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Abstract: Wireless Sensor Networks (WSNs) consist of inexpensive low-power miniature 
sensing devices with severe power constraints, necessitating energy-efficient solutions for 
networking operations. Major prior art proposals have been primarily directed towards minimising 
the communication cost, either implicitly assuming away the computation overhead as being 
negligible, or radically trading against it. However, in computation-bound scenarios, dealing with 
a large volume of data, such simplifying assumptions or radical measures tend to be inefficient. 
In this paper, we investigate the problem of minimising the overall energy needed to send data 
from a set of sensor nodes to a single destination, where each node is in charge of a mission. 
Two types of missions are defined: sensing and decision making; while source nodes are only 
in charge of sensing, relay nodes can carry out both missions simultaneously. More specifically, 
given a node’s current backlog and its latest view on the relevant portion of the data-gathering tree, 
taking on the decision-making mission involves deriving an online trade-off between energy costs 
of compression and communication, and deciding between sending data either in the raw mode or 
alternatively compressed with a feasible optimal compression ratio. The used data compression 
technique depends on the type of application and the spatiotemporal correlation in the packets. 
Simulation experiments reveal that, compared with previous methods, the proposed scheme 
exhibits superior energy efficiency with an additional 36% reduction of the costs.
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We envision two types of missions for the nodes: sensing 
and decision making; the nodes only in charge of sensing 
are referred to as ‘source’. ‘Relay’ nodes, on the other hand, 
can act in both roles concurrently. Periodically and in each 
communication round, the nodes appointed with a sensing 
mission transmit their measured data to their predecessor 
along the data-gathering tree, as is illustrated in Figure 1.  
Decision-making nodes, in turn, weigh the options of 
transmitting with or without compression with respect to the 
incurred end-to-end costs. Unlike comparable prior works 
(Yu et al., 2008; Eswaran et al., 2009), this cost analysis is 
not merely driven by the flow of a single leaf source node 
at the extreme downstream end of a flow path, but rather the 
aggregation process is governed dynamically with the backlog 
of all contributing sources including the current node’s as well. 
The actual data compression is assumed to be carried out by 
an application-specific technique and with the consideration 
of the spatiotemporal correlations amongst data packets. We 
henceforth refer to our proposed scheme as the Adaptive 
approach for Reducing Energy consumption considering 
nodes’ Mission (AREM).

Figure 1 Tree-based aggregation

The remainder of this paper is organised as follows: Section 
2 gives a brief account on the background of our research and 
guides the reader through related work in this area. Section 
3 is devoted to the discussion of our proposed scheme for 
energy cost management. Numerical results derived from our 
simulation experiments are presented in Section 4. The paper 
ends with a concluding epilogue in Section 5.

1 Introduction

A Wireless Sensor Network (WSN) consists of sensor nodes, 
which are small in size and have limited sensing, processing 
and transmission capabilities. Several applications of these 
networks have been proposed, such as healthcare systems, 
military, home and rescue situations.

The wireless transmission of data packets consumes most 
of the energy in a WSN, especially when there exist multi-
hop paths from source nodes towards the sink(s). Coming up 
with an optimal policy for energy cost management becomes 
more challenging when dealing with scenarios involving 
a huge volume of sensed data to be forwarded across the 
network. Transmission of video frames in an object-tracking 
application is an example in which the locations of the 
objects are needed to be reported to the sink with respect 
to a predefined deadline (Naderan et al., 2012). In spite of 
the significant improvements in compression techniques, 
scrupulous trade-offs still need to be made between the 
real-time sending of data packets and their aggregated 
transmission in compressed form.

Data aggregation can be performed in either of the 
centralised, tree-based, static cluster-based and dynamic 
cluster-based fashions (Fasolo et al., 2007). While the existing 
schemes have come up with effective ways of aggregating 
the sensed data, there has been little care for making realistic 
trade-offs between computation and communication costs, 
and thus conducting in-network compressions in a tunable 
style.

