
A Perturbation-Proof Self-stabilizing
Algorithm for Constructing Virtual Backbones

in Wireless Ad-Hoc Networks

Amirreza Ramtin(&), Vesal Hakami, and Mehdi Dehghan

Department of Information Technology, Amirkabir University of Technology,
Tehran, Iran

a_ramtin@aut.ac.ir

Abstract. Self-stabilization is a key property of fault-tolerant distributed
computing systems. A self-stabilizing algorithm ensures that the system even-
tually converges to a legitimate configuration from arbitrary initializations
without any external intervention, and it remains in that legitimate configuration
as long as no transient fault occurs. In this paper, the problem of virtual
backbone construction in wireless ad-hoc networks is first translated into its
graph-theoretic counterpart, i.e., approximate minimum connected dominating
set construction. We then propose a self-stabilizing algorithm with time com-
plexity O(n). Our algorithm features a perturbation-proof property in the sense
that the steady state of the system gives rise to a Nash equilibrium, effectively
discouraging the selfish nodes from perturbing the legitimate configuration by
changing their valid states. Other advantages of this algorithm include
increasing accessibility, reducing the number of update messages during con-
vergence, and stabilizing with minimum changes in the topological structure.
Proofs are given for the self-stabilization and perturbation-proofness of the
proposed algorithm. The simulation results show that our algorithm outperforms
comparable schemes in terms of stabilization time and number of state
transitions.

Keywords: Self-stabilization � Wireless ad-hoc network � Virtual backbone �
Selfishness � Perturbation � Nash equilibrium

1 Introduction

It is a well-established fact that the fundamental source of energy consumption in
wireless ad hoc networks (WANETs) is the exchange of packets between nodes.
Hence, when it comes to the design of routing mechanisms for WANETs, a key
measure of efficiency is low communication overhead. A communication-efficient
structure for supporting routing and multicast in WANETs is the virtual backbone
architecture [1]. The virtual backbone approach to routing consists of two phases: (a)
creation and update of a virtual backbone substrate, (b) finding and updating the paths.
In this paper, we focus on the first phase. With regards to virtual backbone creation and
maintenance, the two foremost desirable properties are stability and self-configuration
without external intervention, given the dynamic and unstable topology of WANETs

© Springer International Publishing Switzerland 2014
A. Movaghar et al. (eds.): CNDS 2013, CCIS 428, pp. 66–76, 2014.
DOI: 10.1007/978-3-319-10903-9_6

vesal
Highlight



and the multi-hop nature of communications [4]. A promising approach to realize
stability and self-configuration is to rely on the notion of self-stabilization in distributed
fault-tolerance [8]. A self-stabilizing algorithm guarantees that the system eventually
converges to the desirable state regardless of its initial configuration, and that it remains
in the desirable configuration as long as no transient fault occurs. Hence, designing
virtual backbones with the self-stabilization property has the advantages of automatic
structuring, and robustness against: transient faults, node failures, changes in their
internal states, and occasional breakages in the communication structure of the
system [8].

However, in the majority of self-stabilizing protocols for wireless ad-hoc networks,
it is routinely assumed that the network nodes will cooperate with each other so that the
overall stabilization of the system is guaranteed. This is while in most practical settings,
the nodes neither belong to the same authority, nor do they operate under a single
administration domain. Hence, it might be the case that the nodes pursue some private
goals that may be in conflict with the system-wide objective. Consider, in particular,
virtual backbone construction using a self-stabilizing algorithm. Obviously, once the
protocol stabilizes, the nodes serving in the backbone have to sacrifice more processing
and communication resources to the benefit of the entire network. Hence, each back-
bone node faces a dilemma as to whether maintain its serving role in the constructed
backbone, or alternatively, perturb the system hoping that the algorithm would re-
stabilize this time into a new configuration where the node is a backbone client rather
than a server.

Motivated by the impact of node selfishness on protocol stabilization in ad-hoc
networks, in this paper, we deal with perturbation-proneness in the context of virtual
backbone construction in WANETs. The problem is first translated into minimum
connected dominating set (MCDS) construction in the topological graph of the net-
work. We then propose a self-stabilizing MCDS algorithm that prevents selfish nodes
from post convergence perturbation of the system. A byproduct of our proposed
scheme is faster recovery from all single-fault configurations with reduced message
complexity, lower number of state transitions, and minimal topological re-structuring,
which contributes to saving energy and increasing network life.

