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Abstract— A self-stabilizing system tolerates any transient faults 
and does not need any initialization. In wireless ad-hoc networks, 
a connected dominating set is the graph-theoretic counterpart of 
a virtual backbone. In this paper, we propose two distributed 
self-stabilizing algorithms for approximate minimum connected 
dominating set construction with perturbation-proof property in 
the sense that the legitimate configuration of the system gives rise 
to a Nash equilibrium, effectively discouraging the selfish nodes 
from perturbing the legitimate configuration by changing their 
valid states. The legitimate configuration of our first algorithm is 
always a Nash equilibrium regardless of the specifics of the 
nodes’ utility functions, while the configurations reached in our 
second algorithm are Nash equilibria only if the selfish nodes 
explicitly prefer to be out of the virtual backbone. The second 
algorithm suits in particular for scenarios with multiple 
legitimate configurations, while the first algorithm always gives 
rise to a unique configuration. Both algorithms increase 
accessibility, reduce the number of update messages during 
convergence, and stabilize with minimum changes in the 
topological structure. Proofs are given for the self-stabilization 
and perturbation-proofness of the proposed algorithms. The 
simulation results show that our two algorithms outperform 
comparable schemes in terms of stabilization time and the 
number of state transitions. 

Keywords- Self-stabilization, Wireless ad-hoc network, virtual 
backbone, Selfishness, Perturbation, Nash equilibrium 

I.  INTRODUCTION  

It is a well-established fact that the fundamental source of 
energy consumption in wireless ad hoc networks (WANETs) is 
the exchange of packets between nodes. Hence, when it comes 
to the design of routing mechanisms for WANETs, a key 
measure of efficiency is low communication overhead. A 
communication-efficient structure for supporting routing and 
multicast in WANETs is the virtual backbone architecture [1]. 
The virtual backbone approach to routing consists of two 
phases: a) creation and update of a virtual backbone substrate, 
b) finding and updating the paths. In this paper, we focus on 
the first phase. Concerning virtual backbone creation and 
maintenance, the two foremost desirable properties are stability 
and self-configuration without external intervention, given the 
dynamic and unstable topology of WANETs and the multi-hop 
nature of communications [4]. A promising approach to realize 
stability and self-configuration is to rely on the notion of self-
stabilization in distributed fault-tolerance [8]. A self-stabilizing 
algorithm guarantees that the system eventually converges to 

the desirable state regardless of its initial configuration, and 
that it remains in the desirable configuration as long as no 
transient fault occurs. Hence, designing virtual backbones with 
the self-stabilization property has the advantages of automatic 
structuring, and robustness against: transient faults, node 
failures, changes in their internal states, and occasional 
breakages in the communication structure of the system [8]. 

However, in the majority of self-stabilizing protocols for 
wireless ad-hoc networks, it is routinely assumed that the 
network nodes will cooperate with each other so that the 
overall stabilization of the system is guaranteed. This is while 
in most practical settings, the nodes neither belong to the same 
authority, nor do they operate under a single administration 
domain. Hence, it might be the case that the nodes pursue some 
private goals that may be in conflict with the system-wide 
objective. Consider, in particular, virtual backbone construction 
using a self-stabilizing algorithm. Obviously, once the protocol 
stabilizes, the nodes serving in the backbone have to sacrifice 
more processing and communication resources to the benefit of 
the entire network. Hence, each backbone node faces a 
dilemma as to whether maintain its serving role in the 
constructed backbone, or alternatively, perturb the system 
hoping that the algorithm would re-stabilize this time into a 
new configuration where the node is a backbone client rather 
than a server. 

