Game Theory

Lecture 15

Learning Minmax Strategies In
Zero-Sum Games

Introduction

* |n this lecture, we will give a natural learning algorithm that players can use to play a game.

* To Introduce It, we abstract away the game, and the other players, and start by asking how a player should
make predictions In a sequential setting.

* As asimple example to keep in mind, consider the following toy model of predicting the stock market:

» Every day the market goes up or down, and you must predict what it will do before It happens (so that
you can either buy or short shares).

» You don't have any Information about what the market will do, and It may behave arbitrarily, so you
can't hope to do well in an absolute sense.

» However, every day, before you make your prediction, you get to hear the advice of a bunch of
experts, who make their own predictions.

» These “experts” may or may not know what they are talking about, and you start off knowing nothing
about them.

» Nevertheless, you want to come up with a rule to aggregate their advice so that you end up doing
(almost) as well as the best expert (whomever he might turn out to be) in hindsight.

» Sounds tough!

Introduction

» The algorithm we Introduce Is for repeated play of a matrix game with the guarantee
that against any opponent, the player will perform nearly as well as the best fixed

action In hindsight (also called the problem of combining expert advice or
minimizing external regret).

»|n a zero-sum game, such algorithms are guaranteed to approach or exceed the

minimax value of the game, and even provide a simple proof of the minimax
theorem.

Warm-up: simple halving algorithm

Lets start with an even easier case:

e lhere are N experts who will make predictions in /' rounds.
e At each round ¢, each expert ¢ makes a prediction p: € {U, D} (up or down).

e We (the algorithm) aggregate these predictions somehow, to make our own prediction p% € {U, D}.
Then we learn the true outcome o € {U, D}. If we predicted incorrectly (i.e. p% # o), then we

made a mistake.

e To make things easy, we will assume at first that there is one perfect expert who never makes a
mistake (but we don’t know who he is).

Can we find a strategy that is guaranteed to make at most log(/V) mistakes?

We can, using the simple halving algorithm!

Warm-up: simple halving algorithm

Algorithm 1 The Halving Algorithm

Let S' < {1,...,N} be the set of all experts.
fort=1to 1 do
Let Si; ={i € S :pi =U} be the set of experts in S* who predict up, and S% = S*\ S}, be the set
who predict down.
Predict with the majority vote: If |S¥| > |SY% |, predict pYy = U, else predict p%y = D.
Eliminate all experts that made a mistake: If o = U, then let S't1 = S, else let St*1 = S
end for

* |Its not hard to see that the halving algorithm makes at most log N mistakes under the assumption that one
expert Is perfect:

Theorem 1 If there Is at least one perfect expert, the halving algorithm makes at most log N mistakes.

Proof Since the algorithm predicts with the majority vote, every time it makes a mistake at some round t, at
least half of the remaining experts have made a mistake and are eliminated, and hence:

STt < |S?|/2. On the other hand, the perfect expert is never eliminated, and hence |S*| > 1 for all ¢.
Since |S'| = N, this means there can be at most log N mistakes. H

Not bad — log N is pretty small even if N is large (e.g. if N =1024, log N = 10, if N =1, 048, 576,
log N = 20), and doesn’t grow with T, so even with a huge number of experts, the average number of
mistakes made by this algorithm is tiny.

Warm-up: the iterated halving algorithm

« What if no expert is perfect? Suppose the best expert makes OPT mistakes. Can we find a way to make
not too many more than OPT mistakes?

* The first approach you might try is the iterated halving algorithm:

Algorithm 2 The Iterated Halving Algorithm

Let S' < {1,..., N} be the set of all experts.
fort=1to 1 do
If |S*| =0 Reset: Set S* <+ {1,...,N}.
Let S;; = {i € S : pt = U} be the set of experts in S* who predict up, and S%, = S*\ S¥; be the set
who predict down.
Predict with the majority vote: If |Si;| > |S% |, predict p%y = U, else predict p, = D.
Eliminate all experts that made a mistake: If o = U, then let S**! = S}, else let S'™1 = S%
end for

Theorem 2 The iterated halving algorithm makes at most log(N)(OPT + 1) mustakes.

