
Self-stabilizing algorithms of constructing virtual
backbone in selfish wireless ad-hoc networks

Amirreza Ramtin

Department of Information
Technology

Amirkabir University of Technology
Tehran, Iran

Email: a_ramtin@aut.ac.ir

Vesal Hakami
Department of Information

Technology
Amirkabir University of Technology

Tehran, Iran
Email: vhakami@aut.ac.ir

Mehdi Dehghan
Department of Information

Technology
Amirkabir University of Technology

Tehran, Iran
Email: dehghan@aut.ac.ir

Abstract— A self-stabilizing system tolerates any transient faults
and does not need any initialization. In wireless ad-hoc networks,
a connected dominating set is the graph-theoretic counterpart of
a virtual backbone. In this paper, we propose two distributed
self-stabilizing algorithms for approximate minimum connected
dominating set construction with perturbation-proof property in
the sense that the legitimate configuration of the system gives rise
to a Nash equilibrium, effectively discouraging the selfish nodes
from perturbing the legitimate configuration by changing their
valid states. The legitimate configuration of our first algorithm is
always a Nash equilibrium regardless of the specifics of the
nodes’ utility functions, while the configurations reached in our
second algorithm are Nash equilibria only if the selfish nodes
explicitly prefer to be out of the virtual backbone. The second
algorithm suits in particular for scenarios with multiple
legitimate configurations, while the first algorithm always gives
rise to a unique configuration. Both algorithms increase
accessibility, reduce the number of update messages during
convergence, and stabilize with minimum changes in the
topological structure. Proofs are given for the self-stabilization
and perturbation-proofness of the proposed algorithms. The
simulation results show that our two algorithms outperform
comparable schemes in terms of stabilization time and the
number of state transitions.

Keywords- Self-stabilization, Wireless ad-hoc network, virtual
backbone, Selfishness, Perturbation, Nash equilibrium

I. INTRODUCTION

It is a well-established fact that the fundamental source of
energy consumption in wireless ad hoc networks (WANETs) is
the exchange of packets between nodes. Hence, when it comes
to the design of routing mechanisms for WANETs, a key
measure of efficiency is low communication overhead. A
communication-efficient structure for supporting routing and
multicast in WANETs is the virtual backbone architecture [1].
The virtual backbone approach to routing consists of two
phases: a) creation and update of a virtual backbone substrate,
b) finding and updating the paths. In this paper, we focus on
the first phase. Concerning virtual backbone creation and
maintenance, the two foremost desirable properties are stability
and self-configuration without external intervention, given the
dynamic and unstable topology of WANETs and the multi-hop
nature of communications [4]. A promising approach to realize
stability and self-configuration is to rely on the notion of self-
stabilization in distributed fault-tolerance [8]. A self-stabilizing
algorithm guarantees that the system eventually converges to

the desirable state regardless of its initial configuration, and
that it remains in the desirable configuration as long as no
transient fault occurs. Hence, designing virtual backbones with
the self-stabilization property has the advantages of automatic
structuring, and robustness against: transient faults, node
failures, changes in their internal states, and occasional
breakages in the communication structure of the system [8].

However, in the majority of self-stabilizing protocols for
wireless ad-hoc networks, it is routinely assumed that the
network nodes will cooperate with each other so that the
overall stabilization of the system is guaranteed. This is while
in most practical settings, the nodes neither belong to the same
authority, nor do they operate under a single administration
domain. Hence, it might be the case that the nodes pursue some
private goals that may be in conflict with the system-wide
objective. Consider, in particular, virtual backbone construction
using a self-stabilizing algorithm. Obviously, once the protocol
stabilizes, the nodes serving in the backbone have to sacrifice
more processing and communication resources to the benefit of
the entire network. Hence, each backbone node faces a
dilemma as to whether maintain its serving role in the
constructed backbone, or alternatively, perturb the system
hoping that the algorithm would re-stabilize this time into a
new configuration where the node is a backbone client rather
than a server.

