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 

Abstract— With the recent advances in robotic technologies, 

field coverage using mobile sensors is now possible, so that a 

small set of sensors can be mounted on mobile robots and move 

to desired areas. Compared to static settings, area coverage is 

more complicated in a mobile sensor network (MSN) due to the 

dynamics arising from the continuous movement of the sensors. 

This complication is even higher in the more realistic case where 

little or no prior metric information is available about the sensor 

field. In this paper, we consider the problem of self-deployment 

of a set of mobile sensors which have no knowledge of the area, 

the number of nodes, their location, and even the distances to 

each other. In this restricted setting, we formulate the problem as 

a multi-player game in which each sensor tries to maximize its 

coverage while considering the overlapping sensing areas by its 

neighbors. We propose a distributed learning algorithm for 

coordinating the movement of the sensors in the field, and prove 

its convergence to the equilibria of the formulated game. 

Simulation results demonstrate that for moderate density 

deployments, the proposed algorithm competes with the existing 

location-dependent mobility strategies, while outperforming 

location-free algorithms. 

 
Index Terms—Mobile Sensor Networks, Area Coverage, Game 

Theory, Self-regulated Deployment, Distributed Learning, 

Simplicial Complexes.  

 

I. INTRODUCTION 

obile sensor networks (MSNs) consist of sensor nodes 

that can move on their own and interact with the 

physical environment. Such networks enable a variety of 

applications in the context of surveillance, target tracking, 

search & rescue, and real-time monitoring of hazardous 

material (Yick et al. 2008). Critical to the performance of 

MSNs is an efficient sensor mobility strategy which is capable 
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of coordinating the motions of the mobile sensors to achieve 

area coverage with desirable quality of surveillance. In recent 

years, many sensor mobility strategies have been proposed for 

area coverage in the context of MSNs (Luo and Chen 2012; 

Izadi et al. 2015; Yuan et al. 2014). In one taxonomy, these 

strategies can be categorized into two main groups: location-

based strategies, and location-free strategies.  

The location-based mobility strategies (Zou and 

Chakrabarty 2003; G. Wang et al. 2006; Fletcher et al. 2010b; 

Falcon et al. 2010; M. Zhu and Martínez 2013) consistently 

rely on the sensor’s location information for effective 

deployment of the nodes in the field. We argue, however, that 

a location-dependent algorithm is not a cost-effective 

procedure in terms of real-time computations. In particular, 

the exact location of the sensor nodes should be provided by 

either a localization algorithm or via a localization device 

(e.g., GPS). Using localization algorithms needs offline pre-

deployment analysis. Moreover, in MSNs, the network 

topology dynamically changes due to node mobility, which 

results in frequent re-executions of the localization procedure 

to keep pace with the node movements. Aside from increased 

processing load on the sensors, higher signaling overhead 

would result from the network-wide dissemination of the 

location information. On the other hand, although GPS-based 

localization schemes can also be used to determine node 

locations within a few meters, the cost of GPS devices and the 

non-availability of GPS signals in confined environments 

prevent their use in many deployment scenarios. Overall, 

given the desire to maintain the inherent adaptability of the 

sensor network, it is essential to develop distributed 

algorithms that perform coverage without explicit localization 

information. Also, the location-dependent mobility strategies 

are not applicable to error prone scenarios where no reliable 

location information can be obtained. 

The literature on MSN coverage also includes self-regulated 

deployment strategies which guide the movement of the 

sensors without assuming the availability of the nodes’ 

positions (Esnaashari and Meybodi 2011; Howard et al. 2002). 

However, the existing strategies are either based on some 

restricting assumptions or require some form of metric 

information about the sensor field. For example, the authors in 

(Howard et al. 2002) assume that each node is equipped with a 

sensor which determines the range and the bearing of the 

nearby nodes, and (Esnaashari and Meybodi 2011) assumes 
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that an estimation of the size of the area as well as the total 

number of sensors is available to all nodes.  

In this paper, we design a location-free mobility strategy for 

sensor node deployment and area coverage. We consider a 

setting where the sensors have no information about the area, 

the number of the nodes, their location, and even the distances 

to each other. To the best of our knowledge, such a problem 

with these restricted assumptions has not been studied yet. We 

aim at filling this gap with the following contributions:  

 In the more realistic case where no metric information is 

available, and the nodes are not aware of their positions, 

we resort to a recent technique for building a coordinate-

free abstract representation of the network’s coverage 

topology in terms of simplicial complexes (which are 

mathematical objects from the field of algebraic topology) 

(Marzieh Varposhti et al. 2012, 2015; M. Varposhti et al. 

2014; Silva and Ghrist 2006; Muhammad and Jadbabaie 

2007). This representation accurately captures the 

information of overlapping areas between the sensors, and 

can be obtained through simple local computations, with 

no need for a localization procedure.  

 With the above representation, each mobile sensor is 

armed with an abstract local view of its neighborhood. 

Since we are interested in the automated self-deployment 

of the nodes, we cast this problem as a non-cooperative 

game as it is a well-established tool for modeling 

coordination problems under limited informational 

assumptions. In particular, we present a formulation of the 

coverage problem as an exact potential game (Monderer 

and Shapley 1996) in which each sensor tries to maximize 

its achievable coverage by keeping the overlapping areas 

with its neighbors as small as possible. Potential games are 

a subclass of non-cooperative games with nice properties 

which can lead to an enhancement of global performance 

at the equilibrium point. 

 When using potential games, an important issue is to 

devise distributed learning algorithms, using local 

information and processing abilities, to reach a Nash 

equilibrium (NE) of the game. A variety of decentralized 

learning rules have been proposed for optimal action 

selection in potential games (Marden et al. 2009b; Marden 

et al. 2009a). These algorithms vary mostly in terms of 

their information requirements for convergence to 

equilibrium. Our proposed location-free mobile sensor 

deployment (LFMSD) algorithm in this paper is a 

modification of the learning procedure devised for camera 

sensor networks in (M. Zhu and Martínez 2013). In our 

LFMSD algorithm, each sensor only remembers its played 

actions, and its obtained utility values during the last two 

plays. Also, the number of 1-simplices and 2-simplices of 

each node is used as a measure to determine the distance 

that the node should move. This way, the nodes execute a 

very lightweight procedure to learn their positions of high 

coverage. 

 While LFMSD uses a similar action update law as (M. Zhu 

and Martínez 2013) (with a modified exploration step), we 

note that the existing convergence analysis is very much 

tied with the specifications of the problem in (M. Zhu and 

Martínez 2013), and it thus cannot be directly applied to 

our case. Hence, another contribution of our work pertains 

to the rigorous convergence analysis of the deployed 

learning algorithm and derivation of new conditions for 

convergence to NE. 

 We conduct extensive simulation experiments to evaluate 

the proposed algorithm, and to compare its performance 

against existing schemes. 

The rest of the paper is organized as follows: Section II gives 

an overview of sensor deployment strategies in MSNs. In 

Section III, we present the system model and establish our 

assumptions regarding the coverage problem. Section IV 

begins with a brief review of the relevant game-theoretic 

notions, and then delves into the problem formulation. This 

section ends by presenting our proposed distributed algorithm 

for location-free mobile sensor deployment. Section V is 

dedicated to the convergence analysis of the proposed 

algorithm. Simulation results are given in section VI. We 

conclude the paper in Section VII. 

II. RELATED WORKS  

Wireless sensor networks (WSNs) have been widely studied 

in recent years, focusing on those with stationary sensor 

nodes; a recent survey can be found in (Rawat et al. 2014). 

One of the key problems in WSN applications is effective area 

coverage using stationary sensors, which has been examined 

in related work from many aspects, such as: field vs. path 

coverage and deterministic vs. probabilistic coverage (C. Zhu 

et al. 2012). The advances in embedded systems and hardware 

designs have realized mobile sensors, such as Robomote 

(Sibley et al. 2002). Using mobile sensors for coverage has 

recently attracted a lot of attention since network performance 

can be greatly improved by using just a few of mobile nodes. 

