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Abstract—in this paper, the clustering of wireless sensor 
network has been equaled to constructing maximal independent 
set in graph theory, and a clustering algorithm with “self-
stabilizing” and “fault containment” properties, which is 
considered as a critical feature in the issue of fault tolerance for 
distributed systems, is proposed. Existing comparable methods 
include no fault containment and their design is based on assuming 
a “centralized scheduler”. The proposed algorithm is recovered 
from single fault configurations by space and time complexity of 
O(1), and work under policy of unfair distributed scheduler which 
has the maximum matching with operation environment of sensor 
networks. The “self-stabilization” and “fault containment” 
properties of algorithm will be proved by formal reasoning; 
Simulation results also show that regardless of the number and 
concentration of nods, the suggested method in addition to quick 
recovering against small-scale faults, will improve convergence 
time compared to previous methods. The creation of efficient 
clustering construction, reducing the numbers of updating 
messages and stabilizing by minimum change in the clustering 
topology structure, are other advantages of this algorithm. 

Keywords—self-stabilizing, clustering, wireless sensor networks 
(WSN), energy saving, fault containment 

I.  INTRODUCTION  

Flat structures in WSN with large number of nodes, is not 
scalable and efficient in terms of energy consumption. In this 
regard, network clustering is considered as a successful and 
common solution to provide the ability of self-organizing and 
operation of hierarchical routing.   

Generally, in the lack of constant substructure and 
considering the dynamicity of sensor network and the necessity 
of multi-hop communications, clustering methods having the 
better stabilizing in system and also having the ability of re-
configuration without external interfere, will be more favorable.  

Clustering with self-stabilizing feature [1], in addition to 
needing no initial configuration, provide the possibility of 
automatic recovering from transient faults due to environment 
changes, sensors failure or changing in their internal situation, 
rupture of  communication structure, and finally asynchronous 
change in the configuration. Self-stabilizing is an approach to 
create the fault tolerance ability, especially in the dynamic 
distributed systems that has attracted special attention in sensor 
networks related studies recently. 

Based on the definition, a self-stabilizing system guarantees 
that after finite steps, regardless of initial state, will 
automatically converge to a credible state without external 
interference. After any transient faults, the system is corrected 
by relying on local knowledge and needless to global 
information. These are considerable features of self-stabilizing 
systems [1]. 

Although the clustering with self-stabilizing feature in the 
sensor networks has been partly studied, the ability of stabilizing 
with fault containment [3], which has a more correspondence 
with these types of networks, has been rarely studied. In order to 
improve the performance of fault tolerance methods, ensuring 
faster recovery than all single fault configurations without 
effecting on final recovery ability of the system from more 
widespread faults, is of a considerable importance. Same policy 
of self-stabilizing clustering algorithm against many different 
types of faults, have unfavorable consequences such as out of 
service long time period, resulting in more energy wasting to 
return to stabilizing state or wider change in clustering topology 
structure. 

In this work, the purpose is suggesting an algorithm with two 
features of self-stabilizing and fault containment for clustering 
of sensor networks with constructing maximal independent in 
the network graph. The proposed algorithm under policy of 
distributed scheduler prevents the expanding faults in the 
network at small-scale fault occurrence situation. To this 
purpose, fault containment theory [3], [9] that is covering 
approach in the fault containment discussion combined with 
self-stabilizing for space and time field, is the effect of used 
small-scale faults. This results in the reduction of numbers of 
updating and state transition and consequently reducing the 
numbers of broadcastings, power saving and increasing the 
network lifetime as well. Besides, by preventing the fault 
spreading in the network, the stabilizing time will be reduced. 
Using this algorithm, availability of system will be improved via 
removing intermediate state and reducing in stabilization time. 
Reducing the numbers of state transition prevents network 
topology tumbling and nodes might be remained in their 
clusters. Codifying stabilization rules in design of proposed 
algorithm is based on fault containment and creating more 
efficient clustering topology compared to previous method. 
Actually, the nature of implement rules for nodes is to reduce 
the numbers of useless cluster-heads in the resulted topology. 
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Subjects of this paper: in part two, we will have a quick look 
on the basic concepts and reviewing previous researches. In part 
three, the proposed algorithm will be explained and the related 
theorems will be surveyed. In part four, the proposed algorithm 
will be evaluated and compared based on the results of 
simulation tests. In last part, we have the conclusion and the 
summery of study. 