Motivated by the impact of node selfishness on protocol
stabilization in ad-hoc networks, in this paper, we deal with
perturbation-proneness in the context of virtual backbone
construction in WANETs. The problem is first translated into
minimum connected dominating set (MCDS) construction in
the topological graph of the network. We then propose self-
stabilizing MCDS algorithms that prevent selfish nodes from
post convergence perturbation of the system. A byproduct of
our proposed scheme is faster recovery from all single-fault
configurations with reduced message complexity, lower
number of state transitions, and minimal topological re-
structuring, which contributes to saving energy and increasing
network life.

The rest of the paper is organized as follows: We briefly
introduce the basic concepts and review the previous studies in
section 2. In 3, the proposed algorithms are discussed and
proofs are given to establish their correctness. Section 4 deals
with the numerical evaluation of the algorithms and

978-1-4799-4409-5/14/$31.00 ©2014 IEEE

The 22nd Iranian Conference on Electrical Engineering (ICEE 2014), May 20-22, 2014, Shahid Beheshti University

914

vesal
Highlight

comparisons are made to contrast their performance against
prior art. The paper ends with conclusions.

II. THEORETICAL BACKGROUND AND RELEVANT WORKS

A system is self-stabilizing, if and only if, two conditions
are satisfied: a) convergence: starting from an arbitrary initial
state, the system converges to a legitimate global
configuration after a finite number of state transitions, b)
closure: the system remains in legitimate configuration until
no transient fault happens [2].

In this paper, we are interested in forming a virtual
backbone substrate for wireless ad-hoc networks with
robustness properties against both transient systemic faults and
deliberate perturbations. A popular abstraction in prior art [1]
has been to translate the virtual backbone formation problem
into the construction of a minimum connected dominating set
(MCDS) in the topological graph of the underlying network.
In graph theory, a CDS of graph G is a set D of nodes which
satisfy two conditions: a) D is a connected sub-graph of G. b)
any node of G is either in D or is adjacent to at least one node
in D. A CDS of G is an MCDS, if it has the minimum
cardinality among all possible CDSs of G. In recent years,
several self-stabilizing algorithms have been proposed for
constructing CDS. The majority of the existing self-stabilizing
CDS algorithms, however, have been designed based on
central daemon (scheduler) which is practically impossible to
implement in wireless ad-hoc networks [3]. Furthermore, most
of these works solely construct a CDS and their final product
is not an approximation of MCDS [6]. Another drawback of
all such algorithms is that they do not differentiate between
faults with respect to their spread.

We set up our design on the self-stabilizing algorithm
proposed in [7] which works under distributed scheduler with
O(n2) time complexity. We refer to this algorithm as MCDSss
in the rest of this paper. The CDS Constructed by this
algorithm is based on a sequential scheme [7] that produces an
8��� + 1 approximation of MCDS in a given graph. We
present two variants of MCDSss, which render the CDS
construct immune to nodes’ intentional state manipulations.
Such manipulations are typically motivated by individual node
utilities in the sense that the nodes would naturally prefer to be
a CDS client rather than a CDS server. A general approach to
realize the perturbation-proof property for self-stabilizing
systems has been discussed in [5]. It is argued that the final
states in a self-stabilizing system are analogous to fixed points
of a game; hence, a fixed point, which is also a Nash
equilibrium, is obviously immune against unilateral node
deviations. With a perturbation-aware design, a self-stabilizing
system can be made either absolutely or relatively
perturbation-proof. A system is absolutely perturbation-proof,
if all its fixed points are Nash equilibria for any set of utility
functions. On the other hand, a system is relatively
perturbation-proof, if all its fixed points are Nash equilibria
for some specific set of utility functions.

III. PROPOSED ALGORITHM

In this section, we first present two perturbation-proof
variants of the MCDSss algorithm, namely MCDSpp and
MCDSpp*. Next, we provide proofs of their self-stabilization
and perturbation-proof properties.

