Game Theory
Lecture 13

Graphical Games

Introduction

* Representing multiplayer games with large player
populations In the normal form Is undesirable for both
practical and conceptual reasons.

» On the practical side, the number of parameters that
must be specified grows exponentially with the size
of the population.

» On the conceptual side, the normal form may fail to
capture structure that Is present In the strategic
Interaction, and which can aid understanding of the
game and computation of its equilibria.

* For this reason, there have been many proposals for
parametric_multiplayer game representations that are
more succinct than the normal form, and attempt to
model naturally arising structural properties.

» Examples Include congestion and potential games
and related models.

Graphical Games: Introduction

* Graphical games are a representation of multiplayer
games meant to capture and exploit locality or sparsity
of direct influences.

* They are most appropriate for large population games
In which the payoffs of each player are determined by
the actions of only a small subpopulation.

* As such, they form a natural counterpart to earlier
parametric models.

» Whereas congestion games and related models

Implicitly assume a large number of weak
Influences on each player, graphical games are

sultable when there 1s a small number of strong
Influences.

Graphical Games: Introduction

* A graphical game Is described at the first level by an
undirected graph G In which players are identified with
vertices.

» The payoff to player 1 1s a function only of the actions
of 1 and Its neighbors, rather than the actions of the
entire population.

» In the many natural settings where such local
neighborhoods are much smaller than the overall
population size, the benefits of this parametric
specification over the normal form are already
considerable.

* In this lecture, we examine the computation of Nash
equilibria In graphical games In which the underlying
graph G iIs a tree.

» Here we will discuss a natural two-pass algorithm for
computing Nash equilibria requiring only the local
exchange of “conditional equilibrium” information over
the edges of G.

Basic Notations
we use a; to denote the action chosen by player:.

For simplicity we will assume a binary action space, so a; € {0, 1}.
(The generalization of the results examined here to the multiaction
setting 1S straightforward.)

The payoffs to player i are given by a table or matrix M;, indexed
by the joint action a € {0, 1}".

The value M;(a), which we assume without loss of generality to lie

in the interval [0, 1], 1s the payoft to player i resulting from the
joint action a.

The actions O and 1 are the pure strategies ot each player,
while a mixed strategy for player i is given by p; € [0, 1]
that the player will play O.

For any joint mixed strategy, given by a product distribution D,
we define the expected payoff to plaver i as M;(p) = Ei3[M; (a)],
where a ~ p indicates each a; is O with probability p; and 1 with

probability 1 — p; independently.
5

Basic Notations

We use pli : p!] to denote the vector (product distribution) which

is the same as p except in the ith component, where the value has
been changed to p:.

A Nash equilibrium (NE) for the game is a mixed strategy p such
that for any player i, and for any value p: € [0, 1],

M;(p) = M;(pli : p:])

(We say that p; is a best response to the rest of p.)

An e-Nash equilibrium is a mixed strategy p such that for any player i,
and for any value p! € [0, 1], M;(p) + € > M;(pli : pi]).

(We say that p; is an e-best response to the rest of p.)

Graphical Game: Definition

In a graphical game, each player i 1s represented by a vertex in an
undirected graph G.

Weuse N(1) C {1, ..., n}to denote the neighborhood of player i

in G — that is, those vertices j such that the edge (i, j) appears
in G. | |

By convention N (i) always includes 1 itself as well.

If a is a joint action, we use a ' to denote the projection of @ onto
just the players in N (7).

Definition A graphical game is a pair (G, M), where G is an
undirected graph over the vertices {1, ..., n}, and M is a set of n
local game matrices.

For any joint action a, the local game matrix M; € M specifies

the payoff M;(a") for player i, which depends only on the actions
taken by the players in N (}).

Graphical Game: Remarks

» Graphical games are a (potentially) more compact way of
representing games than standard normal form.

» Rather than requiring a number of parameters that Is
exponential In the number of players n, a graphical game
requires a number of parameters that Is exponential only in
the size d of the largest local neighborhood.

> Thus if d << n — that is, the number of direct influences on
any player i1s much smaller than the overall population size
— the graphical game representation i1s dramatically smaller
than the normal form.