Proof As before, whenever the algorithm makes a mistake, we eliminate half of the experts, and so
the algorithm can make at most log N mistakes between any two resets. But if we reset, 1t 1s because
since the last reset, every expert has made a mistake: in particular, between any two resets, the best
expert has made at least 1 mistake. This gives the claimed bound. W

Warm-up: the weilghted majority algorithm

* WWe should be able to do better though. The above algorithm Is wasteful In that every time we
reset, we forget what we have learned!

* The weighted majority algorithm can be viewed as a softer version of the halving algorithm:
rather than eliminating experts who make mistakes, we just down-weight them:

Algorithm 3 The Weighted Majority Algorithm

Set weights w; < 1 for all experts 3.
fort=1to1 do

Let W}, = Zi;m:U w; be the weight of experts who predict up, and W}, = Zi:p?;: n W; be the weight

of those who predict down.
Predict with the weighted majority vote: If W}, > W}, predict p%, = U, else predict p, = D.
Down-weight experts who made mistakes: For all 7 such that p! # of, set wi“ — wt/2

end for

Theorem 3 The weighted majority algorithm makes at most 2.4 (OPT + log(N)) mastakes.

Note that log(/V) is a fixed constant, so the ratio of mistakes the algorithm makes compared to OPT is
just 2.4 in the limit — not great, but not bad.

Warm-up: the weilghted majority algorithm

Proof Let M be the total number of mistakes that the algorithm makes, and let W* =). w! be the
total weight at step t. Note that on any round ¢ in which the algorithm makes a mistake, at least half of

the total weight (corresponding to experts who made mistakes) is cut in half, and so Wit < (3/4)IW?.
Hence, we know that if the algorithm makes M mistakes, we have W¥ < N -(3/4)™. Let * be the best

expert.

We also know that u*g* = [L# 2)(-) PL and so in particular, wt > (1/ ‘2)(‘)P .

Combining these two observations we know:

1 Bl ,T ? 3 M
) <w<n(Z
) 1

1 M
(_) < /* . c)(ﬁ)PT
:3 o A dnd

M < 2.4(0OPT + log(N))

A

as claimed. B

Towards a better algorithm

We've been doing well; lets get greedy. What do we want in an algorithm? We might want:

1. It to make only 1 times as many mistakes as the best expert in the limit, rather than 2.4 times...

2. It to be able to handle /V distinct actions (a separate action for each expert), not just two (up and
down)...

3. It to be able to handle experts having arbitrary costs in |0, 1| at each round, not just binary costs
(right vs. wrong)

Formally, we want an algorithm that works in the following framework:

Inround t=1..... 1", the following happens:
e The player picks a probability distribution p" = (pj..... py) over his strategies.
o The adversary picks a cost vector (" = ({7, ... (%), where (; € [0,1] for all 7.

o A strategy a' is chosen according to the probability distribution p*. The player incurs this
strategy’s cost and gets to know the entire cost vector.

What Is the right benchmark?

. . _ _ . T _
I'he best action sequence in hindsight achieves a cost of Y ,_, min, [N /L.
t=1 1€ 2

However, getting close to this number is generally hopeless as the following example shows.

Example Suppose N = 2 and consider an adversary that chooses £* = (1,0) if p§ > 1/2

and ' = (0,1) otherwise. Then the expected cost of the player is at least T'/2, while the best
action sequence in hindsight has cost 0.

Instead, we will swap the sum and the minimum, and compare to Lgﬂﬂ = Min;e[y) :?_1 43

That 1s, instead of comparing to the best action sequence in hindsight, we compare to the best
fixed action in hindsight.

The expected cost of some algorithm A that uses probability distributions p!, ... p' against

1 o T _ 1 N ¢t
cost vectors £*, ..., by isgivenas LYy = > . > =" pil:.