A. Discussion on design and functionality of algorithms

MCDSpp is designed based on the MCDSss algorithm [7].
MCDSss first constructs a breadth-first spanning (BFS) tree in
the network graph. Next, starting from the root, a maximal
independent set (MIS) is formed iteratively among the nodes
of the same depth, which are not dominated by the nodes of
lower depths. Integration of all these sets produces an MIS in
network graph. It is proven that this MIS is a weakly
connected dominating set (WCDS). Finally, a fully connected
set is established by adding connecting nodes. Connecting
nodes are the parents of the MIS members in the BFS tree.
The final fully connected set is a CDS-tree. It is then proven
that the CDS-tree is an 8opt+1 approximation of an MCDS.

We assume that the tree T is formed in the network graph
through a self-stabilizing BFS tree algorithm. Let “l” denote
the distance of each node from the root. The state of each node
is specified by two variables ind, dom ∈ {��, ���} in MCDS
configuration. Each node in the legitimate configuration is in
one of the three states: (IN, IN), (IN, OUT) and (OUT, OUT).
The set of nodes in state (IN, IN) are MIS members. The
union of nodes in state (IN, IN) and (IN, OUT) forms a CDS.
In a legitimate configuration, any state transition can be
deemed as a transient fault.

In a legitimate configuration of a self-stabilizing system, 1-
fault situations correspond to the occurrence a single fault in a
node v, which is induced by an undesirable change in its
variables. It can be shown that two conditions apply a) one of
the rules is active in v. b) it is possible to reach stability by
execution of only one rule in v [9][10]. We aim to detect and
resolve 1-fault states by restricting rule executions only on the
faulty node, effectively preventing from error propagation by
unwanted execution of rules in v’s neighbors N(v).

We first define some predicates, which will appear as
preconditions to state transitions. We also introduce some sets
to facilitate the readability of the pseudo-code (figure 1).

The sets PN, BN, MN, and CN denote the parent nodes
(lower depth neighbors), sibling nodes (same depth
neighbors), mature nodes (union of PN and BN), and child
nodes (higher depth neighbors) of a node in the tree,
respectively. The fifth expression identifies the parent of a
given node. The parent of a node is its lowest id neighbor. The
6th and 7th expressions verifies whether a mature or parent
neighbor is a member of MIS or not. The 8th term specifies if a
node is pending. If neither a node nor its mature neighbors are
members of MIS, that node is considered to be pending. The
9th term specifies if a node is in conflict. If a node and at least
one of its mature neighbors are members of MIS, the conflict
predicate is true in that node. The 10th predicate will hold in a
node if at least one of its siblings is a member of MIS and its
id is lower than that node. The 11th predicate indicates a

915

conflict between a node and one of its parent neighbors. The
rules of MCDSpp are depicted in figure 2.

Figure 1. Set and Predicate definitions

Figure 2. Rules of MCDSpp algorithm

The process of constructing MIS in the tree proceeds from
root towards the last depth according to rules 1 to 5. The first
rule determines the root’s state. This node must become a
member of MIS. The second rule determines the membership
of the root neighboring nodes (first depth). Rules 3, 4, and 5
govern the membership of the nodes in MIS. A node may
become a member by performing rule 3 and may cancel its
membership by performing rule 4 or 5. While MIS forms,
deeper nodes states has no effect on upper nodes states in T.
The state of deeper nodes has no effect on the shallower ones.
In order to break symmetry of nodes, we give priority of MIS
membership to the nodes that have lower id than their siblings

in the same depth of the tree. To detect 1-fault situations, each
node needs to know the membership status of all its 2-hop
neighbors. This information guarantees that if a 1-fault occurs
in a given node’s parent or sibling, no rule will become active
on the node. According to rule 6, members of MIS i.e. the
nodes for which the ind is in IN state, join MCDS. Rule 7 or 8
checks membership or none-membership of the remaining
nodes in CDS, respectively. Nodes that are fathers of members
of MIS, become members of MCDS by executing rule 7.

There is only one legitimate configuration in a system
based on MCDSpp algorithm. In other words, it always
terminates in a unique virtual backbone. However, if we
assign weights to the nodes, the members of the final CDS
always have the lowest weight among their neighbors, and in
general, it is possible that there exist better MCDS
approximations which are ignored by MCDSpp. To solve this
problem, we design a new algorithm called MCDSpp* which
differs from MCDSpp in just the third rule.

