Evolutionary GMDH-bhased Identification of Building Blocks
for Binary-Coded Systemns

Ehsan Nazerfard, Saced Bagheri Shouraki
Ariificial Creatures Lak
Conputer Engineering Departmeni
sherif University of Techuology
Tehran, fran
{razerfurd, shagheri)({@ee.sharifedu

Abstract

Thiz paper proposes an approach to the problem of
Eeglding block extraction in the coment of evalutionary
algorithme {with binary strings) The method is based
tpan the copstruction of @ GAMDH neural metwork model
of @ paprdation of promising solutions with the aim of
extracting building blocks from the resultant network
The aperation of the praposed method is regardless of
the ardar by which building blocks are positioned in
strings represerting the solutions The expariments are
carried out on some well-krowr benchmoark flrctions
irchakng Delong's.

1. Introduction

Inductive modeling aims at constructing an efficient
and mhust model of high dimensional data As
illustrated 1n figure 1, in a given set of inputs, system
state, and outputs, the third component iz aways
deducible with the other two at hand. For instance, given
the input training data and the system model, the output
associated wath the unseen input data iz estimative
(prediction model). Likewise, a modeling problem iz
intended to model a system while knowing the set of
inputs and outputs. Finally, in a control problem the goal
iz to find the best inputs for a given system with known
outputs,

Chatgnats

>

Estimate
Input
[Contml)

Ignats

SR

X

Estimat>/‘ _
Chatpuat Estimate

(Prediction) Swstem State
(Modeling)

Figure 1. Inductive Modeling

The inductive modeling strategies can be categorized
as either parametric or non-parametric. In parametric
methods, the model structure iz pre-determined and its
paratmeters are estimated wia training data In other
words, the data are summed up in the modeling
parameters. Artifical neural networks are typicd of

0-7203-9521- 206MF20.00 22006 |EEE. 1900

Vesal Hakami
Inielligant Svaterms Lab
Computer Enginesring Department
Apirkcabiz Ukiversity of Technology
Tehran, fran
Vho ko (@ e.aui.acir

parametric approaches. In amaornity of neura networls,
the model’s structure (number of neuronsflayers) 1s
assumed to remain fized, and the modeling parameters
are considered as the weights of the connections in the
networle In a vanation of neural networls, known as
polynotmal networles, each layer consists of anumber of
units which are considered as a single polynomial. Here
the coefficients of the polynomials represent the network
paratmeters. GMDH can be named here as a common
ezample of polynomal neural networks Further
explanation on GMDH networles is left to the subzequent
sections,

Meura networks are among the major categonies of a
clasz of computing methods known as soft-computing
strategies. Genetic algorithms are another well-known
technique in the context of soft-computing. These
algorithms can he considered as optimization methods
loosely hased on the mechamcs of artificial selection and
recombination operators. By reproducing and combining
promising solutions, high-quality partial solutions unite
to form newer results High-quality partial solutions are
called buwlding blocks (BBEs) [1]. General, fized, and
problem independent recombination operators often
break the building blocks or do not mix them efficientl v,
Ga works well only when building blocks of the
problemn are located tightly in strings representing the
solution. On problems with the building blocks spread
al over the solubons, the simple G4 results in
performance degradation [2,4].

Thiz paper introduces a methodology for extracting
building hlocks of the prohlem in the context of genetic
algonthms. The method relies on the construction of a
CMDH neural network model of solutions rather than
the application of genetictype operators ie.
recombination and mutation operators. It is independent
of the sequence of the bhuilding blocks in strings
representing the zolution. In thiz method, a mumber of
solutions wath high fitness walues are selected in each
generation. The selected individuals along with their
fithess values are considered as the inputs and outputs of
a system. As shown in figure 1, given the input and
output for atypical system, its model can he ohtaned In
the context of our study, the constructed model features
the strings wath high fitness scale. Throughout the next
step, with the extraction of rules from the constructed
networl, an interpretable knowledge of high fitness
strings 15 accomplished based on which the next
generation wall be created.

vesal
Highlight

The paper is organized as follows: Section 2 briefly
goes over the GMDH neural network. In section 3, the
proposed evolutionary-based algorithm is described.
Sections 4 and 5 are dedicated to the mplementation
results and paper conclusions respectively.

2. GMDH Neural Network Overview

This section explains the basic GMDH neural network
concepts supposed to be necessary to understand the
description of the proposed method.