II. THEORETICAL HISTORY AND RELATED WORKS 

Prerequisite and enough condition for beneficiary from self-
stabilizing ability is based on two features: ensuring the system 
convergence to global legitimate configuration after starting 
from any arbitrary situation (convergence), and ensuring the 
establishment of system legitimate configuration as long as the 
fault doesn’t occur (closure) [1], [8]. Based on these two 
features, a self-stabilizing system does not need initialization 
and until no more fault condition is occurred, restores from one 
or more transient faults, automatically and without any external 
interference, and once again converge to the legitimate 
configuration (figure 1).      

 

 

 

 

 

 

 

 

 

 

Many researches has been proposed in design of self-
stabilizing algorithm for constructing independent and 
dominating sets of graph theory field [5]. However, most of 
these researches are designed base on reliable communication 
models (such as shared memory) and assuming the centralized 
scheduling policy [6], which actually impose limited condition 
on performance of sensor networks. Furthermore, some of these 
algorithms are not designed for special applications (such as 
clustering) and sometimes their topological forms are not 
suitable for sensor networks [7]. In related works with the idea 
of present study, the only algorithm, which has linear time 
complexity and by assuming distributed scheduling policy, 
devoted to problem solving, is the proposed method in [4]. Self-
stabilizing ability in [4] has been done through embedding 
intermediate state in algorithm performance. However, this 
method is assumed as a fault resource and it could lead to a 
reduction in the availability of system. 

The other disadvantage of all existing algorithms is lack of 
distinction in faults management based on their propagation. 
Occurring just one fault in the legitimate configuration could 
lead to algorithm response in term of multiple overall updates 
and thus the fault could affect large scale of the network until 
stabilization. Each updating in wireless networks is actually 
equivalent to a broadcast to the neighbor nodes. Considering the 

limitation of node energy, leads to reduce their lifetime and 
efficiency of network. The other problem is long time for 
stabilization, which the system does not work based on desired 
design and it is in the unreliable state until reaching to a stable 
state. 

III. PROPOSED ALGORITHM 

In this part, a high-level description of the clustering 
algorithm based on constructing maximal independent set, 
which has both properties of self-stabilizing and fault 
containment (MISfc), will be proposed. 

A. Description on design and functionality of algorithm 

If it is assumed that single fault state with fault in node v, has 
been resulted from a change in one variable of node v. It could 
be simply shown that two conditions is satisfied in this state: (1) 
one of laws is active in node v. (2) It is possible to reach the 
legitimate configuration with implementation of the law in node 
v (in some cases, rule implementation in neighborhood nodes 
could have the same result). The purpose is identification and 
elimination of 1-fault states with rule implementation in that 
faulting nodes, and prevention from fault propagation with 
undesirable implementation in neighborhood nodes of v, N(v). 
For simplicity in understanding the proposed algorithm, first, we 
define some propositions, which actually are precondition for 
running the operation of state transition in nodes, and numbers 
of units for better readability of algorithm pseudo code (figure 
2). 

 

Fig. 2. propositions and sets that are used in MISfc algorithm pseudo code 

There are two 1-fault states for maximal independent set: 1- 
there is a fault from member node leaving the set (i.e. IN to 
OUT), and the fault from entering a non-member node into the 
set (i.e. OUT to IN); the considerable feature of proposed 
algorithm is removing the intermediate state, which has been 
introduced at [30]. MISfc algorithm rules with two features of 
self-stabilizing and fault containment is showed in figure 3. 

Rules 1 to 3 are for the management of node state transition 
in any IN to OUT 1-fault scenario. First two rules are for 
identification of single-fault state and third rule controls more 
than one fault conditions in node v and its neighbors. 

confilictIn(v) proposition is a prerequisite for establishing 
each of three rules. At first rule, with review of canOut(v), 
single-fault state is just for node v, not in its neighbors, which 
means: ∀w∈N(v):~canOut(w), we identify that under these 

����������(�) ≡ ∃� ∈ �(�): �. ����� = �� 

����������(�) ≡ �. ����� = �� ∧ ∃� ∈ �(�): �. ����� = �� 

�������(�) ≡ �����. � = ��� ∧ ~������ℎ���(�) 

���������������(�) ≡ � ∈ �(�): �������(�) 

���������������������(�) ≡ ∃� ∈ �(�): �. ����� = �� ∧ �. ��

< �. �� 

�����������(�) ≡ �������(�) ∧ ∀� ∈ �(�): ~�������(�) 

������(�) ≡ ����������(�) ∧ ��������� �� (�. ����� ≔ ���) 