Motivated by the impact of node selfishness on protocol 
stabilization in ad-hoc networks, in this paper, we deal with 
perturbation-proneness in the context of virtual backbone 
construction in WANETs. The problem is first translated into 
minimum connected dominating set (MCDS) construction in 
the topological graph of the network. We then propose self-
stabilizing MCDS algorithms that prevent selfish nodes from 
post convergence perturbation of the system. A byproduct of 
our proposed scheme is faster recovery from all single-fault 
configurations with reduced message complexity, lower 
number of state transitions, and minimal topological re-
structuring, which contributes to saving energy and increasing 
network life.  

The rest of the paper is organized as follows: We briefly 
introduce the basic concepts and review the previous studies in 
section 2. In 3, the proposed algorithms are discussed and 
proofs are given to establish their correctness. Section 4 deals 
with the numerical evaluation of the algorithms and 
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comparisons are made to contrast their performance against 
prior art. The paper ends with conclusions. 

II. THEORETICAL BACKGROUND AND RELEVANT WORKS 

A system is self-stabilizing, if and only if, two conditions 
are satisfied: a) convergence: starting from an arbitrary initial 
state, the system converges to a legitimate global 
configuration after a finite number of state transitions, b) 
closure: the system remains in legitimate configuration until 
no transient fault happens [2].  

In this paper, we are interested in forming a virtual 
backbone substrate for wireless ad-hoc networks with 
robustness properties against both transient systemic faults and 
deliberate perturbations. A popular abstraction in prior art [1] 
has been to translate the virtual backbone formation problem 
into the construction of a minimum connected dominating set 
(MCDS) in the topological graph of the underlying network. 
In graph theory, a CDS of graph G is a set D of nodes which 
satisfy two conditions: a) D is a connected sub-graph of G. b) 
any node of G is either in D or is adjacent to at least one node 
in D. A CDS of G is an MCDS, if it has the minimum 
cardinality among all possible CDSs of G. In recent years, 
several self-stabilizing algorithms have been proposed for 
constructing CDS. The majority of the existing self-stabilizing 
CDS algorithms, however, have been designed based on 
central daemon (scheduler) which is practically impossible to 
implement in wireless ad-hoc networks [3]. Furthermore, most 
of these works solely construct a CDS and their final product 
is not an approximation of MCDS [6]. Another drawback of 
all such algorithms is that they do not differentiate between 
faults with respect to their spread. 

We set up our design on the self-stabilizing algorithm 
proposed in [7] which works under distributed scheduler with 
O(n2) time complexity. We refer to this algorithm as MCDSss 
in the rest of this paper. The CDS Constructed by this 
algorithm is based on a sequential scheme [7] that produces an 
8��� + 1 approximation of MCDS in a given graph. We 
present two variants of MCDSss, which render the CDS 
construct immune to nodes’ intentional state manipulations. 
Such manipulations are typically motivated by individual node 
utilities in the sense that the nodes would naturally prefer to be 
a CDS client rather than a CDS server. A general approach to 
realize the perturbation-proof property for self-stabilizing 
systems has been discussed in [5]. It is argued that the final 
states in a self-stabilizing system are analogous to fixed points 
of a game; hence, a fixed point, which is also a Nash 
equilibrium, is obviously immune against unilateral node 
deviations. With a perturbation-aware design, a self-stabilizing 
system can be made either absolutely or relatively 
perturbation-proof. A system is absolutely perturbation-proof, 
if all its fixed points are Nash equilibria for any set of utility 
functions. On the other hand, a system is relatively 
perturbation-proof, if all its fixed points are Nash equilibria 
for some specific set of utility functions. 

III. PROPOSED ALGORITHM 

In this section, we first present two perturbation-proof 
variants of the MCDSss algorithm, namely MCDSpp and  
MCDSpp*. Next, we provide proofs of their self-stabilization 
and perturbation-proof properties. 