The rest of the paper is organized as follows: We briefly introduce the basic
concepts and review the previous studies in Sect. 2. In Sect. 3, the proposed algorithm
is discussed and proofs are given to establish its correctness. Section 4 deals with the
numerical evaluation of the algorithm and comparisons are made to contrast its per-
formance against prior art. The paper ends with conclusions.

2 Theoretical Background and Relevant Works

A system is self-stabilizing, if and only if, two conditions are satisfied starting with any
arbitrarily initial state and with non-deterministically executing algorithm rules, as
follows: (a) system converges to a legitimate global configuration (convergence) after
finite moves, (b) and system remains in that legitimate configuration (closure) until no
transient faults happens [2]. In graph theory, a connected dominated set (CDS) of graph
G is a set D of nodes if two conditions are met: (a) D is a connected sub-graph from G.

A Perturbation-Proof Self-stabilizing Algorithm 67



(b) Any node of G is in D or adjacent to at least one node of D. A CDS of G is a
MCDS, if it has the minimum members among all CDSs of G.

In the recent years, several self-stabilizing algorithms have been proposed for
constructing CDS, but a majority of them has been designed based on central daemon
(scheduler) which is practically impossible to implement in wireless ad-hoc network
[3]. Furthermore, most of these works solely construct a CDS and their final product is
not an approximation of MCDS [6]. Another drawback of all such algorithms is that
they do not differentiate faults management with respect to their spread.

The self-stabilizing algorithm proposed in [7] which works under distributed
scheduler with O(n2) time complexity is chosen among the relevant research works. We
refer to this algorithm as MCDSss in the rest of this paper. CDS Constructed by this
algorithm is based on a sequential algorithm [7] that produces an 8opt þ 1 approxi-
mation of MCDS in graph.

It is not unlikely to consider a selfish self-stabilizing system under the assumption
that nodes deviate from valid states and change their state to increase their utility by re-
convergence to a different valid state. Nash equilibrium, a criterion for termination of a
game, in self-stabilizing systems is discussed in [5] aiming at checking if it is possible
to use it to prevent from selfish node perturbation in such systems. Fixed points in a
game could be considered identical with final states in self-stabilizing systems. Dis-
tributed self-stabilizing systems are divided into four categories considering if fixed
points are in Nash equilibrium or not. The main category is absolutely perturbation-
proof. A system is absolutely perturbation-proof, if every system fixed point is in Nash
equilibrium for any set of utility functions.

Nash equilibrium is a strategy per player in which none of the players intends to
deviate from equilibrium strategies unilaterally i.e. it does not gain any profit by
unilateral deviation from strategy and adopting another one under the condition that
other players remain in their equilibrium states.

3 Proposed Algorithm

In this section, a high-level description of self-stabilizing and perturbation–proof virtual
backbone construction algorithm based on MCDS abbreviated as MCDSpp will be
explained.

3.1 Discussion on Design and Functionality of Algorithm

MCDSpp is designed based on marathe et al. algorithm [7]. This algorithm first con-
structs a breadth-first spanning (BFS) tree in network graph. Then, there is a repeated
loop from root to the last depth of tree. In each loop, a maximal independent set (MIS)
forms in the same depth nodes, not dominated by nodes of lower depths. Integration of all
these sets produces a MIS in network graph. It is proven that this MIS is a WCDS.
Finally, a fully connected set is established by adding connecting nodes to that set.
Connecting nodes are the father ofmembers ofMIS in BFS tree. The final fully connected
set is a CDS-tree. It is proven that a CDS-tree is an 8opt + 1 approximation of MCDS.

68 A. Ramtin et al.



We assume that the tree T is formed in network graph through a self-stabilizing
BFS tree algorithm. The distance of each node from root is determined by “l” variable.
The validation of tree state and accuracy of “l” variable are the basic assumptions in
MCDSpp algorithm implementation.