In this section, we present a brief review of the related works 

on sensor deployment strategies for area coverage in the 

context of MSNs. 

Wang et al. in (B. Wang et al. 2009) categorize the existing 

movement schemes into three categories as: coverage-pattern-

based movement, virtual-force-based movement and grid-

quorum-based movement.  

Algorithms in the group of coverage-pattern-based 

movement (Y.-C. Wang et al. 2008; You-Chiun and Yu-Chee 

2008) try to relocate the mobile nodes based on a predefined 

coverage pattern such as regular hexagons.  

In virtual-force-based node movement strategies (Howard et 

al. 2002; Zou and Chakrabarty 2003; Heo and Varshney 2005; 

G. Wang et al. 2006; Yuan et al. 2014; J. Li et al. 2012), the 

sensor nodes apply virtual forces to their neighboring nodes to 

repel each other and obstacles after an initial random 

deployment to maximize the covered area. According to the 

resultant force vector applied by the neighboring nodes, the 

direction and the distance that the node should move are 

calculated. Wang et al. in (G. Wang et al. 2006) have proposed 

distributed protocols for controlling the movement of the 
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sensors, in which Voronoi diagrams are used to detect 

coverage holes. Connectivity-Preserved Virtual Force (CPVF) 

(Tan et al. 2009) is an enhanced form of the virtual-force-

based method that is designed to maximize sensing coverage 

with the additional consideration of the connectivity 

requirements. The CLA-DS algorithm in (Esnaashari and 

Meybodi 2011) is a self-regulated deployment strategy based 

on cellular learning automata (Meybodi et al. 2003). 

Neighboring nodes apply forces to each other, and the 

movement is based on the resultant force vector. Each node is 

equipped with a learning automaton which decides whether to 

apply force to its neighbors or not. Therefore, each node in 

cooperation with its neighboring nodes learns its best location 

to attain high coverage.  

In the group of grid-quorum-based movement methods 

(Chellappan et al. 2007; Jiang et al. 2008; G. Wang et al. 

2005; Yang et al. 2007; Wu and Yang 2007), the area of the 

network is partitioned into some small grid cells. Similar to a 

load balancing problem, each mobile sensor node must find a 

suitable cell and move to that target cell. The authors in (M. 

Zhu and Martínez 2013) present payoff-based learning 

algorithms for coverage in visual mobile sensor networks. 

They discretize the mission space into a squared lattice. The 

utility function is defined based on the number of sensors that 

cover each square. Then each sensor learns how to move to 

maximize its utility function which corresponds to find its best 

position based on the location of its neighbors. 

Some other algorithms are designed for coverage hole 

recovery (Tamboli and Younis 2010; Sahoo et al. 2010; 

Guiling et al. 2004; Izadi et al. 2015). In (Tamboli and Younis 

2010), the algorithm is designed to overcome the problem of 

created holes caused by failed sensor nodes by temporarily 

replacing the failed node with one or multiple of its neighbors. 

In (Sahoo et al. 2010) a distributed algorithm is proposed to 

recover the holes in which the magnitude and the direction of 

the mobile node is calculated by the laws of vectors. In 

(Guiling et al. 2004), the Vector-based Algorithm (VEC) is 

motivated by the attributes of electro-magnetic particles. The 

algorithm identifies existing coverage holes in the network, 

and the virtual force pushes the sensors away from each other 

if coverage hole exists in either of their Voronoi polygons. 

The authors in (Izadi et al. 2015) have proposed a fuzzy-based 

self-healing coverage scheme for randomly deployed mobile 

sensor nodes. They first determine the uncovered sensing 

areas and then the best mobile nodes are selected to move 

there in order to minimize the coverage hole. The authors in 

(Bartolini et al. 2010) have proposed a fuzzy-based self-

healing coverage scheme for randomly deployed mobile 

sensor nodes. They first determine the uncovered sensing 

areas, and then the best mobile nodes are selected to move 

there in order to minimize the coverage hole. The authors in 

(Cortes et al. 2004) have proposed a distributed control and 

coordination algorithm for computing the optimal sensor 

deployment of a class of utility functions that encode optimal 

coverage and sensing policies. In (Fletcher et al. 2010a), a 

localized algorithm is proposed in which mobile robots carry 

static sensors and drop them at empty vertices of a virtual grid 

for full coverage. In (Casteigts et al. 2012), the problem of 

self-deployment of a mobile sensor network with simultaneous 

consideration to fault tolerance, coverage, diameter, and 

quantity of movement is investigated.  

Many of these algorithms strive to spread sensors to desired 

positions based on the location information of sensor nodes 

and their neighbors in order to obtain a stationary 

configuration such that the coverage is optimized. The main 

difference is how the desired sensor positions are computed. 

The reader may note that the algorithm in (Esnaashari and 

Meybodi 2011) is a location-free algorithm, however unlike 

the case in this paper, the authors in (Esnaashari and Meybodi 

2011) assume that the sensor nodes know the total number of 

the nodes as well as the size of the area. In the setting we 

consider, the MSN coverage problem is tackled without any 

sensor knowing its position or its relative distance to other 

sensors. In addition, the size of the area and the total number 

of sensor nodes are not known to the nodes. Finally, compared 

to (Esnaashari and Meybodi 2011), it should be noted no 

theoretical performance/stability guarantee (e.g., in the sense 

of a game-theoretic equilibrium) has been given in (Esnaashari 

and Meybodi 2011). In fact, the approach in (Esnaashari and 

Meybodi 2011) is a heuristic design based on the notion of 

learning automata, while LFMSD is founded on a well-

established design methodology which promotes game-

theoretic formulations for distributed control and optimization 

(N. Li and Marden 2013). 

III. SYSTEM MODEL AND ASSUMPTIONS 

We consider a two-dimensional mission space, where N 

sensors are initially located at unknown coordinates. Without 

loss of generality (and primarily for uncluttered notation), we 

assume that all sensors have a coverage radius of rc, and that 

each sensor i can communicate with any sensor whose 

distance from i is less than the transmission radius rb. The total 

area coverage, C, is the union of the individual coverages of 

all the sensors. Each sensor can move based on a motion 

vector in four directions. In this work, we have two 

assumptions: 

Assumption 1.       . This assumption is in line with most 

of the prior works on coverage problem in wireless sensor 

networks (e.g. (Esnaashari and Meybodi 2011) ). However, we 

have to state that, theoretically, a more routinely assumed 

condition to compute the number of 2-simplices is    √    

(Yan et al. 2014). Assuming a larger transmission radius can 

lead to the detection of a higher number of overlaps and 

possibly even to slightly over-count the simplices (in some 

rare edge cases). More extensive discussion on the impact of 

the relationship between transmission range and sensing range 

on the accuracy of the simplex counting procedure can be 

found in (Yan et al. 2014). 

Assumption 2. Sensor nodes cannot determine their location 

in the global coordinate system of the mission field.  

Since sensor nodes do not have any location information, 

they cannot measure the overlapping area. To overcome this 
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problem, we resort to a 3-dimensional graph abstraction of the 

sensor network, namely the “simplicial complex” of the 

network, which encapsulates information about the neighbors 

and overlapping areas (Silva and Ghrist 2006; Hatcher 2002). 

Recently, simplicial complexes have been used to model the 

coverage of sensor networks and to solve the coverage 

problems in sensor networks without location information 

(Marzieh Varposhti et al. 2012, 2015; M. Varposhti et al. 

2014). The simplicial complex of the network is a set 

consisting of 0-simplice or vertices, 1-simplices or edges, and 

2-simplices or triangles, which can be constructed in a 

distributed manner from the communication graph of the 

network. Each 0-simplex corresponds to a vertex, and each 1-

simplex corresponds to an edge in the communication graph of 

the network. Each 2-simplex corresponds to the overlap of 

three sensors. The simplicial complex of the network, RN, can 

be generated as follows (Muhammad and Jadbabaie 2007):  

The sensor nodes simultaneously broadcast their 

identifications. The nodes within the communication radius of 

each other receive and store this information and pair the 

received tag with their own tags, which results in the 

generation of the 1-simplices or the edges in the simplicial 

complex. Subsequently, the nodes broadcast their list of edges, 

to form the 2-simplices. In this way, the number of neighbors 

and the number of overlapping areas of each node is 

calculated using only local information exchanges. A brief 

review of simplicial complexes is provided in Appendix A. 