In rule 3 of the MCDSpp*, we address situations that the
occurrence of 1-faults in members may spread to their
neighbors. This situation occurs when a none-member node v
has no pending sibling neighbor and has only one member
sibling w whose id is greater than that of v’s. In this situation,
if a fault happens in w, after re-convergence, node v will
become member of MCDS instead of w. Therefore, 12-th
predicate in rule 3 captures such occurrences in the legitimate
configurations.

B. Proof of correctness

In this part, we prove the correctness of MCDSpp through
a sequence of lemmas and theorems. For the most parts, the
proofs associated with MCDSpp* proceed along the same
lines, and are thus skipped here due to space limitations.

Lemma 1. Assume that the spanning tree T is valid up to
the i-th depth and MIS is constructed up to (i-1)th depth by
MCDSpp rules. It then holds that the MIS is constructed up to
the ith depth after the maximum of m rounds. In addition, no
node changes its state in the absence of transient faults.

Proof. The root becomes a member of MIS by executing
rule 1 at the first round. It is obvious that this membership is
permanent because rules 2-5 are not executed in the root.
Similarly, neighbors of root (l=1) leave membership of MIS
via rule 2 at the first round and this decision will be
permanent. It is clear that the membership of deeper nodes has

1. ��(�) ≔ {� ∈ �(�)|�. � = �. �}

2. ��(�) ≔ {� ∈ �(�)|�. � < �. �}

3. ��(�) ≔ {� ∈ �(�)|�. � > �. �}

4. ��(�) ≔ {� ∈ �(�)|�. � <= �. �}
5. ������(�) ≔ min{��. �|� ∈ ��(�)}

6. ����������������(�) ≡ ∃� ∈ ��(�): ���. � = ��

7. ����������������(�) ≡ ∃� ∈ ��(�): ���. � = ��

8. �������(�) ≡ ���. � = ��� ∧
~������������ℎ���(�)

9. ��������(�) ≡ ���. � = �� ∧ ������������ℎ���(�)

10. ��������������������(�) ≡ ∃� ∈ ��(�): ���. � =
�� ∧ ��. � < ��. �

11. ������������������(�) ≡ ���. � = �� ∧
������������ℎ���(�)

R1. �. � = 0 ∧ (���. � = ��� ∨ ���. � = ���) → ���. � ≔
�� , ���. � ≔ ��

R2. �. � = 1 ∧ ���. � = �� → ���. � ≔ ���
R3. �. � ≠ 0 ∧ �. � ≠ 1 ∧ ���. � = ��� ∧

~������������ℎ���(�) ∧ ∀� ∈ ��(�): ~�������(�) ∧

�∀� ∈ ��(�): ��. � > ��. � ∨ ����. � = ��� ∧

�������������ℎ���(�) ∨

������ℎ�����ℎ�������(�)��� → ���. � ≔

�� , ���. � ≔ ��
R4. �. � ≠ 0 ∧ �. � ≠ 1 ∧ �����������ℎ������(�) ∧

�∀� ∈ ��(�): ~��������(�)� → ���. � ≔ ���

R5. �. � ≠ 0 ∧ �. � ≠ 1 ∧ ���. � = �� ∧
~�����������ℎ������(�) ∧ (∀� ∈ ��(�): ���. � = �� ∧
~�����������ℎ������(�) ∧
~������ℎ�����ℎ�������(�) ∧ ��. � < ��. �) →
���. � ≔ ���

R6. ~�2 ∧ ~�4 ∧ ~�5 ∧ ���. � = �� ∧ ���. � = ��� →
���. � ≔ ��

R7. ~�3 ∧ ���. � = ��� ∧ ���. � = ��� ∧ (∃� ∈
��(�): ���. � = �� ∧ ~��������(�) ∧ ���ℎ��(�) =
�) → ���. � ≔ ��

R8. ~�3 ∧ ���. � = ��� ∧ ���. � = �� ∧ (∀� ∈
��(�): ���ℎ��(�) ≠ � ∨ ����. � = ��� ∧