⟹ {~�����������ℎ����(�) ∧ ~����������(�) ∧ (∀��(�): 

~����������(�))} 

 
Fig. 1. State diagram of a self-stabilizing system 
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conditions to reach the stabilized state, node v should change its 
state variable and leave the set. Second rule will be active when 
single-fault state is at node v and also its neighbors like w, i.e. 
each one of two nodes (v and w) leave the set and we reach to 
steady state. However, it should be considered that simultaneous 
leaving of these two nodes caused the unsteady state, thus for 
disrupting occurred symmetric condition and preventing 
simultaneous running, in 2nd rule, if v node id is larger than its 
neighbor nodes, it will leave the set. In fact, the priority of 
remaining in independent maximal set with the equal conditions 
is with the node that has a smaller node id. In the following, rule 
4th and 5th are implemented for management of changing in 
nodes condition at single-fault scenario of OUT to IN. 
Establishment of pending(v) proposition is the prerequisite for 
activation of two these rules. In the fourth rule, v will be 
membered of the set when the number of members of 
pendingNeighbors set is larger than this proposition in its 
neighbors. 

Actually, the purpose is state transition of a node, which has 
the most problem solving among itself and its neighbors 
(removes the pending state from the most numbers of nodes). If 
this number is equal for current node and its neighbor, the node 
id will be used for disrupting the symmetric condition. Fifth rule 
check the state that v is the only pending node between itself and 
its neighbor. 

 

Fig. 3. Rules of MISfc algorithm 

B. Proof of correctness 

Lemma 1 (Closure condition): In each configuration that no 
rule in any node is active, � = {�|�. ����� = ��} set will 
construct a maximal independent set. 

This trick will be simply proved by contradiction; the 
description of this proof is ignored in this part because of space 
limitation. 

Lemma 2: During the running of algorithm, node v with any 
arbitrary conditions will run one of ��� → ��،�� → ��� or 
�� → ��� → �� series, and after that, it will not follow any 
other rule. 

Proof: possible states are showed in figure 4 which are 
reviewed in detail below. 

 

Fig. 4. State diagram of the MISfc algorithm 

Condition (1): The procedure of v to reach this state as shown 
in figure 4, starts with initial state of OUT and under terms of 
�������(�) and lack of �����������(�). After this round 
with becoming v as a member (IN), by considering that v does 
not have any neighbor with IN state (~������ℎ���(�)),  
�����������(�) will never be established. In other words, all 
neighbors of v, N(v), will be remained in the OUT state. 

Condition (2: The procedure of v to reach this state as shown 
in figure 4, starts with initial state of OUT and under terms of 
Pending(v) and soloPending(v). After this round, node v has 
changed to IN and all its neighbors are in OUT condition with at 
least two IN neighbors (out of set with at least 2 member 
neighbors); therefore, nodes of {v}∪ N(v) set will never execute 
any other rules for changing condition. 

Conditions (3), (4), and (5). starting from initial state of IN, 
executing rules corresponding with above diagram in figure 4 
leads to place in one of conditions of (3), (4) or (5) with OUT 
condition for the node. In these conditions, starting from OUT 
state, if this state is not the last state, condition 1 or 2 will be 
held. Although, it could be proved that there will be no more 
state change after condition 4 and 5. Because these two 
conditions are held after 1-fault situation (lemma 3). Only after 
condition 3, it may be a new round of OUT → IN. 

Theorem 1 (convergence condition): starting from any 
arbitrary configuration and after finite number of steps, any node 
is no longer active and � = {�|�. ����� = ��} is a maximal 
independent set. 

Proof: starting from any arbitrary configuration, it has been 
proved in lemma 2 that any node after maximum three steps will 
have no active rule. Besides, based on lemma 1, I is a maximal 
independent set in the configuration with no active node. 

Lemma 3 (fault containment feature): in a legitimate 
configuration and in the event of a fault in a condition of an 

R1. ������(�) ∧ �∀� ∈ �(�): ~������(�)� → �. ����� ≔ ��� 

R2. ������(�) ∧ �∀� ∈ �(�): (������(�) ∧ �. �� > �. ��)� →

�. ����� ≔ ��� 

R3. ����������(�) ∧ ~������(�) ∧ �∀� ∈ �(�): ~������(�)� ∧

������ℎ������ℎ�������(�) → �. ����� ≔ ��� 

R4. �������(�) ∧ �|�����������ℎ����(�)| >

max
∀�∈����������������(�)

|�����������ℎ����(�)|� ∨

��|�����������ℎ����(�)| =

max
∀�∈����������������(�)

|�����������ℎ����(�)|� ∧ (�. �� <

�. ��)� → �. ����� ≔ �� 

�����������(�) → �����. � ≔ ��
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arbitrary node j, we return to a legitimate condition with only 
�(1) step. 