The state of each node is specified by two variables of ind and dom in MCDS
configuration. These variables may hold two statuses: IN and OUT. Each node in
legitimate configuration holds one of three states (IN, IN), (IN, OUT) and (OUT, OUT)
based on the values of two variables (dom, ind). Set of nodes having state (IN, IN) are
members of MIS. Union of nodes in state (IN, IN) and (IN, OUT) is a CDS. In
legitimate configuration, state transition between four possible states is a transient fault.

In a legitimate configuration of self-stabilizing system, 1-fault situation is the
occurrence a fault in a node like v that is generated by an undesirable change in its
variables. It can be shown that two conditions apply (a) one of the rules is active in
v. (b) it’s possible to reach stability by execution of only one rule in v. The aim of
designing the proposed algorithm is to detect and resolve 1-fault states by applying
rules only in that faulty node and prevention from error propagation by unwanted
execution of rules in neighboring nodes of v, N(v).

For simplification of understanding our proposed algorithm, we first define some
terms that are preconditions of state transition operations in nodes and some sets for
better readability of algorithm pseudo-code (Fig. 1).

Sets of PN, BN, MN, and CN refer to parent nodes (lower depth neighbors), brother
nodes (same depth neighbors), mature nodes (union of PN and BN), and child nodes
(higher depth neighbors) of a node in T tree respectively. Fifth term specifies father of a
node. Father of a node is one of parent neighbors that has the lowest id. The 6th and 7th

terms specify whether a mature or parent neighbor is member of MIS or not. The 8th

term specifies if a node is pending. If neither a node nor its mature neighbors are
members of MIS, that node is pending. The 9th term specifies if a node conflicts. If a
node and at least one of its mature neighbors are members of MIS, conflict term will

Fig. 1. Set and predicate definitions

A Perturbation-Proof Self-stabilizing Algorithm 69



hold in that node. The 10th term is active in a node if at least one of its brother is a
member of MIS and its id is lower than that node. Activity of 11th term indicates
conflict between node and one of its parent neighbors.

Rules of MCDSpp are depicted in Fig. 2. The process of constructing MIS in T tree
proceeds from root towards the last depth according to rules of 1–5. First rule deter-
mines root state. This node must become a member of MIS. Second rule determines the
membership of root neighboring nodes (first depth). Rules 3, 4, and 5 specify remained
nodes membership in MIS. One node becomes a member by performing rule 3 and
cancels its membership by performing rule 4 or 5. While MIS forms, deeper nodes
states has no effect on upper nodes states in T. The state of deeper nodes has no effect
on the shallower ones. We give priority of MIS membership to the nodes that have
lower id than their brothers in each same depth level of tree, in order to break symmetry
of nodes. To detect 1-fault situations, each node needs to know its 2-hop neighbors
membership, too. This information guarantees that if 1-fault occurs in a neighbor of
parent or brother of the node, in a legitimate configuration, no rules will become active
on the node. According to rule 6, members of MIS i.e. the nodes for which the ind is in
IN state, join MCDS. Rule 7 or 8 checks membership or none-membership of remained
nodes in CDS respectively. Nodes that are fathers of members of MIS, become
members of MCDS by executing rule 7.

3.2 Proof of Correctness

Lemma 1. Assuming that spanning tree T is valid up to ith depth and MIS is con-
structed up to (i − 1)th depth by MCDSpp rules and exists in valid state, MIS is
constructed after maximum of m rounds up to ith depth and exists in valid state. No
node changes its membership of MIS as long as no transient fault happens.

Proof. The root becomes a member of MIS by executing rule 1 at the first round. It is
obvious that this membership is permanent because rules 2–5 are not executed in the