~�������(�)�) → ���. � ≔ ���

R'3. �. � ≠ 0 ∧ �. � ≠ 1 ∧ ���. � = ��� ∧
~������������ℎ���(�) ∧ ∀� ∈ ��(�): ~�������(�) ∧
((∀� ∈ ��(�): ���. � = ��� ∧ (��. � > ��. � ∨
(������������ℎ���(�) ∨
������ℎ�����ℎ�������(�)))) ∨ ((∀� ∈
��(�): ~�������(�)) ∧
���������ℎ�����������(�))) → ���. � ≔ �� , ���. � ≔
��

12. ���������������������(�) ≡ (∃� ∈ ��(�): ���. � =
�� ∧ ��. � > ��. �) ∧ (|{� ∈ ��(�)|���. � = ��}| = 1)

Figure 3. The third rule of MCDSpp* algorithm

916

no effect on the membership of the ith depth in MIS according
to rules 1-5. If a node gets out because of rule 4 or gets in
because of rule 3, assuming that no ‘inbrotherwithlowerid’
term has been active in rule 3, the new state of node will be
permanent. The reason is that all predictions are related either
to lower depth nodes for which the validation and stability are
assumed, or to the base information like id. Yet in rule 3 or 5,
there is the predicate ‘inbrotherwithlowerid’, which is also
related to the state of the same depth nodes. At the first round
in all nodes that rule 4 is active, ind variable becomes equal to
OUT. It is obvious that OUT state (non-membership in MIS)
is permanent in these nodes. Following the first round, in the
second round, ind variable in all nodes which rule 3 is active
in them becomes equal to IN. After the second round, either
ind variable value is permanently OUT in all nodes of ith depth
or at least there is one node (v) that is in IN state, a permanent
state. In the third round, neighboring nodes with the same
depth of node v, which are in IN state switch to OUT state
(rule 5). It can be shown that this state is permanent in those
nodes and does not change in following rounds. In the next
round, nodes that rule 5 is active in them get out and it is
permanent. Then, rounds 3 and 4 will be repeated until there is
still some nodes in which rules 3 or 5 are active. So, a number
of rounds up to a maximum equal to the number of ith depth
nodes are traversed until MIS is constructed at this depth.

Lemma 2. MIS structure in T is formed after n rounds. n is
number of tree nodes.

Proof. We use induction to prove this lemma. In lemma 1,
it has been shown that the root and the second-depth nodes of
T enter to valid state of MIS just in one round (basis:
statement holds for d=1,2). Using lemma 1, inductive step will
be proven for d>1. Due to lemma 1, if MIS is formed up to the
ith depth, after �� rounds, it will be formed up to (i+1)th depth.
Therefore time complexity of MIS construction is �(∑ ��

�
���)

which is equal to o(n). D is depth of T.
Lemma 3 (convergence). The MCDSpp algorithm

constructs MCDS after RT+n+1 rounds.
Proof. T in RT and then MIS in n rounds are constructed.

According to rules 6-8, members of MIS and connecting
nodes join to MCDS. The MCDS members with active rule #8
exit in one round. Since all terms of those three rules depend
on id and ind variables, and not on dom, final states are
permanent.

Lemma 4 (closure).
Proof. We prove this lemma by contradiction. Suppose

that the closure condition does not hold; hence, at least one
rule is active in legitimate configuration. This is while due to
lemmas 1-3, the final states are permanent and no rules will be
executed in the legitimate configuration.

C. Proof of perturbation-proof feature

Lemma 5. Occurrence of 1-fault in ind variable of a node
in the ith depth has no effect on the state of upper or lower
depth nodes.

Proof. Since the MIS is formed prior the 1-fault incident,
either of the pending or conflict predicates will hold. The state
of parents affects the preconditions of rules 3-5 in a node. To

be sure that those rules will not be activated by the 1-fault
incident in lower depth nodes, some terms are added to them,
checking whether the pending or conflict predicates are active
in the parent neighbors or not. Similarly, in rules 7-8, those
predicates are checked for upper depth nodes given that the
states of children affect the preconditions for those rules. It is
obvious that preconditions of rules 1, 2 and 6 have no
relevance to the states of the neighbors.

Lemma 6. In a system based on MCDSpp algorithm,
occurrence of 1-fault in ind variable of an ith depth node has
no effect on the other ith depth nodes.

