
1

Learning Minmax Strategies in

Zero-Sum Games

Game Theory
Lecture 15

2

Introduction
• In this lecture, we will give a natural learning algorithm that players can use to play a game.

• To introduce it, we abstract away the game, and the other players, and start by asking how a player should

make predictions in a sequential setting.

• As a simple example to keep in mind, consider the following toy model of predicting the stock market:

 Every day the market goes up or down, and you must predict what it will do before it happens (so that

you can either buy or short shares).

 You don't have any information about what the market will do, and it may behave arbitrarily, so you

can't hope to do well in an absolute sense.

 However, every day, before you make your prediction, you get to hear the advice of a bunch of

experts, who make their own predictions.

 These “experts" may or may not know what they are talking about, and you start off knowing nothing

about them.

 Nevertheless, you want to come up with a rule to aggregate their advice so that you end up doing

(almost) as well as the best expert (whomever he might turn out to be) in hindsight.

 Sounds tough!

3

Introduction

• The algorithm we introduce is for repeated play of a matrix game with the guarantee

that against any opponent, the player will perform nearly as well as the best fixed

action in hindsight (also called the problem of combining expert advice or

minimizing external regret).

In a zero-sum game, such algorithms are guaranteed to approach or exceed the

minimax value of the game, and even provide a simple proof of the minimax

theorem.

4

Warm-up: simple halving algorithm

5

Warm-up: simple halving algorithm

• Its not hard to see that the halving algorithm makes at most log N mistakes under the assumption that one

expert is perfect:

Theorem 1 If there is at least one perfect expert, the halving algorithm makes at most log N mistakes.

Proof Since the algorithm predicts with the majority vote, every time it makes a mistake at some round t, at

least half of the remaining experts have made a mistake and are eliminated, and hence:

6

Warm-up: the iterated halving algorithm
• What if no expert is perfect? Suppose the best expert makes OPT mistakes. Can we find a way to make

not too many more than OPT mistakes?

• The first approach you might try is the iterated halving algorithm:

7

• We should be able to do better though. The above algorithm is wasteful in that every time we

reset, we forget what we have learned!

• The weighted majority algorithm can be viewed as a softer version of the halving algorithm:

rather than eliminating experts who make mistakes, we just down-weight them:

Warm-up: the weighted majority algorithm

8

Warm-up: the weighted majority algorithm

9

Towards a better algorithm

10

What is the right benchmark?

The difference of this cost and the cost of the best single strategy in hindsight is called external regret.

11

Polynomial Weights Algorithm

12

• In other words, the average loss of the algorithm quickly approaches the average loss of the best expert exactly, at a

rate of 1/ 𝑇.

• Note that this works against an arbitrary sequence of losses, which might be chosen adaptively by an adversary. This

is pretty incredible. In particular, it means we can use the polynomial weights algorithm to play a game!

 We simply let each of the “experts” correspond to an action in the game, and let the losses of the experts

correspond to our costs in the game, given what the other players did.

 The guarantee is that no matter what they do (even if they are trying explicitly to cause us high loss), we are

guaranteed to obtain payoff nearly as high as that of the best action in hindsight!

 In fact, to obtain this guarantee, we don't even need to know the payoff structure of our opponents; i.e., the

polynomial weights algorithm is an uncoupled dynamics {to run the algorithm, all we need are the realized

costs of each action, given what our opponents ended up doing.}

13

𝔼
𝑡=1

𝑇

𝐿𝑃𝑊
𝑡 =

𝑡=1

𝑇

𝔼 𝐿𝑃𝑊
𝑡

14

𝑤𝑘
𝑇+1 =

𝑡=1

𝑇

1 − 𝜀ℓ𝑘
𝑡

ln 𝑊𝑇+1 ≤ ln 𝑁 − 𝜀𝔼 𝐿𝑃𝑊
𝑇

15

Polynomial Weights Algorithm Minimax Theorem

(at any NE):

16

• The polynomial weights algorithm can provide a very simple, constructive proof of the

minimax theorem!

Polynomial Weights Algorithm Minimax Theorem

17

Polynomial Weights Algorithm Minimax Theorem

18

Polynomial Weights Algorithm Minimax Theorem

19

Polynomial Weights Algorithm Minimax Theorem

• This proof has highlighted the particularly amazing feature of the polynomial weights

algorithm:

 It guarantees that no matter what happens, you do as well as if you had gotten to

observe your opponent's strategy, and then best respond after the fact.

Using the polynomial weights algorithm guarantees that the player gets payoff quickly

approaching the value of the game.

What's more, it does so without needing to know what the game is.

Note that at no point is the game matrix input to the PW algorithm!

 The only information it needs to know is what the realized payoffs are for its actions, as

it actually plays the game.

 As such, it is an attractive algorithm to use in an interaction that you don't know

much about...

20

Appendix

21

MIN

i

𝒊=𝟏

𝒏

𝑝𝑖𝑢(𝑖, 𝑦)

y1 m

min
𝒚∈ 𝒎

𝒊=𝟏

𝒏

𝑝𝑖 𝑢(𝑖, 𝑦)

1,-1 -1,1

-1,1 1,-1

H

T

TH

P
p

1-P

To compute max min strategy,
we need to specify the lower envelope of
MAX-player payoffsU(p,.)

1/2
0

U(p,H)U(p,T)

1 n

MAX

𝒑=(p1,…,pi…,pn)

𝒊=𝟏

𝒏

𝑝𝑖𝑢(𝑖, 1)

𝒊=𝟏

𝒏

𝑝𝑖𝑢(𝑖,𝑚)