>

The difference of this cost and the cost of the best single strategy in hindsight is called external regret.
Definition The external regret of algorithm A is defined as Hﬂ — L:ﬂ — Lt

man’

Definition An algorithm s called no-external-regret algorithm if for any adversary and
all T we have Rfi = o('l").

10

Polynomial Weights Algorithm

The polynomial weights algorithm can be viewed as a further smoothed version of the weighted
majority algorithm, and has a parameter € which controls how quickly it down-weights experts. Notably,
it 1s randomaized: rather than making deterministic decisions, it randomly chooses an expert to follow
with probability proportional to their weight.

Algorithm 4 The Polynomial Weights Algorithm (PW)

Set weights w; < 1 for all experts 3.
fort =1 to 1l do
Let Wt =31 wt.
Choose expert ¢ with probability w!/W?*.
For each i, set w!t! « w? - (1 — ef?).
end for

11

Theorem 4 For any sequence of losses, and any expert k:

1 T | R In(N)
_ < |
TE[LPW] < TLk TeT
In particular, setting € = \/ IH%N) we get:
[| \/mw)
_ <
TE[LPW] < 7 min Ly +2 T

In other words, the average loss of the algorithm quickly approaches the average loss of the best expert exactly, at a
rate of 1/V/T.

Note that this works against an arbitrary sequence of losses, which might be chosen adaptively by an adversary. This
is pretty incredible. In particular, it means we can use the polynomial weights algorithm to play a game!

» We simply let each of the “experts” correspond to an action In the game, and let the losses of the experts
correspond to our costs In the game, given what the other players did.

* The guarantee Is that no matter what they do (even If they are trying explicitly to cause us high loss), we are
guaranteed to obtain payoff nearly as high as that of the best action in hindsight!

* [n fact, to obtain this guarantee, we don't even need to know the payoff structure of our opponents; I.e., the

polynomial weights algorithm is an uncoupled dynamics {to run the algorithm, all we need are the realized
costs of each action, given what our opponents ended up doing.} 12

Proof Let F* denote the expected loss of the polynomial weights algorithm at time ¢. By linearity of

expectation, we have E[LT,,,] =3, , F*. We also know that:

= . T / :
T Nttt
| [Zt 1L§3W] B 2 “Lpw] Pt = iz Wil
- t=1

W

How does W' change between rounds? We know that W' = N, and looking at the algorithm we see:

N
Wwitl — Wt — Zewifi — W1 — eF")
So by induction, we can write: =1
T
If’i”rT+1 — N H(l L EFt)
t=1
Taking the log, and using the fact that In(1 — z) < -z, we can write: \
A
In(Wwi+l) = In(N)+ Z In(1 — eF")
t=1)
T —2
< IH(N)_EZFt In(1— 2)
t=1 L

= In(N)—€E[LL,,] 13

Similarly | we know that for every expert k:

T
1H(WT—I—1) Z ln(fwg—i—l) >WI'€+1 — 1_[(1 — ‘9{%{)
t=1

T

_ t

= Zlﬂ(l — €ly.) (using the fact that In(1 —z) > -z -z for 0 < z < 3)
t=1 A

f:r T
> =) eli—p ()
t=1 t=1
> —EL% T .
In(1— z)

>

In(WT+1) < In(N) — €E[Lpy]
\ —2Z —Z

Combining these two bounds, we get for all k.

In(N) — e E[Lpy] > —€eLl — T

for all £. Dividing by € and rearranging, we get:
In(N)

€

[E[LYI;W] < m}jn LZ: + €] 4

14

Polynomial Weights Algorithm = Minimax Theorem

Recall For an n x m matriz U (think about this as the pa,yoﬁ" matriz in o two player zero sum game if you like):

max min(U max min pi - U(i,y)
)= pEA([n] 'yE[m]Z

min max(U)

||
E
-
s
PS
.
]
S
S
S
.