The main idea behind this work is to cut down on the 
energy costs involved in delivering packets across a data-
gathering tree by delegating some decision-making authority 
to the intermediate nodes to conduct online cost analysis and 
optimally decide on the specifics of the transmission of their 
data to the sink. Given the node’s current backlog and armed 
with the latest view on the relevant portion of the tree, the 
outcome of this analysis determines whether it is more efficient 
to send data ‘as is’ or alternatively work out an optimal level 
of compression subject to the feasibility constraints imposed 
by the compression algorithm. This holistic trade-off between 
computation and communication costs is often a neglected 
aspect in the majority of the existing data aggregation methods 
(Leone et al., 2005; Goel and Estrin, 2005) given that their 
prime concern has been devoted solely to the minimisation of 
the communication costs.
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compressed and transmitted as a flow over the corresponding 
path from the source to the sink. In Eswaran et al. (2009), 
have taken on a similar perspective, but they have also come 
up with a utility-based rate control model to account for the 
problem jointly with congestion control in a WSN consisting 
of multiple competing missions with different utilities.

While we share the same motivations as Yu et al. (2008) and 
Eswaran et al. (2009), we instead develop an adaptive approach 
for reducing energy consumption considering node missions 
in WSNs. A mission is carried out by applying compression in 
diverse levels after conducting a comprehensive online cost 
analysis at each intermediary node. We also proffer a more 
accurate model of compression cost when compared with Yu 
et al. (2008) and relax the assumption that limits the sources 
to the leaves of the data-gathering tree.

3 System model

In this section, we first present the network model and basic 
assumptions, and then go on with outlining the proposed 
generic models of computation and communication costs. 
The last subsection is devoted to the specifics of the cost 
analysis for our online trade-off scheme.

3.1 Network model
We assume that the sensor network features the following 
properties:

 1. It consists of N nodes, denoted by s1,s2, … ,sN

 2. It is a static densely deployed network over a two-
dimensional geographic space of size A × A. The nodes 
are distributed uniformly and have no movement.

 3. The positions of each node are represented by (X, Y ) 
in a two-dimensional coordinate system, with X and Y 
being random variables uniformly distributed within the 
range [0, A].

 4. The network is modelled as a connected weighted graph 
G = (V, E, W), where the vertex set V represents the 
sensor nodes as well as the sink; the edge (link) set E 
represents the wireless connection between nodes and a 
weight we is associated with each edge e ∈ E.

 5. we is the energy cost of transmitting a data packet with 
unit size over e. The edge weight is determined by the 
distance between two adjacent nodes, the radio device 
and the communication environment.

 6. There exists just one sink node.

 7. The energy of the sensor nodes cannot be replenished, 
i.e., a sensor node will die if its energy is exhausted.

 8. Each node is assigned a mission in the network.

 9. Two types of missions are defined: sensing and decision 
making. A source node’s mission is only sensing, while 
relay nodes can be relegated with both sensing and 
decision making.

2 Related work

A considerable number of previous studies have attempted to 
reduce the energy consumption through applying in-network 
processing measures. Their fundamental idea is to reduce 
the number of packets propagated within the network with 
the help of techniques such as redundant data removal and 
merging (Fasolo et al., 2007; Leone et al., 2005).

The exploitation of tree-like structures for data gathering 
in WSNs has been investigated extensively in the relevant 
literature; for instance, Acimovic et al. (2005) have developed 
adaptive distributed algorithms for power-efficient data 
gathering in sensor networks and Liang et al. (2007) have 
applied online data-gathering schemes for maximising 
network lifetime in sensor networks. In these works, the 
authors assume that there is a workload of data-gathering 
queries, which arrive in sequence. To respond to each query 
as it arrives, the system builds a routing tree for it. Within the 
tree, the volume of the data transmitted by each internal node 
depends not only on the volume of the sensed data by the 
node itself, but also on the volume of the data received from 
its children. With no prior assumption on the specifics of the 
future query arrivals and generation rates, the objective is to 
maximise the number of answered data-gathering queries 
until the first node in the network fails.

