
Evolutionary GMDH-based Identifi'cation of Building Blocks
for Binary-Coded Systems

Ehsan Nazerfard, Saeed Bagheri Shouraki
Artificial Creatures Lab

Computer Engineering Department
Sharif University ofTechnology

Tehran, Iran
tnazerfard, sbagheri}@gce. sharifedu

Abstract

This paper proposes an approach to the problem of
building block extraction in the context of evolutionary
algorithms (with binary strings). The method is based
upon the construction ofa GMDH neural network model
of a population ofpromising solutions with the aim of
extracting building blocks from the resultant network.
The operation of the proposed method is regardless of
the order by which building blocks are positioned in
strings representing the solutions. The experiments are
carried out on some well-known benchmark functions
including DeJong's.

1. Introduction

Inductive modeling aims at constructing an efficient
and robust model of high dimensional data. As
illustrated in figure 1, in a given set of inputs, system
state, and outputs, the third component is always
deducible with the other two at hand. For instance, given
the input training data and the system model, the output
associated with the unseen input data is estimative
(prediction model). Likewise, a modeling problem is
intended to model a system while knowing the set of
inputs and outputs. Finally, in a control problem the goal
is to find the best inputs for a given system with known
outputs.

Inputs OutputsSystem 1

Etiia Estimate
l Outpu Est'mae Inlput i

E(Frdictior Sytem State (Contml)
(Modeling)

Figure 1. Inductive Modeling

The inductive modeling strategies can be categorized
as either parametric or non-parametric. In parametric
methods, the model structure is pre-determined and its
parameters are estimated via training data. In other
words, the data are summed up in the modeling
parameters. Artificial neural networks are typical of

Vesal Hakami
Intelligent Systems Lab

Computer Engineering Department
Amirkabir University ofTechnology

Tehran, Iran
vhakamigce. aut. ac. ir

parametric approaches. In a majority of neural networks,
the model's structure (number of neurons/layers) is
assumed to remain fixed, and the modeling parameters
are considered as the weights of the connections in the
network. In a variation of neural networks, known as
polynomial networks, each layer consists of a number of
units which are considered as a single polynomial. Here
the coefficients of the polynomials represent the network
parameters. GMDH can be named here as a common
example of polynomial neural networks. Further
explanation on GMDH networks is left to the subsequent
sections.

Neural networks are among the major categories of a
class of computing methods known as soft-computing
strategies. Genetic algorithms are another well-known
technique in the context of soft-computing. These
algorithms can be considered as optimization methods
loosely based on the mechanics of artificial selection and
recombination operators. By reproducing and combining
promising solutions, high-quality partial solutions unite
to form newer results. High-quality partial solutions are
called building blocks (BBs) [1]. General, fixed, and
problem independent recombination operators often
break the building blocks or do not mix them efficiently.
GA works well only when building blocks of the
problem are located tightly in strings representing the
solution. On problems with the building blocks spread
all over the solutions, the simple GA results in
performance degradation [2,4].

This paper introduces a methodology for extracting
building blocks of the problem in the context of genetic
algorithms. The method relies on the construction of a
GMDH neural network model of solutions rather than
the application of genetic-type operators i.e.
recombination and mutation operators. It is independent
of the sequence of the building blocks in strings
representing the solution. In this method, a number of
solutions with high fitness values are selected in each
generation. The selected individuals along with their
fitness values are considered as the inputs and outputs of
a system. As shown in figure 1, given the input and
output for a typical system, its model can be obtained. In
the context of our study, the constructed model features
the strings with high fitness scale. Throughout the next
step, with the extraction of rules from the constructed
network, an interpretable knowledge of high fitness
strings is accomplished based on which the next
generation will be created.

0-7803-9521-2/06/$20.00 §2006 IEEE. 1 900

vesal
Highlight

The paper is organized as follows: Section 2 briefly
goes over the GMDH neural network. In section 3, the
proposed evolutionary-based algorithm is described.
Sections 4 and 5 are dedicated to the implementation
results and paper conclusions respectively.

2. GMDH Neural Network Overview

This section explains the basic GMDH neural network
concepts supposed to be necessary to understand the
description of the proposed method.