The group method of data handling (GMDH) was
introduced by Ivakhnenko in 1966 as an inductive
leaming process for complex systems modeling [5]. The
GMDH model possesses a forward multi-layver neural
network structure. Each layer consists of one or more
units with two inputs and one output. Every unit
corresponds to Ivakhnenko polynomial forms (1):

I=a, +ax +ax, +ax3,
2 {1)

- 2
Z =y + X +(I2JC2 + gl Xy + el + gy

It is comprised of two input variables x; and x; an
output variable z, and the coefficients a’s. Figure 2
illustrates a typical multi-layer GMDH network with 4
inputs, 3 layers and 7 units.

Inpuat Layer
Layer 1

Layer 2
Outout Layer

Figure 2. A typical GMDH network with 4 inputs, 3 layers
and 7 units

Bagically, the GMDH learning algorithm congists of
the following steps [6]:
1) Given alearning data sample including a dependent
variable v and independent variables x,, x;... x,, split
the sample into a training set and a checking set.
Feed the input data of m variables and generate
(#22) combination units from every two variable
pairs at the first layer.
Estimate the coefficients of all units in formula (1)
using the training set [7].

2)

3)

0-7803-9521- 2/06/$20.00 @2006 |EEE.

1801

4y Compute the square error between the real output
and the prediction of each unit based on the
checking data. For example, the error value for the
i unit can be computed using the following

formula:

(]

Err, =Y

k=1

(}l -7, (k)]z @

In (2), y,(k) and ;}.(k) are the output of the k™

training data and the prediction of i® unit
respectively. Also ¢ is the number of training data.
Sort out the units by emror and eliminate the
undesired units.

When the minimum error of the current layer
becomes larger than that of in the previous layer,
remove the current layer and go to step 8.

Set the prediction of units in the current layer to
new input variables for the next layer, and generate
next layer units from every two variable pairs in the
current layer. Go to step 3.

In this step, choose the unit with minimum error in
the last layer as the final output. The ultimate
network can be obtained recursively from the path
ending to the final output, so that the units with no
connection to this output get eliminated.

5)

6)

)

8)

3. An Evolutionary GMDH-based Algorithm

In thiz section, a new approach for building block
extraction in the context of evolutionary algorithms is
proposed. Here, each individual iz a binary string to
which a fitness value iz assigned. Figure 3 illustrates a
general schematic of the operation of the algorithm.

The proposed method entails six steps. In step 1, the
initial population is generated randomly. In step 2, a set
of promising strings {individuals with highest fitness
values) are selected. Step 3 (the modeling step) aims at
constructing a model from the selected individuals and
finding their effective bits. The proposed method uses
GMDH neural network for its modeling process. The
selected individuals along with their associated fitness
values serve as the required input data to construct the
network. The individuals are split up into two sets: a
training set and a checking set. The polynomial used in
the process has the following form:

Z=ay +ax, +ax, +a;x A,

(3)

P_E'pulan':'_n of Felected pro mising Constructed Rules extracted Hew strings
hinary strings stings (solutions) OMDH network based on from the network created based on
Fitreas selected string s (Extracted BBs) eytracted BBs
\é :
. Ija\‘
O (Y
o 0o
m| O
O o
O O i
O ; O/
) my
/ i

Figure 3. Schematic of the algorithm

In our implementation, the elimination constraint for
undesired units can be defined as the following:

Assume that the number of units in the i® layer is .
After creation of {m,2) units in layer 1+], the m*rafio
best ones are selected and the cthers are digscarded.

Agsume that figure 4 illustrates the final model
(GMDH network) of zelected individuals, Ag illustrated
in this figure, the output of thiz network i the estimated
fitnesz walue for the selected individuals, Also, the
inputs x, x; and x; prove to be the effective variables of
the selected individuals,

Layer 1

[t Layer

Figure 4 Final GMDH network
3.1. Building Block Extraction

In thiz step, rules are extracted form the resultant
GWDH network of the modeling step. Accordingly, the
dependency among variables or specifically, the building
blocks of the problem will be discovered. To extract
ruleg from the GMDH network, the extended Fujimeato
rule extraction method [6] is employed,

To have an ingight of the procedure, consider the
network illustrated in figure 4. As shown in the figurs,
the vector X = (x, x, xp) with length I=3 containg the
effective variables. All combinations of vector X are
indexed as follows:

X=(0,0,0), X=0(0,0,1), ..., % =01,1,1)

0-7803-9521-206420.00 @2008 |EEE.