Many proposals fall into the broad mainstream of research 
in the area of data aggregation schemes for WSNs (Liang 
et al., 2007; Zhu et al., 2005; Dong et al., 2010; Kanna and 
Iyengar, 2004; Hong and Prasanna, 2004; Choi and Das, 
2005; Tahir and Farrell, 2009; Haque et al., 2009; Zytoune et 
al., 2011; AL-khdour and Baroudi, 2009). Among the more 
closely related works to our scheme, in Liang et al. (2007), the 
authors tackle with the problem of monitoring values of every 
sensor node over time. It can be considered as a degenerate 
version of an aggregation function where a node does not 
actually aggregate or merge its received or sensed data; 
instead, there is a basic notion of spatiotemporal correlation 
between the sensor values and a periodic monitoring scheme 
tries to exploit it in a similar way to an aggregation scheme. 
It has been argued that such spatiotemporal redundancy can 
also be exploited in video compression to save storage size or 
bandwidth usage. In particular, a central node calculates and 
transmits predictions to all nodes. Each node, then, sends its 
update only if it is different from the prediction received from 
the central node. The scheme proposed in Liang et al. (2007) 
raises the question of whether the transmission of prediction 
can actually be efficient in a large random network or not. 
Unfortunately, these algorithms have been tested only in 
small networks where every node is assumed to be at single-
hop distance from the central node.

Our approach, with its focus on joint compression and 
communication, is closest in spirit to recent works presented 
in Yu et al. (2008) and Eswaran et al. (2009). In Yu et al. 
(2008), have developed a data-gathering tree algorithm 
with tunable compression for communication, named as the 
Tunable-Compression-based Data Gathering (TCDG). To 
tune data compression over the gathering tree, a flow-based 
model has been proposed where data from each source is 
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3.2  Energy cost model for the compressed- 
communication scenario

From the perspective of a given relay node, the energy cost 
associated with the preparation and delivery of the input 
data in compressed form is directly related to the sum of 
the sizes of the input streams from its immediate children 
in the aggregation tree together with the length of its own 
information (in case it is delegated with a sensing mission as 
well). We denote this sum by F́ . If the length of each stream 
is represented by fi (i ∈ N, and if n denotes the total number of 
inputs including the node’s own load, F́  can be calculated as:

1

´ .
n

i
i

F f
=

= ∑  (1)

Each ‘input’ size fi can be attributed to one of the two types 
of packets: compressed or uncompressed; in effect, F́  
represents the total length of inputs while each input, in turn, 
may consist of a compressed or uncompressed packet; we 
distinguish between the inputs received from all children by 
the following labels:

the input received from child is in
compressed form .the input received from child is in
uncompressed form

ii

S ii

β






 (2)

The cost analysis for each round of a decision-making 
mission should factor in the overhead associated with 
the decompression of all inputs of type b so as to be able 
to efficiently aggregate the input flows with respect to the 
spatiotemporal correlations amongst the data packets. Once 
the entire backlog is available in uncompressed format, we 
may refer to its overall size as (F ≥ F́ ).

In compliance with the cost model discussed in Yu et al. 
(2008), the energy cost of compressing source information of 
size F to an output of size fo can be expressed in terms of the 
following function:

( )comp
( , ) .i

mj i
o

o

FF f F
f

ε γ=  (3)

That is, the computation power required for compression is 
amplified by an increase in the compression factor (F/fo) and 
in proportion to the input size F. Within this cost model for 
data compression, the output length fo is lower bounded by 
the joint entropy of all inputs contributing to the inflow of the 
given node together with the node’s data itself, i.e., fo ≥ Hn.  
A practical notion for joint entropy modelling has been 
introduced in Goel and Estrin (2005).