Proof. It is obvious that the change in ind variable of a
node has no impact on the dom variables of its siblings.
Hence, we only focus on the 1-faults in q node v and its
impact on the ind variables of the ith depth 1-hop neighbor z
and 2-hop neighbor k.

If 1-fault (IN to OUT) happens in v, the only rule that
might be active in z is rule 3. Note that state of z is OUT. If
node z has a parent in IN state or its id is greater than v, rule 3
does not activate. Otherwise it is evident that in the valid
states, rule 3 did not execute in z because of another brother
like w that had a lower �� than z and was in IN state. Because
1-fault happens in z, not w, rule 3 still do not activate in z. If
state of k is IN, the only rule that might be active in that node
is rule 5. However, in rule 5, even if term
‘~inbrotherwithlowerid’ is active, term ‘ind.w=IN’ must be
active concurrently either, but in the previous paragraph we
show that 1-hop brother of v remains in OUT state. If node k
is in OUT state, rule 3 certainly cannot be active in it, because
there is no preconditions in that rule that holds with
occurrence of 1-fault.

Assuming that 1-fault (OUT to IN) happens in v, if state of
z is OUT, it cannot activate any rule in z. If state of z is IN, the
only rule that might be active is rule 5. Because valid state of
v had been OUT, there were some preconditions of rule 3 that
had not hold. It is not possible that node v can activate rule 5
in another node because of those preconditions. In legitimate
configuration, MIS membership states in two-hop
neighborhood of v (k z v) is one of these three cases:
(010,100,000). In the first case, the only rule that might be
active is rule 3, but term ‘ind.w=OUT’ must hold if rule 3 is
active. Therefore, 1-fault cannot activate rule 3 in k, because
state of z is still IN. In the second case, the only rule that can
be active is rule 5, but as the term ‘ind.w=IN’ exists in rule 5,
it cannot activate, because z is in OUT state. In the last case,
although it seems that rule 3 can activate in node k, but a
brother or a parent in IN state has existed and they still do not
allow rule 3 being active in node k.

Lemma 7. In a system based on MCDSpp* algorithm,
occurrence of 1-fault in ind variable of a ith depth member
node (IN to OUT) has no effect on the other ith depth nodes.

Proof. It is obvious that ind variable change in a node has
no effect on the dom variables of its brothers. Hence, we
investigate effect of 1-fault in node v on ind variables of the ith
depth 1-hop neighbor z. For a 2-hop neighbor, it is completely
like lemma 6.

917

If 1-fault (IN to OUT) happens in v, the only rule that
might be active in z is rule 3. Note that state of z is OUT. If
node z has a parent in IN state, its id is greater than v or is still
pending, rule 3 does not activate. Now assume that node z is
pending and its id is lower than v. It is concluded that before
occurrence of 1-fault in v, node z have had only one member
neighbor with higher id. Because system has been in
legitimate configuration, all neighbors of z were in none-
pending state. However, with considering the terms of rule 3,
before occurrence of 1-fault in v, rule 3 has been activated in z
that is in contradiction with definition of legitimate
configuration.

Lemma 8. 1-faults in the dom variable of an ith depth node
have no effect on the states of is neighbors.

Proof. Since in preconditions of rules 1-8 do not refer to
dom variables of neighbors, it is obvious that the change of
dom variable in a node has no effect on the others.

Theorem 1. If a 1-fault occurs in the system, faulty nodes
and only that node enters to the valid state that it was in
before.

Proof. The convergence property of an algorithm explains
that the system converges from an illegitimate configuration to
a legitimate one. We also showed in lemmas 5-8 that the
occurrence of 1-faults has no effect on the neighbors. With
these in mind, it is easy to see that with the execution of the
self-stabilizing rules in the faulty node, the system will return
to a legitimate configuration.

Theorem 2. If the self-stabilizing rules cause that after
perturbation of any selfish node in a legitimate configuration,
the system returns to that legitimate configuration, that
configuration is a Nash equilibrium.