A. Discussion on design and functionality of algorithms 

MCDSpp is designed based on the MCDSss algorithm [7]. 
MCDSss first constructs a breadth-first spanning (BFS) tree in 
the network graph. Next, starting from the root, a maximal 
independent set (MIS) is formed iteratively among the nodes 
of the same depth, which are not dominated by the nodes of 
lower depths. Integration of all these sets produces an MIS in 
network graph. It is proven that this MIS is a weakly 
connected dominating set (WCDS). Finally, a fully connected 
set is established by adding connecting nodes. Connecting 
nodes are the parents of the MIS members in the BFS tree. 
The final fully connected set is a CDS-tree. It is then proven 
that the CDS-tree is an 8opt+1 approximation of an MCDS. 

We assume that the tree T is formed in the network graph 
through a self-stabilizing BFS tree algorithm. Let “l” denote 
the distance of each node from the root. The state of each node 
is specified by two variables ind, dom ∈ {��, ���} in MCDS 
configuration. Each node in the legitimate configuration is in 
one of the three states: (IN, IN), (IN, OUT) and (OUT, OUT). 
The set of nodes in state (IN, IN) are MIS members. The 
union of nodes in state (IN, IN) and (IN, OUT) forms a CDS. 
In a legitimate configuration, any state transition can be 
deemed as a transient fault. 

In a legitimate configuration of a self-stabilizing system, 1-
fault situations correspond to the occurrence a single fault in a 
node v, which is induced by an undesirable change in its 
variables. It can be shown that two conditions apply a) one of 
the rules is active in v. b) it is possible to reach stability by 
execution of only one rule in v [9][10]. We aim to detect and 
resolve 1-fault states by restricting rule executions only on the 
faulty node, effectively preventing from error propagation by 
unwanted execution of rules in v’s neighbors N(v). 

We first define some predicates, which will appear as 
preconditions to state transitions. We also introduce some sets 
to facilitate the readability of the pseudo-code (figure 1). 

The sets PN, BN, MN, and CN denote the parent nodes 
(lower depth neighbors), sibling nodes (same depth 
neighbors), mature nodes (union of PN and BN), and child 
nodes (higher depth neighbors) of a node in the tree, 
respectively. The fifth expression identifies the parent of a 
given node. The parent of a node is its lowest id neighbor. The 
6th and 7th expressions verifies whether a mature or parent 
neighbor is a member of MIS or not. The 8th term specifies if a 
node is pending. If neither a node nor its mature neighbors are 
members of MIS, that node is considered to be pending. The 
9th term specifies if a node is in conflict. If a node and at least 
one of its mature neighbors are members of MIS, the conflict 
predicate is true in that node. The 10th predicate will hold in a 
node if at least one of its siblings is a member of MIS and its 
id is lower than that node. The 11th predicate indicates a 
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conflict between a node and one of its parent neighbors. The 
rules of MCDSpp are depicted in figure 2. 

 
Figure 1. Set and Predicate definitions 

 
Figure 2. Rules of MCDSpp algorithm 

The process of constructing MIS in the tree proceeds from 
root towards the last depth according to rules 1 to 5. The first 
rule determines the root’s state. This node must become a 
member of MIS. The second rule determines the membership 
of the root neighboring nodes (first depth). Rules 3, 4, and 5 
govern the membership of the nodes in MIS. A node may 
become a member by performing rule 3 and may cancel its 
membership by performing rule 4 or 5. While MIS forms, 
deeper nodes states has no effect on upper nodes states in T. 
The state of deeper nodes has no effect on the shallower ones. 
In order to break symmetry of nodes, we give priority of MIS 
membership to the nodes that have lower id than their siblings 

in the same depth of the tree. To detect 1-fault situations, each 
node needs to know the membership status of all its 2-hop 
neighbors. This information guarantees that if a 1-fault occurs 
in a given node’s parent or sibling, no rule will become active 
on the node. According to rule 6, members of MIS i.e. the 
nodes for which the ind is in IN state, join MCDS. Rule 7 or 8 
checks membership or none-membership of the remaining 
nodes in CDS, respectively. Nodes that are fathers of members 
of MIS, become members of MCDS by executing rule 7. 