A sensor network and its corresponding simplicial complex 

are shown in Fig. 1. There are six 0-simplices, eight 1-

simplices, and two 2-simplices. 2-simplex [1 3 6] corresponds 

to the intersection of disks 1, 3, and 6, and 2-simplex [2 3 4] 

corresponds to the intersection of disks 2, 3, and 4. Therefore, 

sensors 1, 2, 4, 6 have one 2-simplex, sensor 3 has two 2-

simplices, and sensor 5 does not have any 2-simplices. 

We use the number of 2-simplices as a measure of the 

amount of overlap area. So, each sensor desires to have the 

minimum number of 1-simplices and 2-simplices. 

IV. PROBLEM FORMULATION 

In this section, we present a game-theoretic formulation of 

the location-free coverage problem in MSNs. Our formulation 

is motivated by the self-configuration feature of the game-

theoretic design which can derive rich dynamics through the 

interaction of simple components (Fudenberg and Tirole 

1991). In essence, the game-theoretic concept of equilibrium 

describes a condition of global coordination where all decision 

makers are content with the social welfare realized as the 

consequence of their chosen strategies. The most prominent 

equilibrium notion in game theory is Nash equilibrium (NE) 

(Nash 1951). However, the existence and convergence to NE 

do not always apply to arbitrary utility functions and strategy 

sets. As such, we resort to an important class of games, 

namely potential games (Monderer and Shapley 1996) in 

which at least one pure-strategy NE is guaranteed to exist and 

can be reached with certain classes of learning dynamics such 

as iterative best responses.  

Given our game-theoretic design, in Subsection IV.A, we 

give a brief background on the relevant notions from the game 

theory literature. Then, in Subsection IV.B, we cast the 

problem of area coverage as a potential game. Finally, in 

Subsection IV.C, we propose a distributed learning procedure 

which can be viewed as a self-deployment mechanism for the 

mobile sensors with guaranteed convergence to NE of the 

formulated potential game. 

A. Background on Potential Games 

A strategic game : , ,V U  A consists of three 

components: A set of players, V, an action set A, and the 

collection of utility functions U, where the utility function ui 

models the preferences of the i
th

 player over action profiles. 

The profile a = (a1, …, aN)  (A1 × … × AN)  is called a joint 

action, where ai is the action of the i
th

 player. The action 

profile of all players except player i is denoted by a-i, and the 

set of action profiles for all players other than player i is 

denoted by 
i j

j i

A



A .  

Definition 1 (Nash Equilibrium (NE)) (Fudenberg and Tirole 

1991). Consider the strategic game Γ. An action profile 
* * *: ( , )i ia a a is an NE of the game Γ if i V  and 

i ia A  , 

it holds that * *( ) ( , )i i i iu u a a a . 

Definition 2 (Exact Potential Game (EPG)) (Monderer and 

Shapley 1996). The strategic game Γ is an EPG with potential 

function : R A if for every player i, for every 
i i a A , 

and for every ,i i ia a A , it holds that:  

( , ) ( , ) ( , ) ( , )i i i i i i i i i ia a u a u a    
   a a a a  (1) 

In words, in a potential game formulation, one can identify 

a special function called the potential function 𝜑, which 

changes values whenever there is a change in the utility of any 

single player due to his/her own strategy deviation. As such, 

we have the following theorem as a standard result in game 

theory (Monderer and Shapley 1996): 

Theorem 1. If 𝜑    is a potential function for the game  , and 

          𝜑    is a maximizer of the potential function, 

then    is an NE of the game  . 

Sometimes the actions available for player i is restricted to a 

state-dependent subset of Ai, denoted by
 

( , )i i i iF a a A  , 

which is the set of feasible actions of player i when the action 

profile is ( , )i ia a . The introduction of F leads to the notion of 

restricted strategic game : , , ,res V U F  A  which consists 


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of four components: V, A, U, and F.  

Definition 3 (Restricted NE). An action profile *
a  is a 

restricted NE of the restricted strategic game Γres if i V   

and
 

* *( , )i i i ia F a   a , it holds that
 

* *( ) ( , )i i i iu u a a a . 

Definition 4 (Restricted EPG). The game Γres is a restricted 

EPG with potential function  if for every player i, for 

every , and for every , Eq. (1) holds for every

.  

The existence of NE in an EPG is guaranteed (Monderer 

and Shapley 1996). It then follows that any restricted EPG has 

at least one restricted NE. 

B. MSN Coverage Problem as an EPG 

In the MSN coverage problem, we are concerned with 

devising a motion law for repositioning of a number of mobile 

sensors so that their converged positions in the limit 

correspond to a deployment with desirable coverage 

performance. In this section, we present our formulation of 

this problem in terms of a restricted EPG
 

: , , ,mc mc mcV A U F  . In what follows, we describe the game 

components in more detail: 

 Player set V: The set of players consists of the N sensors 

in the mission space, denoted by   {         }  
 

 Action set A: The action of a player i is a location ai = (xi , 

yi). Accordingly, the action set of player i is Ai = {aj | aj is 

a position inside the mission space}. The joint action set 

across all players is
 1

N

i
i

A


 A .   

 Feasible action set Fmc: The feasible action for each agent 

is determined based on a motion vector in any four 

cardinal directions; more formally, we have     
∏ ⋃          

 
   , where F(ai) is the set of feasible 

locations that a sensor in location ai can move to.  

 Utility functions:  In general, a global planner would like 

the sensors to distribute in the mission space uniformly to 

achieve maximum coverage. Intuitively, at the local 

sensor-level this translates to the case that each sensor 

keeps the overlapping areas with nearby sensors as small 

as possible. Let n1(i) and n2(i) denote the number of 1-

simplices (i.e., immediate neighbors), and the number of 2-

simplices of sensor si, respectively. Now, we consider the 

following welfare function: 

1 1 2

1 1
( )

( ) 1 ( ) 1

N

i n i n i




 
  

  
a

                      

(2) 

In light of the discussion in Section III, maximizing 𝜑    

corresponds to reducing the total number of overlapping 

areas.  

Remark 1. Other choices of welfare function were also 

possible. However, our theoretical results in Section V do 

not work directly on the explicit form of the welfare 

(potential) function to provide an estimate of the 

convergence rate. Our proposed learning rule in Section 

IV.C prescribes a very simple action update law for the 

sensors that does not entangle the potential function form. 

This is as opposed to conventional learning rules such as 

gradient play (Flåm 2002). In those cases, the functional 

form of the potential and its properties such as smoothness, 

differentiability, or Lipchitz continuity can be exploited to 

provide stronger theoretical results. In our case, without 

positional information, there is no straightforward formula 

expressing the number of 1- and 2-simplices as a function 

of the joint action of the sensor nodes. Instead, the sensors 

have to perceive the numerical value of their utility via 

counting the resultant simplices after every motion. 

Now, to solve the global optimization problem in a 

distributed fashion, this is where the notion of EPG comes 

into play; in an EPG, the sensors (as players) cooperate to 

accomplish the global goal while pursuing their local 

interests. In fact, it is well known that if we assign each 

player a utility function that captures the marginal 

contribution of that player to the overall welfare function, 

the resultant game would be EPG, with the welfare 

function acting also as the potential function of the game 

(Arslan et al. 2007; Marden et al. 2009a). Now, in light of 

Theorem 1, it thus remains to design a distributed 

algorithm for directing the sensor’s movements towards 

the equilibrium of the EPG. To this end, we define the 

utility of sensor si, given any action profile a, as follows: 
0( ) ( , ) ( , )i i i i iu a a a a a               (3) 

where action ai
0
 is equivalent to sensor si turning off its 

sensing unit. In fact, for computing 0( , )i ia a 
, we assume 

that sensor i is excluded from the society of the sensors. 