Proof. Consider the definition of a Nash equilibrium: a
legitimate configuration of a self-stabilizing system is a Nash
equilibrium, if no node can profit by unilateral deviations from
its state. The main drive for a node to induce perturbations in a
self-stabilizing system is the possible convergence of the
algorithm into an alternative legitimate configuration so that
its utility increases in the new configuration. In a legitimate
configuration of a self-stabilizing system, perturbation of a
node is analogous to the occurrence of a 1-fault in that node.
Given that the rules in MCDSpp guarantee that after any 1-
fault in a given node, the system converges back to the same
legitimate configuration, no node will have any incentive to
deviate from its valid state, and thus the algorithm, once
stabilizes, gives rise to a Nash equilibrium configuration.

Theorem 3. A system based on MCDSpp algorithm is
absolutely perturbation-proof.

Proof. According to theorem 1, in a system based on
MCDSpp algorithm, after 1-fault incident in legitimate
configuration, system will return to that legitimate
configuration again only by one move. In theorem 2, we said
that if self-stabilizing rules force system to return to the
previous legitimate configuration after perturbation of a selfish
node, that configuration is in Nash equilibrium. Therefore,
stable states of a self-stabilizing system based on MCDSpp
algorithm are in Nash equilibrium for any utility functions. It

means that the MCDSpp algorithm is absolutely perturbation-
proof.

Theorem 4. A system based on MCDSpp* algorithm is
relatively perturbation-proof.

Proof. In a system based on MCDSpp* algorithm, after any
1-fault in dom variables and IN to OUT 1-faults in ind
variables, the system will return to the previous configuration
only by one move. In theorem 2, we said that if the self-
stabilizing rules force the system back to the pre-perturbation
configuration, this configuration is a Nash equilibrium.
Therefore, the stable states of a self-stabilizing system based
on MCDSpp*algorithm are Nash equilibria with respect to the
utility functions that drive a member node to perturb and get
out of the virtual backbone construction. It means that the
MCDSpp algorithm is relatively perturbation-proof and no
member node has an incentive to exit from the membership of
the virtual backbone construction.

IV. PERFORMANCE EVALUATION

In this section, we conduct a number of experiments to
compare the performance of our two virtual backbone
construction algorithms MCDSpp and MCDSpp* with that of
MCDSss [7]. The comparisons are made in terms of the
number of update packets (overhead) and stabilization time.
We simulate the algorithms under two operational scenarios:
arbitrary configuration (ind and dom variables take on random
values from the set {IN,OUT}) and multiple fault
configuration. All experiments are implemented with
OMnet++ simulator under an unfair scheduler, and the
reported data points are the average of 100 tests in each
scenario. The MAC configuration adheres to IEEE 802.11 and
the channel model is simple path loss. Each node
asynchronously notifies its neighbors of its current state by
broadcasting update packets. In our proposed algorithms, each
node needs to be notified of the states of its neighbors. This
can increase message overhead dramatically. To solve this
problem, a self-stabilizing synchronization algorithm has been
designed that manages notifications based on prediction
changes (figure 4).

Figure 4. Self-stabilizing synchronization algorithm

1. �����. � = [��� → ��] ⟶ ����(���� ������, ���� = 1��)
2. �����. � = [�� → ���] ⟶ ����(���� ������, ���� = 1��)
3. �����. � = ��� ∧ [�������(�) → ~�������(�)] ⟶

����(���� ������, ���� = 00�)
4. �����. � = ��� ∧ [~�������(�) → �������(�)] ⟶

����(���� ������, ���� = 01�)
5. �����. � = �� ∧ [��������(�) → ~��������(�)] ⟶

����(���� ������, ���� = 10�)
6. �����. � = �� ∧ [~��������(�) → ��������(�)] ⟶

����(���� ������, ���� = 11�)

7. ��~������ℎ�����ℎ�������(�) ∧ ~������������ℎ���(�)� →

�������ℎ�����ℎ�������(�) ∨ ������������ℎ���(�)�� ⟶

����(���� ������, ���� = ��1)
8. [(������ℎ�����ℎ�������(�) ∨ ������������ℎ���(�)) →

(~������ℎ�����ℎ�������(�) ∧ ~������������ℎ���(�))] ⟶
����(���� ������, ���� = ��0)

918

In figures 5 and 6, the number of update packets
(overhead) and stabilization time of MCDSpp, MCDSpp* and
MCDSss are reported, respectively. Average connectivity
degree is 8 and we have varied the number of nodes. As can
be seen, the performance superiority of MCDSpp and
MCDSpp* over MCDSss becomes even more apparent as the
number of nodes increases. Overall, MCDSpp has the best
performance among the three algorithms.