The group method of data handling (GMDH) was
introduced by Ivakhnenko in 1966 as an inductive
learning process for complex systems modeling [5]. The
GMDH model possesses a forward multi-layer neural
network structure. Each layer consists of one or more
units with two inputs and one output. Every unit
corresponds to Ivakhnenko polynomial forms (1):

z = a0 + aLxI + a2X2 + a3X1x2
z= a +a1x1 +a2x2 +a3xx2 +a4x2 + a5x2 (1)

It is comprised of two input variables xl and x2, an
output variable z, and the coefficients a1's. Figure 2
illustrates a typical multi-layer GMDH network with 4
inputs, 3 layers and 7 units.

Inlput Layrer

X1

X2e

Layer 1

Layer 2

Outout Layer

Figure 2. A typical GMDH network with 4 inputs, 3 layers
and 7 units

Basically, the GMDH learning algorithm consists of
the following steps [6]:

1) Given a learning data sample including a dependent
variable y and independent variables x1, x2... xm split
the sample into a training set and a checking set.

2) Feed the input data of m variables and generate
(m,2) combination units from every two variable
pairs at the first layer.

3) Estimate the coefficients of all units in formula (1)
using the training set [7].

4) Compute the square error between the real output
and the prediction of each unit based on the
checking data. For example, the error value for the
ith unit can be computed using the following
formula:

Erri = E yi (k) - yi (k))
k=i~

(2)

In (2), yi(k) and y (k) are the output of the kth
training data and the prediction of ith unit
respectively. Also c is the number of training data.

5) Sort out the units by error and eliminate the
undesired units.

6) When the minimum error of the current layer
becomes larger than that of in the previous layer,
remove the current layer and go to step 8.

7) Set the prediction of units in the current layer to
new input variables for the next layer, and generate
next layer units from every two variable pairs in the
current layer. Go to step 3.

8) In this step, choose the unit with minimum error in
the last layer as the final output. The ultimate
network can be obtained recursively from the path
ending to the final output, so that the units with no
connection to this output get eliminated.

3. An Evolutionary GMDH-based Algorithm

In this section, a new approach for building block
extraction in the context of evolutionary algorithms is
proposed. Here, each individual is a binary string to
which a fitness value is assigned. Figure 3 illustrates a
general schematic of the operation of the algorithm.

The proposed method entails six steps. In step 1, the
initial population is generated randomly. In step 2, a set
of promising strings (individuals with highest fitness
values) are selected. Step 3 (the modeling step) aims at
constructing a model from the selected individuals and
finding their effective bits. The proposed method uses
GMDH neural network for its modeling process. The
selected individuals along with their associated fitness
values serve as the required input data to construct the
network. The individuals are split up into two sets: a
training set and a checking set. The polynomial used in
the process has the following form:

z = a0 + aLxI + a2x2 + a3X1x2 (3)

0-7803-9521-2/06/$20.00 §2006 IEEE. 1901

Population of
binaty strings

Fitness
I

S ele cted pro nisng
strings (solutions)

Constructed
GOMDH network based on

selected strings

Rules extracted
from the network
(Extracted BEs)

A
0

O.

New strings
created based on
extracted BBs

-I X 12
0:*1-El

II El
D:~~EK_____~E

Figure 3. Schematic of the algorithm

In our implementation, the elimination constraint for
undesired units can be defined as the following:
Assume that the number of units in the ith layer is m.

After creation of (m,2) units in layer i+±, the m*ratio
best ones are selected and the others are discarded.
Assume that figure 4 illustrates the final model

(GMDH network) of selected individuals. As illustrated
in this figure, the output of this network is the estimated
fitness value for the selected individuals. Also, the
inputs xi, x, and Xk prove to be the effective variables of
the selected individuals.

fite ss

LayeLr

Layeir 2 f

LayeYI

Input Layer _q _

Figure 4. Final GMDH network

3.1. Building Block Extraction

In this step, rules are extracted form the resultant
GMDH network of the modeling step. Accordingly, the
dependency among variables or specifically, the building
blocks of the problem will be discovered. To extract
rules from the GMDH network, the extended Fujimoto
rule extraction method [6] is employed.

To have an insight of the procedure, consider the
network illustrated in figure 4. As shown in the figure,
the vector X= (xi, xj, Xk) with length L=3 contains the
effective variables. All combinations of vector X are

indexed as follows:

X= (0, 0, 0),X2= (0, , 1),... ,X2L (1, 1, 1)

Each of these combinations is fed to the GMDH

neural network, and its estimated fitness, i.e. fitness is

computed. Next, these combinations are sorted and re-

indexed based on their associated fitness level. The
result is presented in table 1.