There is only one legitimate configuration in a system 
based on MCDSpp algorithm. In other words, it always 
terminates in a unique virtual backbone. However, if we 
assign weights to the nodes, the members of the final CDS 
always have the lowest weight among their neighbors, and in 
general, it is possible that there exist better MCDS 
approximations which are ignored by MCDSpp. To solve this 
problem, we design a new algorithm called MCDSpp* which 
differs from MCDSpp in just the third rule. 

In rule 3 of the MCDSpp*, we address situations that the 
occurrence of 1-faults in members may spread to their 
neighbors. This situation occurs when a none-member node v 
has no pending sibling neighbor and has only one member 
sibling w whose id is greater than that of v’s. In this situation, 
if a fault happens in w, after re-convergence, node v will 
become member of MCDS instead of w. Therefore, 12-th 
predicate in rule 3 captures such occurrences in the legitimate 
configurations. 

 

B. Proof of correctness 

In this part, we prove the correctness of MCDSpp through 
a sequence of lemmas and theorems. For the most parts, the 
proofs associated with MCDSpp* proceed along the same 
lines, and are thus skipped here due to space limitations. 

Lemma 1. Assume that the spanning tree T is valid up to 
the i-th depth and MIS is constructed up to (i-1)th depth by 
MCDSpp rules. It then holds that the MIS is constructed up to 
the ith depth after the maximum of m rounds. In addition, no 
node changes its state in the absence of transient faults. 

Proof. The root becomes a member of MIS by executing 
rule 1 at the first round. It is obvious that this membership is 
permanent because rules 2-5 are not executed in the root. 
Similarly, neighbors of root (l=1) leave membership of MIS 
via rule 2 at the first round and this decision will be 
permanent. It is clear that the membership of deeper nodes has 

1. ��(�) ≔ {� ∈ �(�)|�. � = �. �} 

2. ��(�) ≔ {� ∈ �(�)|�. � < �. �} 

3. ��(�) ≔ {� ∈ �(�)|�. � > �. �} 

4. ��(�) ≔ {� ∈ �(�)|�. � <= �. �} 
5. ������(�) ≔ min{��. �|� ∈ ��(�)} 

6. ����������������(�) ≡ ∃� ∈ ��(�): ���. � = �� 

7. ����������������(�) ≡ ∃� ∈ ��(�): ���. � = �� 

8. �������(�) ≡ ���. � = ��� ∧
~������������ℎ���(�) 

9. ��������(�) ≡ ���. � = �� ∧ ������������ℎ���(�) 

10. ��������������������(�) ≡ ∃� ∈ ��(�): ���. � =
�� ∧ ��. � < ��. � 

11. ������������������(�) ≡ ���. � = �� ∧
������������ℎ���(�) 

R1. �. � = 0 ∧ (���. � = ��� ∨ ���. � = ���) → ���. � ≔
�� , ���. � ≔ �� 

R2. �. � = 1 ∧  ���. � = �� → ���. � ≔ ��� 
R3. �. � ≠  0 ∧  �. � ≠  1 ∧ ���. � = ��� ∧

~������������ℎ���(�) ∧ ∀� ∈ ��(�): ~�������(�) ∧

�∀� ∈ ��(�): ��. � > ��. � ∨ ����. � = ��� ∧

�������������ℎ���(�) ∨

������ℎ�����ℎ�������(�)��� → ���. � ≔

�� , ���. � ≔ �� 
R4. �. � ≠  0 ∧  �. � ≠  1 ∧ �����������ℎ������(�) ∧

�∀� ∈ ��(�): ~��������(�)� → ���. � ≔ ��� 

R5. �. � ≠  0 ∧  �. � ≠  1 ∧ ���. � = �� ∧
~�����������ℎ������(�) ∧ (∀� ∈ ��(�): ���. � = �� ∧
~�����������ℎ������(�) ∧
~������ℎ�����ℎ�������(�) ∧ ��. � < ��. �) →
���. � ≔ ��� 