Note that we have defined things so that the player is optimizing over mized strategies, but the opponent is optimizing
over pure strategies. We could have let both optimize over mized strategies, but this is without loss, since any player
always has a pure strateqy among her set of best responses.

Note that if U is a zero sum game, then maxmin(U) represents the payoff that Maz can guarantee

if he goes first, and min max(U) represents the payoff that he can guarantee if Min goes first.

It is apparent that playing second can only be an advantage: your strategy space is not limited by
the first player’s action, and you only have more information. In particular, this implies that for any

game U min max(U) > max min(U)

Theorem (Von Neumann) In any zero sum game U (at any NE):

min max(U) = max min(U)

Polynomial Weights Algorithm = Minimax Theorem

* The polynomial weights algorithm can provide a very simple, constructive proof of the
minimax theorem!

Proof Suppose the theorem were false: That is, there is some game U for which minmax(U) > maxmin(U).

Write v1 = minmax(U) and v = maxmin(U) (And so v; = vy + € for some constant e > 0).

In other words, if Min has to go first, then Max can guarantee payoil at least vy, but :

it Max is forced to go first, then Min can force Max to have payoff only vs.

Lets consider what happens when Min and Max repeatedly play against each other as follows, for T' rounds:

1. Min will play using the polynomial weights algorithm. i.e. at each round ¢, the weights w? of

the polynomial weights algorithm will form her mixed strategy, and she will sample an action at
random from this distribution, updating based on the losses she experiences at that round.

2. Max will play the best response to Min’s strategy. i.e. Max will play «* = argmax, E, . [U(z, y)].

16

Polynomial Weights Algorithm = Minimax Theorem

Consider what we know about each of their average payofls when they play in this manner.
On the one hand, we know from the guarantee of the polynomial weights algorithm that:

T T
1 1
=2 BlUGE)] < Zmin) Ua',y") + A(T)

T
1
mpz:TUmﬂfy+AUj
R

— minEues Uz, ") + A(T)

y#

where Z is the mixed strategy that puts weight 1/T on each action z*. A(T) is the regret bound of the
polynomial weights algorithm — recall:
A(T) = 9\/

log

T '

But by definition, min,~ E,.zU(z,y*) < maxmin(U) = vy and so we know:

T
Z 217 ’y <’U2—I—A(T)

17

Polynomial Weights Algorithm = Minimax Theorem

On the other hand, on each day ¢ we know Max is best responding to Min’s mixed strategy w®. Thus:

T T
T t=1 E[U(mt: yt)} > T t=1 Hi%}{ Ey’"‘“’wt [U(m ’ y)}

1 T
T2

U1

[V

Combining these inequalities, we know:
v < U9 + A(T)

Recall v1 = v9 + €, so:
e < A(T)

but taking T = 2 l;(ﬂ) we get A(T') = 5 which implies:

€ < €/2

Since € is positive, this is a contradiction and concludes the proof. IR
18

Polynomial Weights Algorithm = Minimax Theorem

 This proof has highlighted the particularly amazing feature of the polynomial weights
algorithm:

» It guarantees that no matter what happens, you do as well as If you had gotten to
observe your opponent's strategy, and then best respond after the fact.

» Using the polynomial weights algorithm guarantees that the player gets payoff quickly
approaching the value of the game.

» What's more, It does so without needing to know what the game Is.
» Note that at no point Is the game matrix input to the PW algorithm?!

» The only information It needs to know Is what the realized payoffs are for its actions, as
It actually plays the game.

= As such, It 1s an attractive algorithm to use In an Interaction that you don't know
much about...

19

Appendix

1_7)=(p11"-; P;..., pn)

GEL2D

A min 21 piu(i,y)
i=

Zn: p;u(i, 1) n z p;u(i, m)

: =1
L= 2 piu(i,y) To compute max min strategy,
we need to specify the lower envelope of
U(p,.) MAX-player payoffs

H T U(p,T) U(o,H)
P H 1)'1 '1,1 0
1/2 »
1'P T _1’1 1’_1