1902

Each of these combinations 15 fed to the GMDH

neural network, and ity estimated fitness, ie fitmess is

computed. Wext, these combinations are zorted and re-
indexed based on their associated fitness level. The
result ig presented in table 1,

Table 1. Rule extraction table [6]

X ﬁm'réss; =
Xg ﬁI‘.”’J\QSSg Gz
. i KX
X ﬁn?ess,t Gy, 4——
. .)
ALy Amessih; | Gelg
fa)
e Sitness gt -

In this table, the following conditions are satisfied:

@

R n
[fitness, = fitness,,, , i=1.2"-1

The gap between two successive fitness 1s defined as
follows:
G, = fitness,~ fitness,,, , i=1.2"-1 (5)
The maximurm gap between two successive fimess 1z
defined as G
G, =max(F,) |, i=1.2"-1

()

G 1z defined to find the best zet of X's for rule
extraction. Since the X’¢ in Table 1 are sorted in a
descending order, the following rule iz obtained:

IF X; OR X; OR
High

... OR X, THEN Fitness is

To represent this rule by x' s, the algorithm makes use
of the fuzzy karnaugh map which groups &/'s (i=1.k)

with respect to ther f.r'f;;ess values. To do so, the

ﬁz;:ess values are normalized i [0,1] as depicted in

formula (6). Hereafter, the normalized values are called
Belief

Belief, = — €Sy)

n
maz(fitress)

Each X; (j=1.k)in Table 1, is associated with a degree
of belief Therefore, the inputs to the fuzzy karnaugh
map are the (X, Belief) pars. Since the grouping
operator in the map is an S-norm type, the fuzzy
karnaugh map applies the mar operator to determmine the
degree of belief for each group. Figure 5 shows an
exarnple of the fuzrzy karnavgh map in operation

XXk | 00 01 11 10
X Belief = max (0.3,0.9)
o o
0 07 (0D, | 09
\ /
1 L0 Lo
e

Belief = max (0.2,0 3,0.7,0.5)

Figure 5 An example of fuzzy karnaugh map with max
operatar

The extracted rules of the sarmple illustrated in figure
5 are as the following:

Rule 1:
IF —x;x; THEN Fitnessis High (Belief=09)
Rule 2:

IF x; THEN Fitness is High (Belief =07

These rules identify two buildmg blocks of the
problemn with thewr associated degree of belief

Table 2. Extracted Building Elocks (EEs)

Fule Number | Buwlding Blocks
1 Xy 3

2 p

Degree of Belief
0o

07

3.2. Building Block Insertion in New Strings

The remaining steps 1e steps 5 and 6 (see figure 3)

0-7803-9521-2.06/520.00 E2006 |EEE.

are meant to generate new strings with respect to
extracted building blocks. MNew strings are nitialized at
randarn. Net, the extracted BEs are applied to them
For instance, the extracted BBs in the previous step (zee
table 27, are applied to a new string in accordance with
their degree of belief.

For instance, the probability of having x as 1 in next
generation strings 15 less than 0.7 Likewise, the
probability of having xx; as 01 m newly generated
strings is lessthan 0.9,

At this point, the new individuals are added to the
current population, replacing some of the old cnes. The
new population is evaluated and each individual 1s
assigned a fitness value Tnless the termination criteria
are met, a new cycle starts over by selecting promising
mdividuals.

4. Experimental Results

This section demonstrates the simmulation results and
corrpares the proposed algorthm with simple GA The
experiments are carried out on a variety of different
problems with varying degrees of complexity. A few
representative results are presented here The problems
chosen are as the followmg;

- Onelax Test Function, a Unitation Function, in

100 dimensions [3]. (F1 Function)

- DelJong Test Funclion 2, also called
Rosenbrods’s Function, in 2 dimensions [8]. (F2
Functiomn)

- Delong Test Function 3, a Step Function, in 5
dimensions [8] (F3 Function)

- DeJong Test Function 4, a Quartic Function, n
30 dimensions [2)]. (F4 Function)

The characteristics of these benchmarks are listed in

Table 2. Also, the length of the sclutions for each
function 1s shown in this table,

Takle 3. Characteristics of the problem used in the

1903

experiments
Test Functicn Fl Fz F3 F4
Dimension 100 2 5 30
Type Max. Min. Min, Ifin,
MMultyTni Modal | Uni. Multl. Ml Bfolt
Eval with Moizse | Mo Mo Mo Tes
Solution Length 100 100 250 300
Cptimum (m) 100 ZErD -30 O=rm=30

In our experiments, a population of 100 individuals
was used In each iteration the best half of the
mdividuals are selected for the modeling algorithm. The
rafio parameter was set to 0.45, 1.e. the proportion of the
number of units in i layer to the nurber of units in
(i-l)'h laver would be 045 in the constructed GMDH
networlk.