Fig. 2. Rules of MCDSpp algorithm

70 A. Ramtin et al.



root. Similarly, neighbors of root (l = 1) leave membership of MIS via rule 2 at the first
round and this decision will be permanent. It is clear that the membership of deeper
nodes has no effect on the membership of ith depth in MIS according to rules 1–5. The
diagram of ind variable state transition of ith depth nodes (i > 1) is depicted in Fig. 3
assuming that MIS is already formed by rules 1–5. It can be shown in Fig. 3 that if a
node passes path 1 or 2 it will be permanent i.e. those paths are traversed just once. The
reason is that all predictions in paths 1 and 2 are related either to lower depth nodes for
which the validation and stability are assumed, or to the base information like id. There
is a predicate (inbrotherwithlowerid) in paths 3 and 4 which is also related to the state
of the same depth nodes. At the first round, ind variable becomes equal to OUT by
running rule 4 in all nodes that can traverse path 2. It is obvious that OUT state (non-
membership in MIS) is permanent in these nodes. Following the first round, in the
second round, all nodes which can traverse path 1 are activated and ind variable in
those nodes become equal to IN. Consequently, no node traverses path 1 or 2 by
traversing this round. After the second round, either ind variable value is permanently
OUT in all nodes of ith depth or at least there is one node (v) that is in IN state, a
permanent state, through path 1. In the third round, neighboring nodes with the same
depth of node v which are in IN state switch to OUT state (rule 5). It can be shown that
this state is permanent in those nodes and does not change in following rounds. In the
next round, nodes that rule 5 is active in them travers path 3 and it is permanent. Then,
rounds 3 and 4 will be repeated until there is still some nodes in which rules 3 or 5 are
active. So, a number of rounds up to a maximum equal to the number of ith depth nodes
are traversed until MIS is constructed at this depth.

Lemma 2. MIS structure in T is formed after n rounds. n is number of tree nodes.

Proof. We use induction to proof this lemma. In Lemma 1, it has been shown that root
and second depth nodes of T enter to valid state of MIS just in one round (basis:
statement holds for d = 1, 2). Using Lemma 1 inductive step will be proven for d > 1.
Dou to Lemma 1 if MIS is formed up to ith depth, after mi round, it is formed up to
i + 1th depth. Therefore time complexity of MIS construction is o

PD
i¼2 mi

� �
which is

equal to o(n). D is depth of T.

Fig. 3. ind variable state transition diagram regards to validation of shallower levels of tree

A Perturbation-Proof Self-stabilizing Algorithm 71



Lemma 3 (convergence condition). In a graph with help of MCDSpp algorithm,
MCDS is constructed after RT + n + 1 rounds.

Proof. T in RT and then MIS in n rounds are constructed. According to rules 6–8,
members of MIS and connecting nodes join to MCDS and nodes that are member of
MCDS and rule 8 is active in them exit from it just in one round. Because all terms of
those three rules depend on id and ind variables, not dom, final states are permanent.

Lemma 4 (closure condition).

Proof. Correctness of this condition proves by contradiction. Suppose that closure
condition does not hold, thus at least one rule is active in legitimate configuration, but
referring to demonstrations in Lemma 1–3, final states are permanent and no rules will
be executed in the legitimate configuration.

3.3 Proof of Absolutely Perturbation-Proof Feature

Lemma 5. Happening 1-fault in ind variable of a ith depth node has no effect on the
state of upper or lower depth nodes.

Proof. MIS had been formed before 1-fault incident in the legitimate configuration,
therefore it causes one of pending or conflict predicates holds. State of parents effects
on the preconditions of rules 3–5 in a node. To be sure that those rules do not activate
by 1-fault incident in lower depth nodes, some terms are added to them in order to
checking that pending or conflict predicates are active in parent neighbors or not.
Similarly in rules 7–8, those predicates are checked for upper depth nodes, because
state of children effects on preconditions of those rules. It is obvious that preconditions
of rules 1, 2 and 6 have no connection to states of neighbors.

Lemma 6. Happening 1-fault in ind variable of a ith depth node has no effect on the
other ith depth nodes.

Proof. It is obvious that ind variable change in a node has no effect on the dom
variables of its brothers. Hence, we investigate effect of 1-fault in node v on ind
variables of the ith depth 1-hop neighbor z and 2-hop neighbor k.

If 1-fault (IN to OUT) happens in v, the only rule that might be active in z is rule 3.
Note that state of z is OUT. If node z has a parent in IN state or its id is greater than v,
rule 3 does not activate. Otherwise it is evident that in the valid states, rule 3 did not
execute in z because of another brother like w that had a lower id than z and was in IN
state. Because 1-fault happens in z, not w, rule 3 still do not activate in z. If state of k is
IN, the only rule that might be active in that node is rule 5. However, in rule 5, even if
term ‘*inbrotherwithlowerid’ is active, term ‘ind.w = IN’ must be active concurrently
either, but in the previous paragraph we show that 1-hop brother of v remains in OUT
state. If node k is in OUT state, rule 3 certainly cannot be active in it, because there is
no preconditions in that rule that holds with occurrence of 1-fault.