Table 1. Rule extraction table [6]

fifress2LI
fitness2

ACs

fltm&- i

In this table, the following conditions are satisfied:

fitness > fitness i = 1.2L (4)

The gap between two successive fitness is defined as

follows:

Gi = fitnessi- fitness , i = 1.2-1 (5)

The maximum gap between two successive fitness is
defined as Gk:

Gk = max(G,) , i = 1.2 -1 (6)

Gk is defined to find the best set of Xi's for rule
extraction. Since the Xi's in Table 1 are sorted in a

descending order, the following rule is obtained:

0-7803-9521-2/06/$20.00 §2006 IEEE.

0

Gk

1 902

IF X1 OR X2 OR ... OR Xk THEN Fitness is
High

To represent this rule by xi's, the algorithm makes use
of the fuzzy karnaugh map which groups Xi's (i=..k)

A

with respect to their fitness values. To do so, the
A

fitness values are normalized in [0,1] as depicted in
formula (6). Hereafter, the normalized values are called
Belief.

Beliefi fitness
A

max(fitness)
i=..k

EachXi (i=l1k) in Table 1, is associated with a degree
of belief. Therefore, the inputs to the fuzzy kamaugh
map are the (Xi,Belief;) pairs. Since the grouping
operator in the map is an S-norm type, the fuzzy
kamaugh map applies the max operator to determine the
degree of belief for each group. Figure 5 shows an
example of the fuzzy karnaugh map in operation.

00 01 11 10
1~~-.

0 1,0.2 (1,. (10.)

1 1,0.7) (1,0.

Belief = max (.33,09)

Belief = max (0.2,0.3,0.7,0.5)

Figure 5. An example of fuzzy karnaugh map with max
operator

The extracted rules of the sample illustrated in figure
5 are as the following:

Rule 1:
IF -xi x; THEN Fitness is High (Belief= 0.9)
Rule 2:
IF Xk THEN Fitness is High (Belief= 0.7)

These rules identify two building blocks of the
problem with their associated degree of belief.

are meant to generate new strings with respect to
extracted building blocks. New strings are initialized at
random. Next, the extracted BBs are applied to them.
For instance, the extracted BBs in the previous step (see
table 2), are applied to a new string in accordance with
their degree of belief.

For instance, the probability of having Xk as 1 in next
generation strings is less than 0.7. Likewise, the
probability of having xixj as 01 in newly generated
strings is less than 0.9.
At this point, the new individuals are added to the

current population, replacing some of the old ones. The
new population is evaluated and each individual is
assigned a fitness value. Unless the termination criteria
are met, a new cycle starts over by selecting promising
individuals.

4. Experimental Results

This section demonstrates the simulation results and
compares the proposed algorithm with simple GA. The
experiments are carried out on a variety of different
problems with varying degrees of complexity. A few
representative results are presented here. The problems
chosen are as the following:

- OneMax Test Function, a Unitation Function, in
100 dimensions [3]. (Fl Function)

- DeJong Test Function 2, also called
Rosenbrock's Function, in 2 dimensions [8]. (F2
Function)

- DeJong Test Function 3, a Step Function, in 5
dimensions [8]. (F3 Function)

- DeJong Test Function 4, a Quartic Function, in
30 dimensions [8]. (F4 Function)

The characteristics of these benchmarks are listed in
Table 2. Also, the length of the solutions for each
function is shown in this table.

Table 3. Characteristics of the problem used in the
experiments

Test Function
Dimension
Type
Multi/Uni Modal
Eval. with Noise
Solution Length
Optimum (m)

Ft F2 F3 F4
100
Max.
Uni.
No
100
100

2
Min.
Multi.
No
100
zero

5
Min.
Multi.
No
250
-30

30
Min.
Multi.
Yes
300
0<m<30

Table 2. Extracted Building Blocks (BBs)

Rule Number Building Blocks Degree of Belief
1 0-Xi 0.9
2 1 Xk | 0.7 |

In our experiments, a population of 100 individuals
was used. In each iteration the best half of the
individuals are selected for the modeling algorithm. The
ratio parameter was set to 0.45, i.e. the proportion of the
number of units in ith layer to the number of units in
(i-l)th layer would be 0.45 in the constructed GMDH
network.

Three stopping conditions were considered. First,
when a fixed number of generations are accomplished. A

0-7803-9521-2/06/$20.00 §2006 IEEE.