It is also worth noting that although the payoffs to player I are
determined only by the actions of the players In N(i),
equilibrium still requires global coordination across the player
population:

» It player 1 1s connected to player | who iIs In turn connected
to player k, then 1 and k indirectly influence each other via
their mutual influence on the payoff of |.

» How local Influences propagate to determine global
equilibrium outcomes Is one of the computational
challenges posed by graphical games. g

Computing Nash Equilibria in
Tree Graphical Games

* We describe the most basic algorithm exploiting the
advantages of graphical game representation for the
purposes of equilibrium computation.

* \We assume that the underlying graph G Is a tree.

» While obviously a strong restriction on the
topology, we shall see that this case already
presents nontrivial computational challenges.

> We first describe the algorithm TreeNash at a
high level, leaving certain Important
Implementation details unspecified, because It Is
conceptually advantageous to do so.

» We then describe one Instantiation of the missing
details, yielding an algorithm that provably
computes approximations of all equilibria.

Some notation and concepts
 We begin with some notation and concepts needed for the

description of TreeNash.

* In order to distinguish parents from children in the tree, it
will be convenient to treat players/vertices symbolically (such
as U, V, and W) rather than by integer indices, so

> we use M, to denote the local game matrix for the player
identified with player/vertex V.

» \We use capital letters to denote vertex/players to distinguish
them from their chosen actions, for which we shall use
lower case.

* |f G Is a tree, we choose an arbitrary vertex as the root (which
we visualize as being at the bottom, with the leaves at the top).

» Any vertex on the path from a vertex V to the root will be
called downstream from V, and

» any vertex on a path from V to any leaf will be called
upstream fromV .

» Thus, each vertex other than the root has exactly one
downstream neighbor (or child), and perhaps many
upstream neighbors (or parents).

» We use UP;(V) to denote the set of all vertices in G that are
upstream from V , including V by definition. 10

Some notation and concepts

Suppose that V 1s the child of U in G.

We let GY denote the subgraph induced by the vertices in UPg(U)
(that is, the subtree of G rooted at U.)

It v e [0, 1]1s amixed strategy for player (vertex) V, M%;:U will
denote the subset of payotf matrices in M corresponding to the

vertices in UPg (U), with the modification that the game matrix
My 1s collapsed by one index by fixing V' = v.

We can think of an NE for the graphical game (GY, MY{_)as a
conditional equilibrium “upstream” from U (inclusive) — that 1s,

an equilibrium_for GY given that V plays v.

» Here we are simply exploiting the fact that since G is a tree,
fixing a mixed strategy v for the play of V isolates GY from
the rest of G.

11

TreeNash Algorithm

Now suppose that vertex V has k parents Uy, ..., Ui, and the
single child W.

We now describe the data structures sent from each U; to V,

and 1n turn

from V to W, on the downstream pass of TreeNash.

» BEach parent U; will send to V' a binary-valued “table” T (v, u;).

m The table is indexed by the continuum of possible values

for t

ne mixed strategies v € [0, 1] of V and u; € [0, 1]

of U;,i=1,.... k.

m The semantics of this table will be as follows:

for

any pair (v, u;), T'(v, u;) will be 1 1if and only 1f there

exists an NE for (GY, M"_) in which U; = u;.

12

TreeNash Algorithm: Downstream Pass

 Since v and u; are continuous variables, it Is not obvious that the
table T(v,u;) can be represented compactly, or even finitely, for
arbitrary vertices in a tree. For now we will simply assume a
finite representation, and shortly discuss how this assumption
can be met.

« The initialization of the downstream pass of the algorithm
begins at the leaves of the tree, where the computation of the
tables is straightforward:

» If U is aleaf and V its only child, then T (v, u) = 1 if and only
ITf U = u Is a best response to V = v (Step (i) (c) of the
Algorithm).