Since the energy consumed for transmitting 1 bit is 
typically about 500–1000 times greater than a single 32-
bit computation (Raghunathan et al., 2002), the practical 
meaning behind the exemplary case of g  = 0.1 is that around 
50–100 instructions need to be executed for generating each 
bit in the output. Hence, in computation-bound scenarios, 
dealing with a large volume of data, simplifying assumptions 

10. Let the jth mission be denoted as mj, and M be the set 
of all mission mi ∈ M. Hence, M includes three types of 
missions: sensing, decision-making, and the combination 
of both sensing and decision-making.

11. mj(i) is defined as the jth mission of the ith node, i ∈ E.

12. Each source node generates a data packet of unit size.

13. Network nodes feature homogeneous energy capacities.

14. A data aggregation tree is a subtree of G rooted at the 
sink and denoted by T = <V′, E′>, where V′ ⊆ V and 
E′ ⊆ E.

15. A simple communication mechanism is assumed, 
which is based on a Medium Access Control (MAC) 
protocol that guarantees collision- and interference-
free packet delivery.

16. For the purpose of this paper, we assume a lossless 
compression process using gzip, which is capable of 
supporting multiple levels of compression ratios (Barr 
and Asanovi, 2003).

Table 1 lists the symbols and notations used throughout the 
paper.

Table 1 Table of notations

The graph representing the sensor network 
with V as the set of sensor nodes, E as the set 
of links, w as the weights associated with the 
edges in E.

G = <V,E,w>

Set of source nodes R ⊆ V
The sink node in V Sink
The weight of edge e ∈ E we
Relative computation cost for compressing g
Joint entropy of i ≥ 1 unit data Hi
Data entropy rate, i.e., r = H1 r
The set of missions in the network M
The jth mission in the ith node (i ∈ V) mj(i)
The energy consumed at node i with mission 
mj for transmitting message of size fo as output 

( )
( )i

mj i
oTX

fε

The energy consumed at node i for receiving 
message of size F  as input

´( )RCV Fε

The energy consumed at node i with mission 
mj for generating compressed data of size fo 
from the uncompressed backlog of size F

( )
( , )i

mj i
ocomp

F fε

 

The energy consumed at node i for 
decompressing data of size fo 

edecomp( fo)

The overall energy required for the preparation 
and transmission of compressed data of size fo 
from an uncompressed backlog of size F along 
the remaining portion of the path to the sink; 
eCOM is estimated by each node i with mission 
mj, where mj(i) prescribes a ‘relay’ role for i.

( )comp
( , )i

mj i
oF fε

The overall energy required for the transmission 
of the raw backlog of size F  along the 
remaining portion of the path to the sink. eRAW is 
estimated by each node i with mission mj, where 
mj(i) prescribes a ‘relay’ role for i.

( )RAW
´( )i

mj i
Fε

( ) ( )
( ) 0

´( ) ( , )i i
mj i mj i

i
mj i RAW COM

F F fε ε∆ = − ( )
i
mj i∆
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little time for decompression compared with compression 
(Barr and Asanovic, 2006; Yu et al., 2008; Tsiftes et al., 
2008), we may safely abstract away the decompression cost 
components to render eCOM into a convex function with a 
global minimum. Hence, the optimisation problem faced by 
node i with a decision-making mission mj can be formulated 
as follows:

( )COM

minimize:
( , )i

mj i
oF fε

subject to
feasibility constraints imposed by the

compression algarithm

With the first-order condition, the minimum value for the 
computation cost occurs at:

( )COM
opt

( , )
0 .

cost depth

i
mj i

o

o i i

F f
f F

f

ε γ
α

∂
= ⇒ = ×

∂ + ×  

(6)

Clearly, to perform its cost analysis, a decision-making node i 
will compute 

( )COM
( , )i

mj i
oF fε  for fo = max {fopt, Hn}.