Hence, for each sensor j which is a neighbor of sensor i, 

the j’s neighbor set decreases by one. Also, for such sensor 

j, all 2-simplices that [i j] is its face should be denied. So, 

the utility of sensor si can be computed by (4): 

1

2

( )1 2 1 1

( ) 2 2

1 1 1
( )

( ) 1 ( ) 1 ( ( ))( ( ) 1)

1 1

( ( ) 1) ( ( ) 1)

i

j N i

i
j N i

u a
n i n i n j n j

n j n j





  
  

 
  

  





   (4) 

Where 2 ( )in j  is the number of 2-simplices of j
th

 sensor by 

assuming that i
th

 sensor is off, N1(i) is the set of neighbors 

of sensor si, and N2(i) is the set of sensors which are in a 

triple overlapping with sensor si (triple overlapping means 

that three sensors have overlapped area with each other). 

Note that the utility function ui can be computed by local 

information as it only depends on the action of sensor si 

and its neighbors.  

C. Location-Free Mobile Sensor Deployment  

In this section, we propose a distributed learning algorithm 

for the self-deployment of mobile sensors, which we call 

location free mobile sensor deployment (LFMSD). In fact, 

given our game-theoretic formulation in Section IV.C, 

LFMSD is essentially a distributed learning algorithm that 

directs the sensor movements towards the equilibrium 

configuration, where the global objective 𝜑    in (2) is 

( ) a

i i a A i ia A

( , )i i i ia F a a




 6 

maximized.  

There are many adaptive learning procedures for 

convergence to equilibria in potential games (Marden et al. 

2009a; Monderer and Shapley 1996). These procedures vary 

mostly in terms of their information requirements. In our 

setting, each sensor, can determine the utility of the currently 

taken action only after it gets relocated (i.e., by counting the 

number of 1-simplices and 2-simplices in the new location it 

ends up in). However, since a sensor is unaware of the 

coordinate it would land in, it is unable to evaluate its utility 

function for the alternative moves. In other words, our EPG 

formulation corresponds to the case of unknown utilities 

(Monderer and Shapley 1996). Hence, standard procedures 

such as best response dynamics or the adaptive play learning 

algorithm (Young 1993) cannot be employed to solve our 

problem. In fact, we should design a so-called “payoff-based” 

learning algorithm (Marden et al. 2009b) where each player 

adapts its decisions based on only the numerical value of the 

realized payoffs (utilities). Armed with this understanding, we 

use a similar procedure as the DISCL algorithm in (M. Zhu 

and Martínez 2013), albeit with a modified exploration step 

(Sutton and Barto 1998). DISCL has been proposed in the 

context of camera sensor networks, and is the most recent 

variant of payoff-based learning algorithms for potential 

games which uses a diminishing exploration rate to obtain a 

stronger NE convergence result.  

In what follows, we introduce relevant notations, and give 

an overview of our LFMSD algorithm. Fig. 2 summarizes the 

steps of the algorithm. 

For each sensor si at time step t, we define i(t) as: 

(a( )) (a( 1))
( )

1

i i

i

t u t u t
t

t else


 
 


 (5) 

In other terms, ai(i(t)) is the more successful action of the 

i
th 

sensor in the last two steps. At each round t, each node i 

determines the number of its 1-simplices, 
1 ( )tn i

 
as well as the  

2-simplices, 
2 ( )tn i , by exchanging messages with its 

neighbors. For each sensor si, we define nAF(i,t) as: 

 1( , ) max ( ), ( )t

AF in i t n i MS t            (6) 

where ( )iMS t  is the number of steps that sensor si moved as 

a result of its last action. In fact, nAF(i,t) specifies the distance 

sensor node i should move at time step t.  

As with standard reinforcement learning (Sutton and Barto 

1998), LFMSD is basically an iterative execution of two 

complementary steps: exploration and exploitation. At each 

time step, sensor si updates its action by either trying some 

new random action in the feasible action set (exploration) or 

by selecting the best action from those played in the last two 

steps (exploitation).  

More specifically, Let (t) be a sequence of diminishing 

exploration rates, i.e., { ( )} 0tt  as t  . At each time t, 

with probability (t), sensor si selects a random integer number 

ri which is between 1 and nAF(i,t), and chooses an action 

uniformly from the set [ri × Fi (ai (t ))] \ {ai (i(t))} (i.e., 

exploration step). With probability1 ( )t , sensor si does not 

experiment and sets its action to ( ( ))i ia t  (i.e., exploitation 

step with greedy action selection). In fact, r × Fi(a) shows the 

set of feasible actions of player i where its current location is 

a, and the selected magnitude of motion is r. In other words, if 

si is located at (xi(t) , yi(t)) at time step t, it moves to (xi(t+1) , 

yi(t+1)) = (xi(t) + ri cos θ , yi(t) + ri sin θ) with probability (t), 

where θ is the selected direction, and with probability1 ( )t , 

sensor si  moves to (xi(t+1) , yi(t+1)) = (xi(τi(t) ) , yi(τi(t ))).  

Remark 2. LFMSD is an example of an equilibrium 

learning procedure with synchronous execution steps. 

However, in the context of potential games, there are other 

variants of payoff-based learning algorithms which can work 

in asynchronous fashion (e.g., see (M. Zhu and Martínez 

2013) and (N. Li and Marden 2013)). Based on these results, 

we could easily come up with an asynchronous variant where 

at each time step, only one sensor is active and updates its 

state by either trying some new action or selecting an action 

from those played in the last two time steps when it was 

active. However, under the same exploration rate, such 

asynchronous variant needs a longer time than LFMSD to 

converge.  

Remark 3. Deploying LFMSD in a purely infrastructure-

less network (which relies solely on multi-hop 

communications) is vulnerable to network partitioning, 

especially when the number of sensors is small. However, 

achieving joint coverage and connectivity in the absence of 

any metric information is a much harder problem. In case 

where highly reliable communications are desired, one way to 

justify the practical adoption of our algorithm is to restrict its 

applicability to a limited number of use case scenarios. For 

example, one may consider a setting where along with the 

sensor nodes, a few more powerful hub nodes are deployed, 

which can be either static or mobile (e.g., mini unmanned 

The LFMSD Algorithm 

1. At t = 0 all sensors are placed in D. each sensor si 

communicates with its neighbors and computes  n1(i) , and  

n2(i), and by local message passing computes  ui(a(0)). At t 

= 1, all sensors stick with their actions. 

2. At t > 1, each sensor si updates its state according to the 

following rules: 

a. Sensor si selects a random number ri that is an 

integer between 1 and nAF(i,t). It computes ( ( ))i ia t  

and takes note of the exploration rate (t).  

b. With probability (t), sensor si chooses an 

exploratory action uniformly from the set [ri × Fi (ai 

(t ))] \ {ai (i(t))}. 

c. With probability 1 ( )t , sensor si select its greedy 

action ai (τi(t )). 

d. Sensor si moves according to the selected action. 

3. At position ai, each sensor si determines n1 and n2 of itself 

and of its neighbors by local message passing, and 

computes the utility ui(ai). 

Repeat steps 2 and 3 until convergence. 

Fig. 2: The LFMSD Algorithm 
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aerial vehicles (UAVs) that cruise above the ground through 

different clusters of sensors to collect data). These hubs can be 

used to collect information from sensors, form a backbone 

which receives, processes and re-routes sensor data to the end-

users. The hubs can also be assumed to be highly functional, 

with reliable routing protocols for sending information error-

free along a multi-hop path to the end-users. However, in this 

paper we concern ourselves only with area coverage. While 

the issues of connectivity, route optimization, topology 

control, and optimal transmission, are equally important, but 

they lie beyond our scope. Indeed, the purpose of auxiliary 

communication devices (such as the hubs) is to abstract away 

these issues. 

V. CONVERGENCE ANALYSIS OF LFMSD 

In this section, we focus on the convergence properties of 

the LFMSD algorithm. Our convergence analysis draws on the 

strong ergodicity results for time-inhomogeneous Markov 

chains as given in (Isaacson and Madsen 1976) and (Anily and 

Federgruen 1987). Due to space limitations, the reader is 

referred to Appendix B for some background concepts on non-

stationary Markov chains.  