R6. ~�2 ∧ ~�4 ∧ ~�5 ∧ ���. � = �� ∧ ���. � = ��� →
���. � ≔ �� 

R7. ~�3 ∧ ���. � = ��� ∧ ���. � = ��� ∧ (∃� ∈
��(�): ���. � = �� ∧ ~��������(�) ∧ ���ℎ��(�) =
�) → ���. � ≔ �� 

R8. ~�3 ∧ ���. � = ��� ∧ ���. � = �� ∧ (∀� ∈
��(�): ���ℎ��(�) ≠ � ∨ ����. � = ��� ∧

~�������(�)�) → ���. � ≔ ��� 

R'3. �. � ≠  0 ∧  �. � ≠  1 ∧ ���. � = ��� ∧
~������������ℎ���(�) ∧ ∀� ∈ ��(�): ~�������(�) ∧
((∀� ∈ ��(�): ���. � = ��� ∧ (��. � > ��. � ∨
(������������ℎ���(�) ∨
������ℎ�����ℎ�������(�)))) ∨ ((∀� ∈
��(�): ~�������(�)  ) ∧
���������ℎ�����������(�))) → ���. � ≔ �� , ���. � ≔
�� 

12. ���������������������(�) ≡ (∃� ∈ ��(�): ���. � =
�� ∧ ��. � > ��. �) ∧ (|{� ∈ ��(�)|���. � = ��}| = 1)  

Figure 3. The third rule of MCDSpp* algorithm 
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no effect on the membership of the ith depth in MIS according 
to rules 1-5. If a node gets out because of rule 4 or gets in 
because of rule 3, assuming that no ‘inbrotherwithlowerid’ 
term has been active in rule 3, the new state of node will be 
permanent. The reason is that all predictions are related either 
to lower depth nodes for which the validation and stability are 
assumed, or to the base information like id. Yet in rule 3 or 5, 
there is the predicate ‘inbrotherwithlowerid’, which is also 
related to the state of the same depth nodes. At the first round 
in all nodes that rule 4 is active, ind variable becomes equal to 
OUT. It is obvious that OUT state (non-membership in MIS) 
is permanent in these nodes. Following the first round, in the 
second round, ind variable in all nodes which rule 3 is active 
in them becomes equal to IN. After the second round, either 
ind variable value is permanently OUT in all nodes of ith depth 
or at least there is one node (v) that is in IN state, a permanent 
state. In the third round, neighboring nodes with the same 
depth of node v, which are in IN state switch to OUT state 
(rule 5). It can be shown that this state is permanent in those 
nodes and does not change in following rounds. In the next 
round, nodes that rule 5 is active in them get out and it is 
permanent. Then, rounds 3 and 4 will be repeated until there is 
still some nodes in which rules 3 or 5 are active. So, a number 
of rounds up to a maximum equal to the number of ith depth 
nodes are traversed until MIS is constructed at this depth. 

Lemma 2. MIS structure in T is formed after n rounds. n is 
number of tree nodes. 

Proof. We use induction to prove this lemma. In lemma 1, 
it has been shown that the root and the second-depth nodes of 
T enter to valid state of MIS just in one round (basis: 
statement holds for d=1,2). Using lemma 1, inductive step will 
be proven for d>1. Due to lemma 1, if MIS is formed up to the 
ith depth, after �� rounds, it will be formed up to (i+1)th depth. 
Therefore time complexity of MIS construction is �(∑ ��

�
��� ) 

which is equal to o(n). D is depth of T. 
Lemma 3 (convergence). The MCDSpp algorithm 

constructs MCDS after RT+n+1 rounds. 
Proof. T in RT and then MIS in n rounds are constructed. 

According to rules 6-8, members of MIS and connecting 
nodes join to MCDS. The MCDS members with active rule #8 
exit in one round. Since all terms of those three rules depend 
on id and ind variables, and not on dom, final states are 
permanent. 