* Assuming for induction that each U; sends the table T'(v, u;) to Vv,
we now describe how V can compute the table T (w, v) to pass to
its child W (Step (i1) (d)2 of the algorithm).

m Foreachpair (w, v), T(w, v)1s setto 1 if and only 1f there exists a
vector of mixed strategies u = (uy, ..., uy) (called awitness) for

—

the parents U = (Uy, ..., Uy)of V such that
(1) T(v,u;)=1toralll <: <k;and

(ii) V =visabestresponseto U =u, W = w.

= Note that there may be more than one witness for T (w,v) =1. 5

TreeNash Algorithm: Downstream Pass

* In addition to computing the value T(w,v) on the downstream pass
of the algorithm, V will also keep a list of the witnesses u for each
pair (w,v) for which T(w,v) = 1 (Step 11(d)2 of the Algorithm).

» These witness lists will be used on the upstream pass.

 To see that the semantics of the tables are preserved by the
computation just described, suppose that this computation yields
T(w,v) = 1 for some pair (w,v), and let u be a witness for T(w,v) = 1

» The fact that T(v,u;) = 1 for all I ensures by Induction that:

= |f V plays v, there are upstream NE in which each U; = u..

» Furthermore, v Is a best response to the local settings U, = u,,
U =u W =w

» Therefore, we are In equilibrium upstream from V.

» On the other hand, If T (w,v) =0, It IS easy to see there can be
no equilibrium in which W = w, V = v. Note that the existence
of an NE guarantees that T(w,v) = 1 for at least one (w,v) pair.

* The downstream pass of the algorithm terminates at the root Z,
which recelves tables T(z,y;) from each parent Y; .

» Z simply computes a one-dimensional table T (z) such that :

> T(z) = 1 if and only if for some witness y, T(z,yi) = 1 for all i,
and z is a best response to y. 14

TreeNash Algorithm: Upstream Pass

* The upstream pass begins by Z which
» chooses any z for which T(z) = 1, and

» chooses any witness (y,, . .., Y,) to T(z) = 1, and
then

= passing both z and y; to each parent Y.

= The Interpretation iIs that Z will play z, and Is
“instructing” Y; to play y: .

» Inductively, If a vertex V receives a value v to
play from its downstream neighbor W, and the
value w that W will play, then 1t must be that
T(wyv) =1,

= So V chooses a witness u to T(w,v) = 1, and
passes each parent U. their value u; as well as
v (Step (111) of the Algorithm).

= Note that the semantics of T(w,v) = 1 ensure
that V = v Is a best response to U=aW=w. 1

TreeNash Algorithm: Upstream Pass

* We have left the choices of each witness In the upstream pass
unspecified or nondeterministic to emphasize that the tables and

witness lists computed represent all the NE.

» The upstream pass can be specialized to find a number of
specific NE of interest, including

= player optimum (NE maximizing expected reward to a
chosen player),

= soclal optimum (NE maximizing total expected reward,
summed over all players), and

= welfare optimum (NE maximizing expected reward to the
player whose expected reward Is smallest).

* Modulo the important detalils regarding the representation of the
tables T(w,v), which we discuss next, the arguments provided

above establish the following formal result.

Theorem Let (G,M) be any graphical game in which G Is a tree.
Algorithm TreeNash computes a Nash equilibrium for (G,M).
Furthermore, the tables and witness lists computed by the

algorithm represent all Nash equilibria of (G,M).
16

Algorithm TreeNash
Inputs: Graphical game (G, M) in which G 1s a tree.

Output: A Nash equilibrium for (G, M).
(i) Compute a depth-first ordering of the vertices of G.

(i) For each vertex V in depth-first order:
(a) Let vertex W be the child of V (or nil if V is the root).

(b) For all w, v € [0, 1], initialize T(w, v) to be 0 and the witness list for
T (w, v) to be empty.
(¢) If V 1s a leaf (base case):
1. For all w, v € [0, 1], set T(w, v) tobe 1 if and only if V = v is a best
response to W = w (as determined by the local game matrix My).
(d) Else (inductive case, V 1s an internal vertex):

1. Let U = (Uy, ..., Uy) be the parents of V; let T(v, u;) be the table
passed from U; to V on the downstream pass.

2. For all w, v € [0, 1] and for all joint mixed strategles 7 (7 PRy
for U: If V = v is a best response to W = w, U =i (as determmed

by the local game matrix My), and T(v,u;) =1fori =1,--- ,k, set
T(w, v) to be 1 and add « to the witness list for 7(w, v).