In LFMSD, the play history has length two. Let 

 ( ) : ( 1), ( )z t t t a a be the joint history at time t. Also, 

denote by   : , | ( ),i iF a i V      B a a A A a , the 

collection of all possible joint histories. After an action profile 

( )ta is realized at time t, the joint history moves from ( )z t to 

its successor ( 1)z t  . To express the transition probabilities, 

consider an arbitrary move 
1t tz z   . We partition the set of 

players V into two disjoint subsets: 1( )t tz z  
 

and
 

1( )t tz z   . Partition   entails those players which have 

chosen their next move to be the best of their two previous 

actions, i.e.,
 

(t)1 1( ) : { | }it t t

i iz z i V a a
      . Partition 

  denotes the subset of players that make their move 

randomly from their remaining actions (excluding (t)i

ia
 ), i.e., 

           {      
    

 

|     
   { 

 

     }|
}. Therefore, the 

transition matrix of LFMSD at time t with perturbation ( )t is 

P 
, in which ( ) 1( , )t t t

tP z z  is given by: 

 
1 1

1

( )( ) 1 1

( ) ( ) 1

( )

( , ) (1 ( )) 1

(1 ( )) ( ) Pr( , )

i

t t t t

t t

tt t t n t

t i i
i

z z z z t t

i i
i z z

P z z t a a

t t a a

 

 
 



 

    

 


    

  
(7) 

where 1Pr( , )t t

i ia a  is the probability of taking the action of 

1t

ia 

 
by si given that its current location is t

ia . Since this 

probability is based on the number of neighbors of si, it is 

independent from the time. 

We note that the action adjustment procedure in LFMSD as 

well as the information history available to each player 

corresponds to the game-theoretic learning algorithm of 

DISCL proposed in (M. Zhu and Martínez 2013) for potential 

games. Therefore, we may establish the convergence of 

LFMSD by drawing extensively on the analysis given in (M. 

Zhu and Martínez 2013). As with the standard methodology 

for convergence analysis of payoff-based learning dynamics to 

NE of potential games (e.g., (Young 1993)), the fundamental 

concept underlying the convergence analysis in (M. Zhu and 

Martínez 2013) is the stochastic stability of the Markov chain 

{    } (see Definition 5 in the following) (Isaacson and 

Madsen 1976):  

 

Definition 5 (Stochastically Stable States of Markov Chain 

P 
). A state z is said to be stochastically stable with respect 

to a family of chains 
( )tP

 if ( )lim ( ) 0t

t
z


 , where   is a 

stationary distribution of P 
.   

In (M. Zhu and Martínez 2013) Theorem 4.3, it has been 

proved that the stochastically stable states of the game’s 

underlying Markov chain are the histories consisting entirely 

of a single strict Nash equilibrium in a given potential game.  

However, there exists a technical complication that should 

be addressed before the above result becomes applicable: With 

time-varying ( )t , the evolution of states
 

 ( ) : ( 1), ( )z t a t a t   

corresponds to a time-inhomogeneous Markov chain 
( ){ }t

tP 
. 

Hence, we first need to establish the ergodictiy of this non-

stationary Markov chain before applying a convergence proof 

based on stochastic stability arguments. In the presence of 

time-inhomogeneity, the erogidicity property of ( ){ }t

tP   is 

concluded only if it is strongly ergodic (with weak ergodicity 

as a pre-condition).  

Once the strong ergodicity of ( ){ }t

tP  is established, we can 

leverage on the main result of (M. Zhu and Martínez 2013) to 

associate the stochastically stable states of the chain ( ){ }t

tP   

with the Nash equilibria of the game
 mc ; however, we need 

to take a slightly different path to establish the pre-conditional 

ergodicity property of
 

( ){ }t

tP  . The reason is that the proof 

given in (M. Zhu and Martínez 2013) for the weak ergodicity 

of the game’s Markov chain is very much tied with the 

problem specifications, and it thus cannot be directly applied 

to our case. In addition to presenting a more general proof for 

weak ergodicity, we take on a different approach for 

establishing the strong ergodicity as well, which, different 

from the one presented in (M. Zhu and Martínez 2013) for 

DISCL, is much simpler and more straightforward. 

Armed with these understandings, Theorem 2 establishes 

the convergence of LFMSD to a Nash equilibrium 

configuration. Rather than bore the reader with the daunting 

details, here we only give an outline of the proof, and defer the 

detailed argument to Appendix C. 

Theorem 2: Consider the Markov chain ( ){ }t

tP   in (7) which 

is induced by the LFMSD algorithm, we have: 

  lim Pr ( ) diag ( ) 1mc
t

z t


     (8) 
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where for a generic set
 
 ,  diag( ) : ( , ) |x x x      

 
and we denote by ( )mc 

 
the set of restricted NEs of 

mc . 

Outline of the proof: We prove the theorem in two steps:  

 First, we show that the non-stationary Markov chain 
( ){ }t

tP 

 
is strongly ergodic (c.f., Definition B.3). To this 

end, we first establish that ( ){ }t

tP   is weakly ergodic 

(c.f., Definition B.4). Next, to verify that ( ){ }t

tP 

 
is also 

strongly ergodic, we rely on the conditions derived by 

Anily and Federgruen (Anily and Federgruen 1987) 

which provide sufficient conditions for a weakly ergodic 

non-stationary Markov chain to be strongly ergodic.  

 Second, we prove that the distribution of the play 

histories in LFMSD converges to
 

* ( )lim t

t

 


 , with 

the corollary that in potential games, *( ) 0z 
 
only if 

z  consists of a single strict Nash equilibrium.   

VI. SIMULATION RESULTS 

To evaluate the performance of LFMSD, several 

experiments have been conducted in NS-3 (www.nsnam.org). 

As the MAC layer, we use distributed coordination function 

(DCF) of 802.11b, and each sensor node sends its packets 

using CSMA/CA protocol. Networks of different sizes from N 

= 50 to N = 200 sensors are considered for simulations. The 

exact number of nodes and other simulation parameters such 

as the coverage radius of the sensors and the dimension/shape 

of the sensor field are determined specifically for each 

experiment. In particular, in Experiments 4-6, we perform 

simulations for three different areas: a rectangular shape area, 

a complex network area, and an area with two obstacles (and 

narrow passages) which are shown in Fig. 3.  

The performance of LFMSD is compared with that of the 

potential field-based algorithm abbreviated as PF (Howard et 

al. 2002), the basic VEC algorithm (G. Wang et al. 2006), and 

CLA-DS algorithm (Esnaashari and Meybodi 2011). As 

briefly reviewed in Section II, PF is in the category of virtual-

force-based movement algorithms which works based on the 

location information of sensor nodes. VEC is a coverage hole 

recovery algorithm, and is also location-based. CLA-DS 

works by exerting virtual forces. Similar to LFMSD, it does 

not require the nodes’ location information, but each sensor 

should be aware of the total number of nodes as well as the 

size of the area under surveillance. Also, qualitatively, 

compared to CLA-DS, the LFMSD’s merit lies in its reliance 

on the notion of NE. NE describes a condition of global 

consensus (coordination), and in the limit, the nodes’ joint 

action space possesses a quiescence property: no node has any 

incentive to choose a different action. Therefore, reaching an 

equilibrium can be viewed as all nodes being coordinated in 

their choice of actions. We realize that not every equilibrium 

is ideal from the system-wide perspective, but again, in the 

context of potential games, there is an inherent alignment 

between the individual and global objectives. On the other 

hand, CLA-DS does not provide an analytical guarantee of 

convergence to some global consensus. 

In the experiments, we use the following evaluation criteria: 

coverage (i.e., the percentage of the area covered), average 

distance travelled by each mobile sensor, and node separation 

which is defined to be the average distance of all sensors from 

their nearest neighbor in the deployed sensor network; more 

formally,   

 
1 ( )

1

1
Node separation min distance(s , )

j i

N

i j
s N s

i

s
N 



   (9) 

where N1(si) denotes the set of neighbors of sensor si. Node 

separation is an indicator of the overlapping area between the 

sensing regions of the sensor nodes. The smaller the node 

separation, the larger will be the overlapping area. 