In Figure 2, we have plotted eCOM for a = 0, g = 0.1, F = 1, 
and fo ∈ [0.1,1].

3.3  Energy cost model for the raw-communication 
scenario

A node i with a decision-making mission mj estimates the 
communication cost associated with intact relaying of the 
received data as follows:

( ) ( )

( )

RCVRAW

RCE

´ ´ ´( ) ( ) ( ) depth

´where : ( ) *cost and ( ) .

i i
mj i mj i

i
mj i

iTX

iTX

F F F

F F F

ε ε ε

ε ε α

= + ×

= =′ ′

 (7)

for neglecting the computation overhead or taking up radical 
measures such as always going for maximum compression 
tend to be inefficient.

Continuing with our discussion of energy cost model 
for the compressed-communication scenario, let the node’s 
latest view on the relevant portion of its path to the sink be 
characterised by its current cost and depth in the data-gathering 
tree. Then, costi = costparent(i) + we and depthi = depthparent(i) + 1. 
Supposing that node i is delegated with mission mj, where 
mj(i) prescribes a ‘relay’ role for i, it estimates the overall 
energy required for the preparation and transmission of 
compressed data of size F from an uncompressed backlog 
of size F along the remaining portion of the path to the sink, 
denoted by eCOMP as follows:

( ) ( )

( )

decompCOM comp
type( )

RCV decomp

´( , , ) ( ) ( , )

( ) ( ) depth + ( )

i i
mj i mj i

i
mj j

o i o
fi

o o i oTX

F F f f F f

f f f
β

ε ε ε

ε ε ε
=

= +

+ + ×

∑

 (4)

In effect, the overall estimated energy accounts for the costs 
of: decompressing the compressed portion of the inflows, 
compressing the backlog, the actual transmission of data 
across all links on the remaining portion of the path to the 
sink, the receipt of data by all intermediate decision-making 
nodes together with the decompression overhead imposed on 
the immediate next node along the path.

Using equation (3) and given that 
( )

( ) costi
mj i

o o iTX
f fε = × , 

the eCOM equation in (4) can be rewritten as: 

( )
decomp

type( )

RCV

( , ) ( ) *cos

( ) ( )

i
mj i

o i o iCOM
fi o

o i o

FF f f F f t
f

f depth fdecomp

β
ε ε γ

ε ε
=

= + +

+ × +

∑

 

(5)

Assuming that the reception cost for data of unit size at any 
given node is a, eRCV(fo) in equation (5) can be calculated as: 
a × fo; also, given that techniques such as gzip consume very 

Figure 2 Energy cost for the compressed communication scenario (see online version for colour)
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distance between two incident nodes and c = 2 × 10–5 J/m2. 
AREM and TCDG have been evaluated over both Shortest 
Path Tree (SPT) as well as Minimal Steiner Tree-based 
(MST) data-gathering substrates, and each data point 
is calculated by averaging over 40 runs reported within 
95% confidence interval. As for the joint entropy models 
used throughout the experiments, we assume a stationary 
Gaussian random process with a scalar quantiser, uniform 
step size, and infinite number of levels (Marco et al., 2003). 
Given that our envisioned set-up in this paper mimics the 
case with TCDG, we encourage the interested reader to 
refer to Yu et al. (2008) for more specific details.

4.1 Impact of the data entropy rate (ρ)
For the purpose of the first scenario, we consider a varying 
data entropy rate within the range [0, 0.4], and will investigate 
how the WSN’s energy usage behaviour will change with 
respect to the expected value of the information contained 
in messages. Figure 3 demonstrates the outcome of this 
experiment for N = 200, g  = 0.1, and with 50% of the nodes 
acting as sources (i.e., |R| = 100).