Assuming that 1-fault (OUT to IN) happens in v, if state of z is OUT, it cannot
activate any rule in z. If state of z is IN, the only rule that might be active is rule 5.
Because valid state of v had been OUT, there were some preconditions of rule 3 that

72 A. Ramtin et al.



had not hold. It is not possible that node v can activate rule 5 in another node because
of those preconditions. In legitimate configuration, MIS membership states in two-hop
neighborhood of v (k z v) is one of these three cases: (010, 100, 000). In the first case,
the only rule that might be active is rule 3, but term ‘ind.w = OUT’ must hold if rule 3
is active. Therefore 1-fault cannot activate rule 3 in k, because state of z is still IN. In
the second case, the only rule that can be active is rule 5, but as the term ‘ind.w = IN’
exists in rule 5, it cannot activate, because z is in OUT state. In the last case, although it
seems that rule 3 can activate in node k, but a brother or a parent in IN state has existed
and they still do not allow rule 3 being active in node k.

Lemma 7. Happening 1-fault in dom variable of a ith depth node has no effect on the
states of neighbors.

Proof. Since in preconditions of rules 1–8 do not refer to dom variables of neighbors,
So it is obvious that change of dom variable in a node has no effect on the others.

Theorem 1. If 1-fault occurs in a system based on MCDSpp algorithm, faulty node and
only that node by executing just one rule enters to the valid state that it was in before.

Proof. Convergence feature of algorithm explains that system converges from an
illegitimate configuration to a legitimate one. We also showed in Lemma 5–7 that
occurrence of 1-fault has no effect on neighbors. Considering these two explanations, it
is proven that with execution of self-stabilizing rules in the faulty node, system will
return to legitimate configuration. Investigating algorithm rules shows that it will be
done by just one rule execution.

Theorem 2. If self-stabilizing rules cause that after perturbation of any selfish node in a
legitimate configuration, system returns to that legitimate configuration, that configu-
ration is in Nash equilibrium.

Proof. According to definition of Nash equilibrium, a legitimate configuration of a self-
stabilizing system is in Nash equilibrium, if no node can obtain profit by unilateral
deviation from its state and going to a different state. Incentive of a node from per-
turbation in a self-stabilizing system is convergence to another legitimate configuration
so that its utility in new configuration is more than pervious. In a legitimate configu-
ration of a self-stabilizing system, perturbation of a node models with occurrence of 1-
fault in that node. If self-stabilizing rules cause that after 1-fault or perturbation of a
node, system again converges to the previous legitimate configuration, no nodes will
have perturbation incentive and thus that configuration is in Nash equilibrium.

Theorem 3. A system based on MCDSpp algorithm is absolutely perturbation-proof.

Proof. According to Theorem 1, in a system based on MCDSpp algorithm, after 1-fault
incident in legitimate configuration, system will return to that legitimate configuration
again only by one move. In Theorem 2, we said that if self-stabilizing rules force
system to return to the previous legitimate configuration after perturbation of a selfish
node, that configuration is in Nash equilibrium. Therefore, stable states of a self-
stabilizing system based on MCDSpp algorithm are in Nash equilibrium for any utility
functions. It means that the MCDSpp algorithm is absolutely perturbation-proof.

A Perturbation-Proof Self-stabilizing Algorithm 73



4 Performance Analysis

In this section, we conduct a number of experiments to compare the performance of our
virtual backbone construction algorithm MCDSpp with that of MCDSss [7]. The
comparisons are made in terms of the number of state transitions and stabilization time.
We simulate the algorithms under two operational scenarios: arbitrary configuration
(ind and dom variables are randomly equal to IN or OUT) and multiple fault config-
uration. All experiments are implemented with OMnet++ simulator under an unfair
scheduler, and the reported data points are the average of 100 tests in each scenario.
Each node periodically notifies its neighbors of its current state by broadcasting beacon
packets. The MAC configuration adheres to IEEE 802.11 and the channel model is
simple path loss.