A. Experiment 1 

For the first experiment, we present a numerical evaluation 

of our LFMSD algorithm. We consider a 10m×10m square 

shaped sensor field in which 20 sensors are initially positioned 

in the middle of the area. The coverage radius of each sensor 

is 1m, and the transmission radius is taken to be 2m. The 

LFMSD’s exploration factor is considered to be:

( ) 0.1/ lnt t  . In this experiment, any configuration in 

which the sensors do not have overlapping areas maximizes 

the global potential function, and the corresponding positions 

of the nodes form an NE of the underlying potential game. 

Fig. 4 demonstrates the stabilized positioning of the nodes at 

iteration 1000. The reader may note that some sensors are 

located on the boundaries that might cause wasting their 

sensing radius. This problem is generally due to the sensors’ 

unawareness of their positions and of the borders of the area. 

In fact, the utility function of the sensors does not measure 

“coverage” directly, and it only serves as an implicit indicator. 

The sensors lack the information to actually measure the size 

of the area they are exclusively covering; but rather, they seek 
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Fig. 3: Simulation area for Experiments 4-6,  (a) rectangular area, (b) complex-shaped area (c) area with narrow passages and obstacles. 
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to minimize the overlap with their neighbors: a behavior 

which is positively correlated with “coverage”. In the 

particular case of Fig. 4, there are also several other factors 

contributing to this suboptimal positioning such as: initial 

deployment, the size of the area, the number of the sensors, 

their local density, and the step size by which the sensors 

relocate themselves.  Fig. 5 shows the evolution of the average 

number of neighbors of all the sensors which ultimately 

converges to 0. Finally, Fig. 6 verifies the convergence 

behavior of the LFMSD algorithm by showing that once the 

positioning of the mobile sensors stabilizes, the global 

potential function attains its maximum. 

B. Experiment 2 

To evaluate the performance of the LFMSD in areas that 

have obstacles and narrow passages, we consider an office-

like indoor area of 15m×15m which is shown in Fig. 7. 

Initially, a total of 30 sensor nodes are located randomly 

within a 2 by 2 square in the northern part of the area. The 

sensing radius and the transmission range are assumed to be: 

1m and 2m, respectively. The final configuration of the 

network (after 5000 iterations) is shown in Fig. 8. These 

figures show that the nodes successfully move away from their 

starting configuration and spread out to cover the area. Also, 

some have entered the narrow corridors and provided 

coverage. However, the additional borders can aggravate the 

wastage of sensing radii. The convergence property is 

nevertheless unaffected, and we have also plotted the average 

global utility and the average travelled distance in Fig. 9 and 

Fig. 10, respectively.  

 

C. Experiment 3 

In this experiment, we investigate the impact of the 

exploration rate parameter in the convergence of LFMSD. We 

use the same simulation settings as in Experiment 1, but play 

with different values of ( ) 0.01,1/ ,0.1/ lnt t t  . Fig. 11 shows 

the evolution of the average global potential function for 

10000 iterations. As can be seen, for ( ) 0.01t   and 0.1/ ln t , 

the limiting value of the average global utility is the same at 

iteration 10000. However, the convergence speed for the time-

varying exploration rate happens to be higher compared to 

when a very small constant rate (i. e. 0.01) is consistently 

applied throughout the execution. The difference between the 

two exploration regimes is most noticeable when the number 

of iterations is small. Intuitively, this is because in the case of 

a diminishing rate, the algorithm benefits from a relatively 

 

Fig. 6: The evolution of global potential function in a network with N=20. 

 
Fig. 8: Final configuration after 3000 iterations. 

 
 

Fig. 7: Initial network configuration. 

 

Fig. 5: Average number of neighbors of sensors in a network with N=20. 

 

Fig. 4: Final configuration of the network at t = 1000 
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large exploration at the start, and this allows for a quicker 

identification of the unknown environment. As time 

progresses, the exploration rate is decreased, allowing the 

algorithm to exploit the information collected and converge to 

some desired configuration.  In fact, in cases where the density 

of the sensor nodes is high within a small sub-area, it is 

reasonable to begin with a large exploration rate which 

diminishes with time. This leads to a more rapid separation of 

nodes by allowing them to make more “adventurous” moves at 

the initial stages of the algorithm before finally yielding to a 

more “prudent” stabilizing behavior.  

The average number of received messages and the average 

distance travelled by each node are shown in Fig. 12 and Fig. 

13, respectively. When ( ) 0.01t  , the nodes’ relocation 

probability is low, and node density decreases by a lower rate 

in comparison with ( ) 1/t t   and ( ) 0.1/ lnt t  . Therefore, 

in this case, the sensor nodes interact with a higher number of 

neighbors over a longer period of time, which results in higher 

amount of message passing. 

D. Experiment 4 

In this experiment, we compare LFMSD with PF, VEC, and 

CLA-DS algorithms in terms of the node separation criterion 

defined in (9). The sensor nodes are initially positioned 

randomly within a square region of 10m×10m centered in the 

middle of the network area. The global sensor field is assumed 

to be 100m×100m. The experiment is performed for N = 50, 

100, 150, and 200 sensors. The coverage radius of the sensors 

is 5m, and the transmission radius is taken to be 10m. We 

choose ( ) 0.1/ ln( )t t   for the exploration factor in LFMSD, 

and let the algorithms run for 50000 iterations. All the results 

are averaged over 50 runs. 

According to the plots shown in Fig. 14 and Fig. 15, 

compared to CLA-DS and VEC, the total overlapping area 

between the sensor nodes in LFMSD is smaller in a low-

density sensor network. However, as shown in Fig. 16, when 

there are obstacles in the area, PF and VEC outperform 

LFMSD and CLA-DS, especially in high-density sensor  
Fig. 10: Average distance travelled within the area with obstacles. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9: Average global utility in the area with obstacles. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11: Evolution of average global potential function for different 

exploration rates. 

 
Fig. 13: Average distance travelled for different exploration rates. 

 

 

 

 

 

 

 
Fig. 12: Average number of received messages for different exploration 

rates. 
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networks. This is because PF and VEC are capable of 

determining the borders of obstacles.  However, “node 

separation” alone is not a sufficient metric for comparison, 

and the next experiment contrasts the algorithms in terms of 

the achievable coverage. 

E. Experiment 5 

In this experiment, we compare the coverage performance 

of LFMSD with the other algorithms. We apply the same 

simulation settings as in Experiment 4. Fig. 17, Fig. 18 and 

Fig. 19 show the coverage plots for the different areas 

depicted in Fig. 3. As can be seen, VEC and CLA-DS perform 

almost similarly in terms of coverage, with LFMSD 

outperforming both. In the next subsection, we note that 

LFMSD’s higher coverage in comparison with VEC and 

CLA-DS is obtained at the cost of a higher travelled distance 

by the sensors.  

It is worth mentioning that VEC’s coverage performance, as 

also pointed out in [*], is very much dependent upon the initial 

sensor deployment and the assumed communication range. 

VEC works best when the initial deployment follows a 

uniform distribution, while its performance is negatively 

affected when the sensors are densely positioned in the initial 

configuration (as is the case in our Experiment 5). In fact, as 

the cells’ Voronoi are very small, the Voronoi regions are 

covered by the sensors in the central cells in such a way that 

 
 

Fig. 14: Node separation within the rectangular network area. 

 

Fig. 17: Coverage performance within the rectangular network area. 

 

Fig. 18: Coverage performance within the complex-shaped area. 

 

Fig. 16: Node separation within the network area with obstacles. 

 

Fig. 15: Node separation within the complex network area. 

 

Fig. 19: Coverage performance within the network area with obstacles. 
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they will no longer move. Although the sensors at the edge 

continue moving, but, after just a few steps, their distances to 

their neighbors reach davg. Thus, they also stop, and the 

algorithm effectively halts.  