Lemma 4 (closure). 
Proof. We prove this lemma by contradiction. Suppose 

that the closure condition does not hold; hence, at least one 
rule is active in legitimate configuration. This is while due to 
lemmas 1-3, the final states are permanent and no rules will be 
executed in the legitimate configuration. 

C. Proof of perturbation-proof feature 

Lemma 5. Occurrence of 1-fault in ind variable of a node 
in the ith depth has no effect on the state of upper or lower 
depth nodes. 

Proof. Since the MIS is formed prior the 1-fault incident, 
either of the pending or conflict predicates will hold. The state 
of parents affects the preconditions of rules 3-5 in a node. To 

be sure that those rules will not be activated by the 1-fault 
incident in lower depth nodes, some terms are added to them, 
checking whether the pending or conflict predicates are active 
in the parent neighbors or not. Similarly, in rules 7-8, those 
predicates are checked for upper depth nodes given that the 
states of children affect the preconditions for those rules. It is 
obvious that preconditions of rules 1, 2 and 6 have no 
relevance to the states of the neighbors. 

Lemma 6. In a system based on MCDSpp algorithm, 
occurrence of 1-fault in ind variable of an ith depth node has 
no effect on the other ith depth nodes. 

Proof. It is obvious that the change in ind variable of a 
node has no impact on the dom variables of its siblings. 
Hence, we only focus on the 1-faults in q node v and its 
impact on the ind variables of the ith depth 1-hop neighbor z 
and 2-hop neighbor k. 

If 1-fault (IN to OUT) happens in v, the only rule that 
might be active in z is rule 3. Note that state of z is OUT. If 
node z has a parent in IN state or its id is greater than v, rule 3 
does not activate. Otherwise it is evident that in the valid 
states, rule 3 did not execute in z because of another brother 
like w that had a lower �� than z and was in IN state. Because 
1-fault happens in z, not w, rule 3 still do not activate in z. If 
state of k is IN, the only rule that might be active in that node 
is rule 5. However, in rule 5, even if term 
‘~inbrotherwithlowerid’ is active, term ‘ind.w=IN’ must be 
active concurrently either, but in the previous paragraph we 
show that 1-hop brother of v remains in OUT state. If node k 
is in OUT state, rule 3 certainly cannot be active in it, because 
there is no preconditions in that rule that holds with 
occurrence of 1-fault. 

Assuming that 1-fault (OUT to IN) happens in v, if state of 
z is OUT, it cannot activate any rule in z. If state of z is IN, the 
only rule that might be active is rule 5. Because valid state of 
v had been OUT, there were some preconditions of rule 3 that 
had not hold. It is not possible that node v can activate rule 5 
in another node because of those preconditions. In legitimate 
configuration, MIS membership states in two-hop 
neighborhood of v (k z v) is one of these three cases: 
(010,100,000). In the first case, the only rule that might be 
active is rule 3, but term ‘ind.w=OUT’ must hold if rule 3 is 
active. Therefore, 1-fault cannot activate rule 3 in k, because 
state of z is still IN. In the second case, the only rule that can 
be active is rule 5, but as the term ‘ind.w=IN’ exists in rule 5, 
it cannot activate, because z is in OUT state. In the last case, 
although it seems that rule 3 can activate in node k, but a 
brother or a parent in IN state has existed and they still do not 
allow rule 3 being active in node k. 

Lemma 7. In a system based on MCDSpp* algorithm, 
occurrence of 1-fault in ind variable of a ith depth member 
node (IN to OUT) has no effect on the other ith depth nodes. 