As can be seem in Figure 3, for larger values of r, there is 
a continuously increasing requirement for joint compression 
of data and owing to its lower cost of data transmission, 
MST exhibits a better performance; contrarily, for small 
values of r, SPT supersedes. In general, with r increasing, 
the information volume in the network grows and the overall 
energy consumption also increases to handle the transmission 
of the data. The optimal value for r turns out to be 0.1. Also, 
it is noticeable that AREM achieves a lower level of power 
consumption compared with TCDG thanks to the inclusion 
of the upstream inflows into its decision-making mechanism.

4.2 Impact of the relative computation cost (g)
To investigate the impact of the relative computation cost 
on the network’s energy usage profile, we vary g within 
the range [0, 0.24] with N = 200, r = 0.1, and |R| = 100. 
As can be noticed in Figure 4, for these low computation 
costs, the discrepancy between the two types of trees is not 
very remarkable for both algorithms; however, the relative 
superiority of SPT over MST can be attributed to the fact 
that for larger computation costs, the compression ratio 
reduces, thus rendering the shortest paths to the sink more 
preferable.

In general, with the relative computation cost (g increasing, 
more energy is consumed in the network. As expected, by 
reducing the number of source nodes, the difference in costs 
incurred by each algorithm with respect to its underlying tree 
structure would become less pronounced (see Figure 5 for 
|R| = 50).

4.3 Impact of the number of source nodes (|R|)
In Figure 6, the percentage of source nodes is varied to 
study the impact of the number of data generators on energy 
consumption. It has been assumed that g  = r = 0.1.

3.4 The decision-making process
In each data aggregation round, every relay node delegated with 
a decision-making mission is supposed to weigh the options 
of transmitting with or without compression with respect to 
the incurred end-to-end costs. In effect, each node endeavours 
to adaptively reduce the end-to-end energy consumption by 
deriving a trade-off between relaying data in compressed form 
using a constrained optimal compression ratio, on the one 
hand, and sending in the raw, on the other.

We define an indicative decision variable as follows:

( ) ( )
( ) optRAW COM

´( ) ( , max{ , }),i i
mj i mj i

i
mj i o nF F f f Hε ε∆ = − =

 
(8)

which can be written in simple form as:

2

( ) ( )*(cost depth ) .i
mj i o i i

o

FF f
f

α γ∆ = − + × −′  (9)

Hence, the decision-making process in node i with mission j 
comes down to drawing the following comparison:

( )

( )

send data in the raw, 0
.

compress before sending 0

i
mj i
i
mj i

 ∆ <
 ∆ ≥  

(10)

If we set fo = fopt (from equation (6)),

( ) ( )
optRAW COM

2

opt

opt

opt

opt

´( ) ( , )

(cost depth )

(cost depth )

cost depth
2 .

i i
mj i mj i

i i

i i

i i

F F f

FF
f

f

f F
F f

ε ε

α γ

α

γ
α

≥ ⇔

× + × ≥′

+ + ×

=
+ ×

←→ ≥′

Finally, it can easily be seen that having every decision-making 
node on a given data-gathering path strike a trade-off between 
the communication and computation costs, the actual energy 
consumption for delivering the load associated with a node i1 
at the extreme downstream end of the path is guaranteed to be 

upper bounded by: 1 1
( )( ) 11

RAW COM
min , .i i

mj imj i

ε ε 
  

4 Performance evaluation

We have conducted packet-level simulation experiments 
using OMNET++ (Varga, 2001) to obtain preliminary 
performance measurement results. In this section, we 
report on the evaluation of our proposal, AREM, against 
a comparable scheme from prior art, the so-called TCDG 
algorithm (Yu et al., 2008). For the sake of the experiments, 
it has been assumed that the sensor nodes are deployed 
uniformly across a 3200 × 3200 two-dimensional field that 
the sink node is placed at the bottom-left corner of the field, 
and that each link is weighted as cd2, where d denotes the 
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Figure 3 The impact of the data entropy rate (see online version for colour)

Figure 4 The impact of the relative computation cost (|R| = 100) (see online version for colour)

Figure 5 The impact of the relative computation cost (|R| = 50) (see online version for colours)
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the figure is the marginal superiority of MST over SPT as the 
underlying data-gathering structure in both algorithms. Once 
again, the slower depletion rate in our scheme is attributable 
to the fact that AREM is not oblivious to the upstream inflows 
and unlike TCDG, the cost analysis at a node is conducted 
with respect to the impact it might have on the decisions of 
the succeeding nodes along the path.