In rectangular and complex-shaped areas, LFMSD, despite 

being location-free, achieves the same coverage as PF in low-

density sensor networks. However, in high-density sensor 

networks, PF works better than LFMSD. The reason is that in 

high-density sensor networks, some sensors may be 

superposed in the NE such that full coverage cannot be 

achieved.  In Fig. 20 (a) and (b), we show one final 

configuration of 150 sensor nodes resultant from running 

LFMSD and PF, respectively. Overall, this experiment 

showcases that the proposed learning algorithm is very much 

effective in positioning the sensors nodes such that the number 

of overlapping areas is considerably reduced. In the area with 

obstacles, however, the performance of LFMSD decrease, 

whereas PF outperforms all others owing to its capability in 

determining obstacles. LFMSD, on the other hand, has no 

knowledge of the area, and some sensors may get stuck in the 

boundaries of the obstacles, wasting part of their sensing 

radius in the process. Despite this deficiency, Fig. 19 shows 

that LFMSD can compete with the other algorithms which 

draw on extra information. 

 

F. Experiment 6 

In this experiment, the LFMSD algorithm is compared with 

other algorithms in terms of the average distance travelled by 

each sensor node. We use the same simulation settings as in 

Experiment 4. According to Fig. 21, Fig. 22, and Fig. 23 the 

VEC algorithm turns out to be the most efficient. In 

comparison with CLA-DS, PF, and VEC, the average distance 

moved by each sensor in LFMSD is higher. In LFMSD, the 

movements of a sensor are mostly governed by the number of 

its neighbors, and hence the distance travelled by each node 

increases in dense networks. In general, LFMSD has shown a 

better performance in the complex-shaped area primarily 

because it has a smaller size, and the nodes travel smaller 

distances. Also, according to Fig. 23, when there are obstacles 

in the area, there is an increase in the sensor movements. In 

fact, since the obstacles bound the sensors in certain 

directions, exploring the area would need much more 

locomotion. 

In fact, in the absence of location information, the sensors 

would be oblivious to the small continuous changes made in 

their physical position as they could only perceive and 

(possibly) react to the changes in the abstract level (i.e., in the 

number of 1- and 2-simplices). This way, each sensor is 

constantly seeking a position where the area under its 

coverage has minimal overlap with the other sensors. In most 

experimental scenarios, this behavior has led to an acceptable 

coverage performance, but as evidenced by the simulations, 

the proposed scheme turns out to be more costly in terms of 

the total distance travelled by the sensors. We believe this is a 

reasonable price to pay for operating under such restricted 

information settings. 

G. Experiment 7 

 

Fig. 21: Average travelled distance within the rectangular network area. 

 

Fig. 23: Average travelled distance within the network area with obstacles. 

 

 

Fig. 20: (a). Final configuration of LFMSD with 150 sensor nodes. (b) 
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In this experiment, we investigate how error in location 

information can deteriorate the coverage performance in 

different deployment algorithms. To this end, we assume that 

rather than the exact locations, only a noise-smeared version 

of the coordinates is available, as indicated by the following 

equations: 
max

max

( )

( )

noisy

i i i

noisy

i i i

x x Rand x

y y Rand y





   


  
 

where  is a scaling factor to signify the magnitude of a 

uniform random noise. In the experiment, we vary the 

precision of the location information by using different values 

(from 0.1 to 0.5) for . (xi , yi) is the exact coordinate of the i-

th sensor. (x
max

 , y
max

) corresponds to the farthest location in 

the network area at which sensor nodes can be located, and 

Randi(x
max

) and Randi(y
max

) are random numbers selected 

uniformly from ranges [-x
max

/2, x
max

/2] and [-y
max

/2 , y
max

/2], 

respectively. 

In this experiment, a total of N = 200 sensor nodes are 

initially deployed within a square region (with side length 10) 

at the center of the complex-shaped area (depicted in Fig. 3). 

Fig. 24 shows the coverage performance under noisy location 

information. As expected, LFMSD and CLA-DS are 

completely robust against the errors in the location 

information, as they are location-free algorithms with no use 

for the knowledge of sensor coordinates. The PF algorithm, on 

the other hand, has the most vulnerability to imprecise 

location information. In particular, the nodes’ movements in 

PF are governed by Newton’s second law of motion, which is 

in turn determined by the Euclidean distance between the 

nodes. Also, the movements prescribed in VEC are based on 

the distance between the sensor nodes; hence, it suffers from 

the inaccuracy of location information.  

H. Experiment 8 

In this experiment, we study how variations in communication 

range can affect the achievable coverage. We consider a total 

of N = 100 sensor nodes (with sensing range 5m), initially 

deployed within a square region (with side length 10) at the 

center of the rectangular-shaped area (depicted in Fig. 3). We 

model the variation in rb by the following equation:   
    

           where      represents a random perturbation 

process taking values between 0 and 1. We assume that the 

probability of occurring a perturbation is P
var

 . We experiment 

with different values of P
var

 from 0.1 to 0.5. We realize that 

this is a somehow stylized model of variations in 

communication range, and more realistic models could also be 

considered (e.g., based on channel fading). However, for the 

sake of exposition, this simple model suffices our purposes in 

this experiment.  

Fig. 25 shows that LFMSD and CLA-DS are fairly robust 

against the variations in communication range. Also, if, on 

average, the communication range approaches its theoretical 

optimum √   , it would be to the benefit of our algorithm 

(c.f., Assumption 1). VEC, on the other hand, is the most 

vulnerable algorithm. The reason is that when the 

communication range is lower than 10m, some sensors cannot 

determine their Voronoi neighbors, so the constructed Voronoi 

diagram is not accurate.     

VII. CONCLUSION 

In this paper, we proposed a distributed procedure for the 

automated deployment of a set of mobile sensors in a field in 

order to maximize the covered area. A great advantage of our 

design is that it does not use any information about the 

physical layout of the environment, the number of nodes, their 

location, and even the distances of the sensors from each 

other. Instead, we resorted to the recent technique of forming 

low-cost simplicial complexes to give each sensor an abstract 

local view of the coverage topology. Given this limited 

informational assumption, we were motivated to formulate the 

problem of location-free coverage as a constrained exact 

potential game. In this game, the utility of each sensor has an 

inverse relationship with the number of 1-simplices and 2-

simplices as a measure of the sensor’s total number of 

overlapping areas with its neighbors. To shape the behavior of 

the mobile sensors towards an equilibrium deployment, we 

equipped each sensor with a distributed adaptive learning 

algorithm (i.e., LFMSD). We rigorously proved that by 

executing LFMSD, the final positioning of the sensors 

correspond to a Nash equilibrium. Through simulation 

experiments, it was demonstrated that LFMSD can compete 

with location-dependent algorithms. 

 

Fig. 22: Average travelled distance within the complex-shaped area. 

 

Fig. 24: Coverage performance under noisy location information. 

 

Fig. 25: Coverage decrease vs the variations in communication range. 
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APPENDIX A 

In this section, we briefly review the concepts of simplicial 

complexes. In-depth information regarding algebraic topology 

and simplicial complexes can be found in (Hatcher 2002). 

Let {v0, …, vk} be a geometrically independent set in , 

the k-simplex [v0 v1 … vk] is the set of all points x of such 

that 
0

k

i i

i

x v


 , where , and  for all i. The 

points v0, …, vk are called vertices. Simplex A is a face of 

simplex B, if the vertices of A form a subset of the vertices of 

B. A simplicial complex is a finite collection of simplices, K, 

which are properly joined and have the property that each face 

of a member of K is also a member of K. An oriented 

simplicial complex is a simplicial complex with ordering on 

every k-simplex. 

Given a set of points, χ, in a metric space and a fix , 

the Rips complex of χ, Rϵ(χ), is the abstract simplicial complex 

whose k-simplices correspond to unordered (k+1)-tuples of 

points in χ which are pairwise within distance  of each 

other. 