Proof. It is obvious that ind variable change in a node has 
no effect on the dom variables of its brothers. Hence, we 
investigate effect of 1-fault in node v on ind variables of the ith 
depth 1-hop neighbor z. For a 2-hop neighbor, it is completely 
like lemma 6.  
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If 1-fault (IN to OUT) happens in v, the only rule that 
might be active in z is rule 3. Note that state of z is OUT. If 
node z has a parent in IN state, its id is greater than v or is still 
pending, rule 3 does not activate. Now assume that node z is 
pending and its id is lower than v. It is concluded that before 
occurrence of 1-fault in v, node z have had only one member 
neighbor with higher id. Because system has been in 
legitimate configuration, all neighbors of z were in none-
pending state. However, with considering the terms of rule 3, 
before occurrence of 1-fault in v, rule 3 has been activated in z 
that is in contradiction with definition of legitimate 
configuration. 

Lemma 8. 1-faults in the dom variable of an ith depth node 
have no effect on the states of is neighbors. 

Proof. Since in preconditions of rules 1-8 do not refer to 
dom variables of neighbors, it is obvious that the change of 
dom variable in a node has no effect on the others. 

Theorem 1. If a 1-fault occurs in the system, faulty nodes 
and only that node enters to the valid state that it was in 
before.  

Proof. The convergence property of an algorithm explains 
that the system converges from an illegitimate configuration to 
a legitimate one. We also showed in lemmas 5-8 that the 
occurrence of 1-faults has no effect on the neighbors. With 
these in mind, it is easy to see that with the execution of the 
self-stabilizing rules in the faulty node, the system will return 
to a legitimate configuration. 

Theorem 2. If the self-stabilizing rules cause that after 
perturbation of any selfish node in a legitimate configuration, 
the system returns to that legitimate configuration, that 
configuration is a Nash equilibrium.  

Proof. Consider the definition of a Nash equilibrium: a 
legitimate configuration of a self-stabilizing system is a Nash 
equilibrium, if no node can profit by unilateral deviations from 
its state. The main drive for a node to induce perturbations in a 
self-stabilizing system is the possible convergence of the 
algorithm into an alternative legitimate configuration so that 
its utility increases in the new configuration. In a legitimate 
configuration of a self-stabilizing system, perturbation of a 
node is analogous to the occurrence of a 1-fault in that node. 
Given that the rules in MCDSpp guarantee that after any 1-
fault in a given node, the system converges back to the same 
legitimate configuration, no node will have any incentive to 
deviate from its valid state, and thus the algorithm, once 
stabilizes, gives rise to a Nash equilibrium configuration.  

Theorem 3. A system based on MCDSpp algorithm is 
absolutely perturbation-proof. 

Proof. According to theorem 1, in a system based on 
MCDSpp algorithm, after 1-fault incident in legitimate 
configuration, system will return to that legitimate 
configuration again only by one move. In theorem 2, we said 
that if self-stabilizing rules force system to return to the 
previous legitimate configuration after perturbation of a selfish 
node, that configuration is in Nash equilibrium. Therefore, 
stable states of a self-stabilizing system based on MCDSpp 
algorithm are in Nash equilibrium for any utility functions. It 

means that the MCDSpp algorithm is absolutely perturbation-
proof. 

Theorem 4. A system based on MCDSpp* algorithm is 
relatively perturbation-proof. 

Proof. In a system based on MCDSpp* algorithm, after any 
1-fault in dom variables and IN to OUT 1-faults in ind 
variables, the system will return to the previous configuration 
only by one move. In theorem 2, we said that if the self-
stabilizing rules force the system back to the pre-perturbation 
configuration, this configuration is a Nash equilibrium. 
Therefore, the stable states of a self-stabilizing system based 
on MCDSpp*algorithm are Nash equilibria with respect to the 
utility functions that drive a member node to perturb and get 
out of the virtual backbone construction. It means that the 
MCDSpp algorithm is relatively perturbation-proof and no 
member node has an incentive to exit from the membership of 
the virtual backbone construction. 