Three stopping conditions were considered. First,
when a fied mumber of generations are accomplished A

further stopping condition occurs when the algorithm
finds a solution with the objective value about 95% of
the optimum (in case, it is known in advance). Finally,
the algorithm stops when the best value of the
population doesn’t improve within a fixed number of
iterations.

Table 4 summarizes the results obtained by applying
GMDH-based algorithm to each function. All results are
averaged over 40 runs.

Figure 6. Average number of generations required for
optimizing DeJong Function 4

5. Conclusions

This paper introduced a methodology for extracting
building blocks in the context of evolutionary algorithms
with binary strings. It is based on the rule extraction
from the constructed GMDH network of the selected
strings for a given population. The experimental work

Table 4. Results obtained by the algorithm :))
entails a comparative study of the proposed method with

Test Function | F1 E2 E3 F4 simple genetic algorithm. The problems over which the
Mean Values 8466 19E-5 -26.53 643 experiments were carried out were of type static function
Best Value 96 16E-6 28 0.13 optimization. These problems were adopted on account
Worst Value . 80 43E3 -2 11.96 of their frequent appearance in the GA literature. The
Standard Dc\flatlon 5.03 Lde3 1.7 32 experiments have shown that the proposed algorithm
Max Generation 500 300 300 500

As shown in table 4, while the best results are gained
from F2 (Delong 2), F1 leads to the worst results
{OneMax). This is due to the fact that OneMax has no
significant variable and all of its bits are of equal
importance. Since our method tries to identify the
effective variables in each iteration, the algorithm finds
it difficult to optimize.

Figure 6 illustrates the effect of population size on the
number of generations required for DeJong Function 4
optimization. No matter whether loose building blocks
(the building blocks spread all over the strings
representing the solution) or tight BBs (the building
blocks located tightly in the string) is used, the algorithm
behaves similarly. Whereas, the simple GA results in
different behaviors for loose and tight building blocks.
As discussed above, the proposed algorithm is
independent of the ordering of the variables in the
strings representing the solution. GMDH-based
algorithm outperforms the GA in both loose and tight
building blocks operating on a large population size. In
our experiments, the simple GA with one point
crossover and truncation selection was used. The
crossover and mutation rates were set to 0.9 and 0.05.

1400

a ~ & GWDH-based Algorithm
ool G Coo Ghdloonge-BB J
: e GAight-BE

tooob o 1

800

Generations

600

400 -

200 -

1 1 1 1 1 1
i] a0 100 150 200 250 300 350 400
Population Size

0-7803-9521-2/06/$20 00 ©2006 IEEE

1804

outperforms the simple GA in problems with loose
building blocks.

6. References

[1] Goldberg, D.E., “Genetic Algorithms in Search,
Optimization and machine Leaming”, Addison Wesley:
Reading, MA, 1989

[2] Thierens, D., “Analysis and design of genetic algorithms”,
Doctorial dissertation, Leuven, Belgium, 1995

[3] Pelikan, M., Goldberg, D.E., Canti-Paz, E. “BOA: The
Bayesian optimization algorithm™, In Proceedings of the
Genetic and Evolutionary Computation Conference
GECC0-99, Vol. 1, Morgan Kaufinann Publisher: San
Francisco, CA, pp 525-532, 1999

[4] Harik, G.R., Goldberg, D.E., “Leaming Linkage”,
Foundation of Genetic Algorithms, Vol. 4, pp 247-262

[5] Ivakhnenko, A.G., “The Group Method of Data Handling
— A Rival of the Method of Stochastic Approximation™,
Soviet Automatic Control, Vol. 13, No.3, pp. 43-55, 1966

[6] Fujimoto, K. Nakabayashi, S., “Applying GMDH
Algorithm to Extract Rules from Examples”, Systems
Analysis Modeling Simulation, Vol. 43, No. 10, pp 1311-
1319, October 2003

[7] Howland, J.C., Voss, M.S., "Natural Gas Prediction Using
The Group Method of Data Handling”, proceedings of 7%
IASTED International Conference and Soft Computing,
Bantt, Alberta, Canada, July 2003

[8] Digalakism, J.G., Margaritis, K.G., “An Experimental
Study of Benchmarking Functions for Genetic
Algorithms”, International Joumal of Computer
Mathematics, Vol. 7, pp 403-416, April 2002