3.2. Building Block Insertion in New Strings

The remaining steps i.e. steps 5 and 6 (see figure 3)

1 903

further stopping condition occurs when the algorithm
finds a solution with the objective value about 9500 of
the optimum (in case, it is known in advance). Finally,
the algorithm stops when the best value of the
population doesn't improve within a fixed number of
itprnti rn <

Table 4 summarize
GMDH-based algorit]
averaged over 40 runs

Table 4. Results o

Test Function
Mean Values
Best Value
Worst Value
Standard Deviation
Max Generation

Figure 6. Average number of generations required for
optimizing DeJong Function 4

5. Conclusions

This paper introduced a methodology for extracting
hm th earesultstobtained bysapplying building blocks in the context of evolutionary algorithms
hSm.to each function. All results are with binary strings. It is based on the rule extraction

from the constructed GMDH network of the selected
btained by the algorithm strings for a given population. The experimental work

entails a comparative study of the proposed method with
Ft F2 F3 F4 simple genetic algorithm. The problems over which the
84,66 1 .9E-5 -26.53 6.43 experiments were carried out were of type static function
96 2.6E-6 -28 0.13 optimization. These problems were adopted on account
80 4.3E-3 -24 11.96 of their frequent appearance in the GA literature. The
5.03 1.4e-3 1.7 3.2 experiments have shown that the proposed algorithm
500 300 300 500 outperforns the simple GA in problems with loose

.building blocks.As shown in table 4, while the best results are gained
from F2 (DeJong 2), Fl leads to the worst results
(OneMax). This is due to the fact that OneMax has no
significant variable and all of its bits are of equal
importance. Since our method tries to identify the
effective variables in each iteration, the algorithm finds
it difficult to optimize.

Figure 6 illustrates the effect of population size on the
number of generations required for DeJong Function 4
optimization. No matter whether loose building blocks
(the building blocks spread all over the strings
representing the solution) or tight BBs (the building
blocks located tightly in the string) is used, the algorithm
behaves similarly. Whereas, the simple GA results in
different behaviors for loose and tight building blocks.
As discussed above, the proposed algorithm is
independent of the ordering of the variables in the
strings representing the solution. GMDH-based
algorithm outperforns the GA in both loose and tight
building blocks operating on a large population size. In
our experiments, the simple GA with one point
crossover and truncation selection was used. The
crossover and mutation rates were set to 0.9 and 0.05.

1000 F

400

6. References

[1] Goldberg, D.E., "Genetic Algorithms in Search,
Optimization and machine Learning", Addison Wesley:
Reading, MA, 1989

[2] Thierens, D., "Analysis and design of genetic algorithms",
Doctorial dissertation, Leuven, Belgium, 1995

[3] Pelikan, M., Goldberg, D.E., Canti-Paz, E. "BOA: The
Bayesian optimization algorithm", In Proceedings of the
Genetic and Evolutionary Computation Conference
GECCO-99, Vol. 1, Morgan Kaufmann Publisher: San
Francisco, CA, pp 525-532, 1999

[4] Harik, G.R., Goldberg, D.E., "Learning Linkage",
Foundation of Genetic Algorithms, Vol. 4, pp 247-262

[5] Ivakhnenko, A.G., "The Group Method of Data Handling
- A Rival of the Method of Stochastic Approximation",
Soviet Automatic Control, Vol. 13, No.3, pp. 43-55, 1966

[6] Fujimoto, K., Nakabayashi, S., "Applying GMDH
Algorithm to Extract Rules from Examples", Systems
Analysis Modeling Simulation, Vol. 43, No. 10, pp 131 1-
1319, October 2003

[7] Howland, J.C., Voss, M.S., "Natural Gas Prediction Using
The Group Method of Data Handling", proceedings of 7th
IASTED International Conference and Soft Computing,
Banff, Alberta, Canada, July 2003

[8] Digalakism, J.G., Margaritis, K.G., "An Experimental
Study of Benchmarking Functions for Genetic
Algorithms", International Journal of Computer
Mathematics, Vol. 7, pp 403-416, April 2002

0 50 100 150 200 2560 300 350 400
Population Size

0-7803-9521-2/06/$20.00 §2006 IEEE.

a o GMDH-based Algorithm
a GA-loose-BB

GA-tight-BB

00

a

o an

+X\,4 ~ ~ ~ * k

-

I14UU,

U

UL4]L]L%AJLJLJL& U]Lki%.,JLX,3.

c

CD)

1 904