Figure 5. The impact of the number of nodes on overhead.

.
Figure 6. The impact of the number of nodes on stabilization time.

In another scenario, we evaluate the performance of the
algorithms when faults are injected into the legitimate
configuration (see figures 7 and 8). In this scenario, the
number of fault injections varies from 1 to 20. The network
consists of 25 nodes with average connectivity degree of 3.
MCDSpp stabilizes from single faults using only one
notification packet. While MCDSpp* and MCDSss need on
average 1.2 and 4.4 notification packets, respectively. With
more fault injections, the performance gain of MCDSpp over
MCDSss decreases.

Figure 7. The impact of the number of fault injections on overhead.

Figure 8. The impact of the number of fault injections on stabilization time.

V. CONCLUSION

In this paper, two distributed virtual backbone construction
algorithms have been proposed for wireless ad-hoc networks
based on the notion of MCDS in graph theory. The proposed
algorithms are self-stabilizing against transient faults and
topology changes. We also proved that the stable
configuration of our algorithms gives rise to a Nash
equilibrium, and thus, selfish nodes have no motivation to
perturb the constructed backbone once the system converges.
The other merit featured by our algorithms is fast convergence
from single fault configurations. We plan to extend these
algorithms to accommodate situations where nodes may also
exhibit selfish behavior during convergence.

REFERENCES

[1] B. Das and V. Bharghavan, “Routing in ad-hoc networks using
minimum connected dominating sets,” in Communications, 1997. ICC
97 Montreal,’Towards the Knowledge Millennium’. 1997 IEEE
International Conference on, 1997, vol. 1, pp. 376–380.

[2] A. Dasgupta, S. Ghosh, and S. Tixeuil, “Selfish stabilization,”
Stabilization, Safety, and Security of Distributed Systems, pp. 231–243,
2006.

[3] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A.
Srinivasan, “Fast distributed algorithms for (weakly) connected
dominating sets and linear-size skeletons,” Journal of Computer and
System Sciences, vol. 71, no. 4, pp. 467–479, 2005.

[4] L. Gao, M. Li, B. Li, and W. Zhou, “Virtual backbone routing structures
in wireless ad-hoc networks,” Global journal of computer science and
technology, vol. 10, no. 4, 2010.

[5] M. Gouda and H. Acharya, “Nash equilibria in stabilizing systems,”
Stabilization, Safety, and Security of Distributed Systems, pp. 311–324,
2009.

[6] A. Jain and A. Gupta, “A distributed self-stabilizing algorithm for
finding a connected dominating set in a graph,” in Parallel and
Distributed Computing, Applications and Technologies, 2005. PDCAT
2005. Sixth International Conference on, 2005, pp. 615–619.

[7] S. Kamei and H. Kakugawa, “A self-stabilizing distributed
approximation algorithm for the minimum connected dominating set,” in
Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International, 2007, pp. 1–8.

[8] S. Tixeuil, “Self-stabilizing algorithms,” in Algorithms and theory of
computation handbook, M. J. Atallah and M. Blanton, Eds. Chapman &
Hall/CRC, 2010, pp. 26–26.

[9] S. Köhler and V. Turau, “Fault-Containing Self-Stabilization in
Asynchronous Systems with Constant Fault-Gap,” in Distributed
Computing Systems (ICDCS), 2011 31st International Conference on,
2010, pp. 418–427.

[10] S. Ghosh, A. Gupta, T. Herman, and S. V. Pemmaraju, “Fault-containing
self-stabilizing distributed protocols,” Distributed Computing, vol. 20,
no. 1, pp. 53–73, Jun. 2007.

919