5 Conclusions

Recent trends in energy-aware techniques for WSNs 
have presented a caveat to the extremist application of 
compression algorithms for cutting down on communication 
overhead. It has been demonstrated that neither maximum 
compression nor avoiding data compression completely can 
lead to utmost network longevity; instead, the ideal policy 
lies in between these two pure strategies and should be 

The network’s energy depletes almost linearly as 
the number of source nodes increases. However, the 
depletion scale is smaller in our scheme compared with 
the case with TCDG given that AREM takes the initiative 
to regulate the actions of downstream nodes so that a 
minimum upper bound is ensured for the end-to-end energy  
costs.

4.4  Network lifetime in terms of the number of the 
data aggregation rounds

We have measured the number of rounds it takes for both 
algorithms to use up the network’s energy by setting N = 200, 
r = g  = 0.1, and with 50% of the nodes acting as sources (i.e., 
|R| = 100).

As can be seen in Figure 7, AREM running on MST turns 
out to present with the most favourable result. Also of note in 

Figure 6 The impact of the percentage of the source nodes (see online version for colours)

Figure 7  Network lifetime in terms of the number of data aggregation rounds (see online version for colours)
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lifetime maximization’, Wireless Communications and 
Networking Conference, WCNC 2009, ISSN 1525-3511, 
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network reprogramming through compression of executable 
modules’, in The 5th Annual IEEE Communications Society 
Conference on Sensor, Mesh and Ad Hoc Communications and 
Networks (SECON’08), pp.359–367.

Varga, A. (2001) ‘The OMNeT++ discrete event simulation system’, 
in Proceedings of the European Simulation Multiconference 
(ESM’01).

Yu, Y., Krishnamachari, B. and Prasanna, V.K. (2008) ‘Data 
gathering with tunable compression in sensor networks’, IEEE 
Transactions on Parallel and Distributed Systems, Vol. 19, 
February, pp.276–287.

Zhu, Y. Sundaresan, K. and Sivakumar, R. (2005) ‘Practical 
limits on achievable energy improvements and useable delay 
tolerance in correlation aware data gathering in wireless sensor 
networks’, in Communications Society Conference on Sensor 
and Ad Hoc Communications and Networks (SECON), Santa 
Clara, CA, US, September. 

Zytoune, O., Aroussi, M.E. and Aboutajdine, D. (2011) ‘An energy 
efficient clustering protocol for routing in Wireless Sensor 
Network’, International Journal of Ad Hoc and Ubiquitous 
Computing, Vol. 7, No. 1, pp.54–59.

adjusted dynamically. In this paper, we have also examined 
the ramifications of lossless compression of data prior 
transmission over a data-gathering tree in terms of the 
resultant energy costs. We adaptively reduce the end-to-end 
energy consumption by deriving an online trade-off between 
relaying data in compressed form with a constrained optimal 
compression ratio, on the one hand, and sending in the raw, 
on the other. Our work differs from the previous research in 
that the notion of tunable compression adopted in this paper is 
not oblivious to the upstream inflows and that the aggregation 
process is governed dynamically with the backlog of all 
contributing sources including the current node’s as well. 
We also proffer a more accurate model of compression cost 
when compared with the prior art and relax the assumption 
that limits the sources to the leaves of the data-gathering tree. 
Simulation results are provided to quantify the performance 
of our proposed scheme. In most cases, the outcome of the 
experiments reveals promising performance by almost 36% 
additional reduction in energy costs.
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