Two continuous functions mapping one topological space to 

another are called homotopic if one can be continuously 

deformed into the other. Such deformation is called a 

homotopy between the two functions. Given two spaces X and 

Y, we say they are homotopy equivalent or of the same 

homotopy type if there exist continuous maps f: X → Y and g: 

Y → X such that gof is homotopic to the identity map idX and 

fog is homotopic to idY.  

A set X is contractible if the identity map on X is homotopic 

to a constant map. In other words, a contractible space is one 

that can be continuously shrunk to a point. 

Theorem A.1 (Cech theorem) (Bott and Tu 1995): if a 

collection of sets and all their nonempty finite intersections are 

contractible, then the union of those sets has the homotopy 

type as the nerve complex. 

Theorem A.2 (Silva and Ghrist 2006): the Rips complex of 

a sensor network with parameter , , is a subcomplex of 

the nerve complex corresponding to disks of radius 

centered at its vertices. 

Therefore, leads to . 

APPENDIX B 

Definition B.1: Let P
0
 be the transition matrix of a time-

homogeneous Markov chain  on a finite space X, and 

 be the transition matrix of the perturbed Markov chain

.  follows P
0
 with probability , and  does not 

follow P
0
 with probability .  is a regular perturbation 

of  if : 

(1)  For some , , the Markov chain is 

irreducible and aperiodic 

(2)  

(3) If  for some , then there exist a real number 

 such that . 

 is called the resistance of the transition from x to 

y. 

Theorem B.2 (Young 1993): Let  be a regular 

perturbation of , and be the unique stationary 

distribution of for each . Then 

exists, and is a stationary distribution of . The 

stochastically stable states are precisely those states contained 

in the irreducible classes with minimum stochastic potential. 

Definition B.3: The Markov chain (Yuan et al.) is strongly 

ergodic if there exist a probability distribution µ* on X such 

that for any initial distribution µ0 on X and any , 

, where . 

If (Yuan et al.) is strongly ergodic, then (Yuan et al.) in 

distribution is convergent (Isaacson and Madsen 1976). 

Definition B.4: The Markov chain (Yuan et al.) is weakly 

ergodic if 

and ,  

Theorem B.5 (Isaacson and Madsen 1976): The Markov 

chain (Yuan et al.) is weakly ergodic if and only if there is a 

strictly increasing sequence of positive numbers ki, such that 

, where 

. 

Theorem B.6 (Isaacson and Madsen 1976): A Markov 

chain (Yuan et al.) is strongly ergodic if 

(1) The Markov chain (Yuan et al.) is weakly ergodic. 

(2) , there exists a stochastic vector on X such that 

is the left eigenvector of the transition matrix P(t) with 

eigenvalue 1. 

(3) The eigenvector  satisfy  

APPENDIX C 

In this section, we prove the ergodicity properties of the 

Markov chain underlying the LFMSD learning algorithm. To 

this end, we first show that the game’s Markov chain satisfies 

the “regular perturbation” property (Lemma C.1). This way, 

we can be sure that all non-zero entries of  are of the order 

      for some    . In our problem,   corresponds to the 

number of sensors which choose their move via exploration 

rather than via better reply; i.e.,      . Next (in Lemma 

C.3), we basically follow the standard methodology based on 

theorem B.5 for proving the weak ergodicity of the non-

N

N

0

1
k

i

i




 0i 

0 



 R

3

3b cr r
b cr rR C
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stationary Markov chain   
    

. Basically, the proof entails 

decomposing the infinite product ∏   
    

  into blocks of 

matrices and showing that the sum of the “ergodic 

coefficients” of all blocks is infinite. More specifically, the 

ergodic coefficient of any stochastic matrix   denoted by 

       is given by             ∑    (       )  and in 

order to prove that the ergodic coefficients of all product 

blocks sums up to infinity, we will use our earlier result 

(Lemma C.1) to show that for any product block  , 

   (       ) is bounded from below by   . 

 

Lemma C.1:  is a regular perturbation of .     

Proof: to prove  is a regular perturbation of , we 

show that conditions 1, 2, and 3 stated in Appendix B hold for 

all .  

Examining condition (1): Since each sensor si in location ai 

can stay in its position, and its motion to the position with 

distance 1 from its current position is allowed, so the 

reachable set from any is B. So, the Markov chain 

 is irreducible on the space B.  

Each sensor can stay in its current location, so any state in 

diag A has period 1. For any state  the following 

two paths are feasible: 

 

Therefore, the period of state z is 1. Therefore,  is 

aperiodic.   

Examining condition (2): It is not difficult to see that

. 

Examining condition (3): According to (7), it is obvious that 

 Therefore, the resistance of transition 

that we show it by  is .  

Therefore, all the conditions required for being regular 

perturbation of  are established. 

According to (7), it is obvious that

. Therefore, for sufficiently large 

t,  

 (10) 

Let , then  

  (11) 

Lemma C.2: Stochastically stable states are exactly the 

states in . 

Proof: This Lemma can be proved in the same way as (M. 

Zhu and Martínez 2013).  

Lemma C.3:  is weakly ergodic.    

Proof: Let  be a stochastically 

stable state which is in the recurrent class E*. Since  is 

irreducible, there is a path from any state z to z*. Let 

be a path from z to z* in markov chain , and 

 be the minimum number of transitions in path 

. Let . Since there is a 

transition from z* to itself, there is a path from each state z to 

z* with length h. Consider path . 

According to (11) , where z
i
 and z

i+1
 

are two consecutive states in the mentioned path. Hence, 

 for all , where . Consequently, 

by choosing a subsequence such that , for 

sufficiently large n, it holds that 

   

Therefore,  
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1

( ) ( )

( , ) ( , )
,

0

1

0 0

min min{ ( , ), ( , )}

0.1 log( )

n n n n

n

t t

k k k k
x y

n z B

h h

k n

n n

P x z P y z

k

 



  

 





 

 



 



   

 

 

 

 

  Therefore, according to theorem B.5  is weakly 

ergodic if . For example is one 

choice.  

Lemma C.4:  is strongly ergodic. 

Proof: To prove the strong ergodicity of  we use 

Theorem 2 of Anily and Federgruen (Anily and Federgruen 

1987) and show that the weakly ergodic markov chain  

is strongly ergodic. According to this theorem, first, we 

construct an extension  of the sequence ; second, we 

construct a regular extension  of ; third, we 

show that all entries of the regular extension  are 

members of a closed class of asymptotically monotone 

functions.   

Definition C.5: Let {f(t)} be a sequence with ( ) mf t R . 

The (vector) function  ( ) : 0,1 mf x R is an extension of the 
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sequence if ( ) ( )tf x f t   for some sequence {xt} with 

lim ( ) 0
t

x t


 . 

To construct an extension  of the sequence , for 

all , we define as , and 

. Obviously, . 

Definition C.6: Let (.)P  be an extension of a nonstationary 

Markov chain . (.)P  is a regular extension of  if 

a positive real number x* exists such that the collection of 

subchains of ( )P x  is identical for all *x x . 

Let  be an extension to the Markov chain . 

According to (7), 
( )

( , )
x

P z z


 is positive, so considering x* = 1, 

it is obvious that the set of transitions with strictly positive 

probabilities is identical for all x < x*.  Now, we should show 

that every entry function in  belongs to a closed class 

of asymptotically monotone functions F.  

Definition C.7: A class 
1F C  of functions defined on 

 0,1 is CAM (closed class of asymptotically monotone 

functions) if  

1) andf F f F f F      

2) , ( ) and( . )f g F f g F f g F      

3) All f F change signs finitely often in on (0, 1]. 

Let F be the class of functions that each is of the 

form where ck is a real number, 

and bk and gk are integer numbers. It is not difficult to check 

that the class F is a closed class of asymptotically monotone 

functions. According to (7), all elements of the transition 

matrix  are functions in the class F. Therefore,  is 

strongly ergodic.  

 

Proof of Theorem 2: According to lemma C.4,  is 

strongly ergodic. Thus, according to theorem B.2 the limiting 

distribution is . In addition, we can prove that the 

stochastically stable states of  are contained in the set 

 in the same way as (M. Zhu and Martínez 

2013). Therefore, the support of is contained in

, that corresponds to

.  
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