In Figs. 4 and 5, the number of state transitions and stabilization time of MCDSpp
and MCDSss are reported, respectively. Average connectivity degree is 8 and we have
varied the number of nodes. The number of state transitions is equal to the total number
of ind and dom variable changes. From these two diagrams, it can be deduced that the
performance superiority of MCDSpp over MCDSss becomes even more apparent as the
number of nodes increases.

In another scenario, performance of these two algorithm is compared by fault
injections to the legitimate configuration. In this test (see Fig. 6), the number of fault
injections is variable from 1 to 20. Topology is formed from 20 nodes with average
connectivity degree 3. MCDSpp stabilizes from single faults by only one state tran-
sition (move). While MCDSss needs on average 5 state transitions. With more fault
injections, the performance gain of MCDSpp over MCDSss decreases and reaches 1.5.

Fig. 4. The impact of the number of nodes on the number of state transitions.

74 A. Ramtin et al.



5 Conclusion

In this paper, a distributed virtual backbone construction algorithm has been proposed
for wireless ad-hoc networks based on the notion of MCDS in graph theory. The
proposed algorithm is self-stabilizing against transient faults and topology changes. We
also proved that the algorithm’s stable configuration gives rise to a Nash equilibrium,
and thus, selfish nodes have no motivation to perturb the constructed backbone once

Fig. 5. The impact of the number of nodes on stabilization time.

Fig. 6. The impact of the number of fault injections on the number of state transitions.

A Perturbation-Proof Self-stabilizing Algorithm 75



the system converges. The other merit featured by our algorithm is fast convergence
from single fault configurations. We plan to extend this algorithm to accommodate
situations where nodes may also exhibit selfish behavior during convergence.

References

1. Das, B., Bharghavan, V.: Routing in ad-hoc networks using minimum connected dominating
sets. In: ICC 97 Montreal, Towards the Knowledge Millennium. 1997 IEEE International
Conference on Communications, pp. 376–380 (1997)

2. Dasgupta, A., Ghosh, S., Tixeuil, S.: Selfish stabilization. In: Datta, A.K., Gradinariu, M. (eds.)
SSS 2006. LNCS, vol. 4280, pp. 231–243. Springer, Heidelberg (2006)

3. Dubhashi, D., et al.: Fast distributed algorithms for (weakly) connected dominating sets and
linear-size skeletons. J. Comput. Syst. Sci. 71(4), 467–479 (2005)

4. Gao, L., et al.: Virtual backbone routing structures in wireless ad-hoc networks. Global J.
Comput. Sci. Technol. 10(4), 21 (2010)

5. Gouda, M.G., Acharya, H.B.: Nash equilibria in stabilizing systems. In: Guerraoui, R., Petit, F.
(eds.) SSS 2009. LNCS, vol. 5873, pp. 311–324. Springer, Heidelberg (2009)

6. Jain, A., Gupta, A.: A distributed self-stabilizing algorithm for finding a connected domi-
nating set in a graph. In: 2005 Sixth International Conference on Parallel and Distributed
Computing, Applications and Technologies, PDCAT 2005, pp. 615–619 (2005)

7. Kamei, S., Kakugawa, H.: A self-stabilizing distributed approximation algorithm for the
minimum connected dominating set. In: 2007 IEEE International Conference on Parallel and
Distributed Processing Symposium, IPDPS 2007, pp. 1–8 (2007)

8. Tixeuil, S.: Self-stabilizing algorithms. In: Atallah, M.J., Blanton, M. (eds.) Algorithms and
Theory of Computation Handbook. Chapman & Hall/CRC, Boca Raton (2010)

76 A. Ramtin et al.


	A Perturbation-Proof Self-stabilizing Algorithm for Constructing Virtual Backbones in Wireless Ad-Hoc Networks
	Abstract
	1 Introduction
	2 Theoretical Background and Relevant Works
	3 Proposed Algorithm
	3.1 Discussion on Design and Functionality of Algorithm
	3.2 Proof of Correctness
	3.3 Proof of Absolutely Perturbation-Proof Feature

	4 Performance Analysis
	5 Conclusion
	References


