 16 — 41 — 220 + 20
Wo = &8 — X1 — 2T9 + X

W3 =0 — L1 — To + X
= —2+x1 + a9 + X0
w1, W2, W3, Wa, L0, L1, L2 > 0

* This is still not a feasible dictionary, but we can transform it into
a feasible dictionary by

» choosing X, as the entering variable and the most negative
basic variable, w,, as the leaving variable.

* This results In the following dictionary:

30



Example of FInding a feasible dictionary

maximize —2 — wy + x1 + To
subject to

w1 = 18 +wyq4 — D1 — 329

Wwo — 10 Wy — 2T1 — 3T2

Wwa =7+ wy — 201 — 219
Lo = 2 + Wwqg — U1 — X9
w1y, Wo,W3,Wq4, X0, L1,L2 >0

* Next, we choose (say) X, as the entering variable, so that X, Is the
leaving variable, resulting In:

maximize —Ig

subject to

w1 = 8 — 4'104 —+ 2T2 —+ 5;1?0
Wwo =6 — wy — o + 220

W3 = 3 — Wy + 220
rT1 =2+ wWq4 — To — T
Wy, W2, W3, Wq,L0, L1, L2 >0

* Now, all the coefficients In the objective are non-positive, so
we have found the optimal solution to the auxiliary problem.

* We transform this into a feasible dictionary for the original

problem by simply dropping x0 everywhere, and replacing
the objective with the original one:

31



Example of FInding a feasible dictionary
maximize 3r1 + 2xo
subject to
w1 = & — 4wy + 2x9
Wo = O — Wy — T9

W3 = 3 — Wy
Wyp= T1 + To —2
w1, W2, W3, W4, 1, T2 = 0

» Because we now have a feasible dictionary (just set x,=2,x,=0),
we can start Phase 2.
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