(e) Pass the table T(w, v) from V to W.

(iii) | (Upstream Pass)| For each vertex V in reverse depth-first ordering (starting at
the root):

(a) Let U = (U, ..., U) be the parents of V (or the empty list if V is a leaf);
let W be the child of V (or nil if V is the root), and (w, v) the values passed
from W to V on the upstream pass.

(b) Label V with the value v.
(¢) (Non-deterministically) Choose any witness # to T(w, v) = 1.

(d) Fori =1,...,k, pass (v, 4;) from V to U;. 17

leaf nodes

/ =
O
I
S
= |
(7))
o |
-

aparentof\/ __________________________________
T(vu)_l(:) N

Ui M N 7
3 an NE for (GV, ML) \u; € BRy,(v) YA, BR, (U, w)AT(v,u;) = 1foralli=1,...,K

4\ Then: U = (Uyq, ..., Ug) is @ witness

W :
W child of V
o I
= ‘
>
W .
=
-
)
Q)
3
T(zy;) 7 \ g
3 an NE for (GY, M,) A y;€ BRyi(Z)\\\\ / T(z2) =1
/7€ BR,(3)NT(z,y;) =1Vi=1,..,K
Then:y = (v, ..., Yk,) a witness ;g

An Approximation Algorithm

* In this section, we sketch one Instantiation of the missing details
of algorithm TreeNash that yields a polynomial-time algorithm
for computing approximate NE for the tree game (G,M).

» The approximation can be made arbitrarily precise with greater
computational effort.

Rather than playing an arbitrary mixed strategy in [0, 1], each
player will be constrained to play a discretized mixed strategy

that 1s a multiple of 7, for some 7 to be determined by the
analysis.

Thus, player i plays ¢; € {0, 7, 27,..., 1}, and the joint strategy ¢
falls on the discretized r-grid {0, 7, 27, ..., 1}".

In algorithm TreeNash, this will allow each table T (v, u) (passed

from vertex U to child V') to be represented in discretized form as
well:

only the 1/77 entries corresponding to the possible t-grid choices

for U and V are stored, and all computations of best responses 1n
the algorithm are modified to be approximate best responses.

19

An Approximation Algorithm

To quantifty how the choice of T will influence the quality
of the approximate equilibria found (which in turn will

determine the computational efficiency of the approximation
algorithm), we appeal to the following lemma.

We note that this result holds for arbitrary graphical games, not
only trees.

Lemma [er G be a graph of maximum degree d, and let
(G, M) be a graphical game. Let p be a Nash
equilibrium for (G, M), and let q be the nearest (in L,

metric) mixed strategy on the t-grid. Then q is a dt-NE
for (G, M).

* \We omit the proof of Lemma, but what matters is that the
algorithm remains exponential in d simply due to the
representational complexity of the local product

distributions.
» The important point Is that = needs to depend only on
the local neighborhood size d, not the total number of

players n. 50

The ApproximateTreeNash Algorithm

* It 1s now straightforward to describe ApproximateTreeNash.
This algorithm 1s identical to algorithm TreeNash with the
following exceptions:

» The algorithm now takes an additional input &.

» For any vertex U with child V, the table T (u, v) will contain
only entries for u and v multiples of 7.

» All computations of best responses in algorithm TreeNash
become computations of &-best responses In algorithm
ApproximateTreeNash.

For the running time analysis, we simply note that each table

has (1/7)* entries and that the computation is dominated by
the downstream (Step (11)(d) of algorithm TreeNash).

This requires ranging over all table entries for all k parents, a
computation of order ((1/ r)z)""

By appropriately choosing the value of 7 in order to obtain
the required e-approximations, we obtain the tollowing theorem.

Theorem Ler (G, M) be a graphical game in which G is a
tree with n vertices, and in which every vertex has
at most d parents. For any € > 0, let t = O(¢/d).

Then ApproximateTreeNash computes an e-Nash
equilibrium for (G, M). 21