IV. PERFORMANCE EVALUATION 

In this section, we conduct a number of experiments to 
compare the performance of our two virtual backbone 
construction algorithms MCDSpp and MCDSpp* with that of 
MCDSss [7]. The comparisons are made in terms of the 
number of update packets (overhead) and stabilization time. 
We simulate the algorithms under two operational scenarios: 
arbitrary configuration (ind and dom variables take on random 
values from the set {IN,OUT}) and multiple fault 
configuration. All experiments are implemented with 
OMnet++ simulator under an unfair scheduler, and the 
reported data points are the average of 100 tests in each 
scenario. The MAC configuration adheres to IEEE 802.11 and 
the channel model is simple path loss. Each node 
asynchronously notifies its neighbors of its current state by 
broadcasting update packets. In our proposed algorithms, each 
node needs to be notified of the states of its neighbors. This 
can increase message overhead dramatically. To solve this 
problem, a self-stabilizing synchronization algorithm has been 
designed that manages notifications based on prediction 
changes (figure 4). 

 
Figure 4. Self-stabilizing synchronization algorithm 

1. �����. � = [��� → ��] ⟶ ����(���� ������, ���� = 1��)  
2. �����. � = [�� → ���] ⟶ ����(���� ������, ���� = 1��) 
3. �����. � = ��� ∧ [�������(�) → ~�������(�)] ⟶

����(���� ������, ���� = 00�)  
4. �����. � = ��� ∧ [~�������(�) → �������(�)] ⟶

����(���� ������, ���� = 01�)  
5. �����. � = �� ∧ [��������(�) → ~��������(�)] ⟶

����(���� ������, ���� = 10�)  
6. �����. � = �� ∧ [~��������(�) → ��������(�)] ⟶

����(���� ������, ���� = 11�)  

7. ��~������ℎ�����ℎ�������(�) ∧ ~������������ℎ���(�)� →

�������ℎ�����ℎ�������(�) ∨ ������������ℎ���(�)�� ⟶

����(���� ������, ���� = ��1)   
8. [(������ℎ�����ℎ�������(�) ∨ ������������ℎ���(�)) →

(~������ℎ�����ℎ�������(�) ∧ ~������������ℎ���(�))] ⟶
����(���� ������, ���� = ��0)  
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In figures 5 and 6, the number of update packets 
(overhead) and stabilization time of MCDSpp, MCDSpp* and 
MCDSss are reported, respectively. Average connectivity 
degree is 8 and we have varied the number of nodes. As can 
be seen, the performance superiority of MCDSpp and 
MCDSpp* over MCDSss becomes even more apparent as the 
number of nodes increases. Overall, MCDSpp has the best 
performance among the three algorithms. 

 
Figure 5. The impact of the number of nodes on overhead. 

.  
Figure 6. The impact of the number of nodes on stabilization time. 

In another scenario, we evaluate the performance of the 
algorithms when faults are injected into the legitimate 
configuration (see figures 7 and 8). In this scenario, the 
number of fault injections varies from 1 to 20. The network 
consists of 25 nodes with average connectivity degree of 3. 
MCDSpp stabilizes from single faults using only one 
notification packet. While MCDSpp* and MCDSss need on 
average 1.2 and 4.4 notification packets, respectively. With 
more fault injections, the performance gain of MCDSpp over 
MCDSss decreases. 

 
Figure 7. The impact of the number of fault injections on overhead. 

 
Figure 8. The impact of the number of fault injections on stabilization time. 

V. CONCLUSION 

In this paper, two distributed virtual backbone construction 
algorithms have been proposed for wireless ad-hoc networks 
based on the notion of MCDS in graph theory. The proposed 
algorithms are self-stabilizing against transient faults and 
topology changes. We also proved that the stable 
configuration of our algorithms gives rise to a Nash 
equilibrium, and thus, selfish nodes have no motivation to 
perturb the constructed backbone once the system converges. 
The other merit featured by our algorithms is fast convergence 
from single fault configurations. We plan to extend these 
algorithms to accommodate situations where nodes may also 
exhibit selfish behavior during convergence.  
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