Proof: two conditions can occur. 

(A) with occurring a fault, node j changes from OUT 
condition to IN condition (there is �����������(�)): 1-(A) j has 
more than IN neighbor: In this case, there is ������(�) , but for 
none of j neighbors, like i, ������(�) will not be established, 
because despite of i exit from the set,  �����������(�)  could be 
established yet. Hence, in this condition, rule 1 could be only 
established for node j and with changing condition, we return to 
legitimate state. 2-(A) j has just one IN neighbor, like i: In this 
case, as regards that  ������(�) necessarily leads to establish a 
legitimate condition, all following propositions will be 
established: �����������ℎ����(�) = ∅ and ~�����������(�) 
and ∀� ∈ �(�): ~�����������(�), which finally lead to 
establish ������(�). In these conditions, if ������(�) is not 
established, j is the only node changes its condition to OUT by 
considering rule 1 and system return to legitimate conditions. In 
the condition with ������(�), rule 2 will be activated just for 
one of j or k ( node with large node id), and therefore, we will 
return to legitimate condition with only one changing condition. 

(B) with occurring a fault, j changes its condition from IN to 
OUT (Pending(j) is established): 1-(B) all neighbors of j have a 
neighbor with IN condition: In this case, proposition of 
Pending(j) is established and therefore, rule 5 will be just 
activated and we will return to a legitimate configuration with 
only one changing condition. Rule 4 will not be activated 
because |pendingNeighbors(v)| is always smaller than 
|pendingNeighbors(w)|, w∈N(v). 2-(B) There are neighbor or 
neighbors of j that exiting j leads to cause a pending condition; 
for simplicity, we assume that only node i in the neighbor of j 
has this condition. In this case, Pending(j)  and  Pending(i) 
propositions are established. We have 3 states: 1- 
|pendingNeighbors(j)|>|pendingNeighbors(i)|: only in node j, 
rule 4 will be activated and  we will return to legitimate condition 
with only one move. 2- 
|pendingNeighbors(j)|<|pendingNeighbors(i)| : only in node i , 
rule 4 will be activated and we will return to legitimate condition 
with only one move,. 3- 
|pendingNeighbors(j)|=|pendingNeighbors(i)| : In the node with 
smaller node id, rule 4 will be activated and we will return to 
legitimate condition with only one move. 

IV. PERFORMANCE ANALYSIS 

In this part, performance of the MISfc clustering algorithm 
based on numbers of state transitions, numbers of necessary time 
cycles for stabilizing, and structure of topological clustering will 
be compared with presented algorithm at [4] (MIS). General 
procedure of simulations is based on starting from initial 
configuration (all nodes are in OUT state) and starting from 
multi-fault, which will be tested under policy of unfair 
distributed scheduler. All of simulation tests will be done with 
MATLAB software and results report for 100 times of tests in 
each scenario. 

Figures of 5 and 6 show performance comparison of MISfc 
and MIS under policy of unfair distributed scheduler with initial 
configuration of all non-member which is assumed that the 

average of connected degree is a constant value of 7 and 
numbers of nodes are variable. 

 

Fig. 5. Number of state taransitions in MSI and MISfc 

 

Fig. 6. Number of time cycles (rounds) in MSI and MISfc 

According to the diagrams, it can be concluded that 
performance ratio of MISfc to MIS will increase with increasing 
in the numbers of nodes. Moreover, regardless of connected 
degree, MIS always has constant number of 2n state transitions 
(n: node number). Whereas, MISfc has higher performance in 
denser topologies. 

In another scenario, performance of these two algorithms has 
been compared by fault injection to the stabilizing configuration. 
In this test, which its diagram has been showed at figure 7, 
number of faults is varied between f 1 to 7 on a topology with 
100 nodes and average connected degree is seven. 

MISfc algorithm stabilizes single-fault states only with one 
state transition and one time cycle. However, MIS requires three 
state transitions and three time cycles on the average. With 
increasing in fault number, performance ratio of MISfc to MIS 
will be reduced about 2 times in state transition numbers and 1.5 
times in time cycle numbers. 

Figure 8 shows clustering structure from running two 
algorithms of MISfc and MIS on an initial topology with 50 
nodes. Cluster numbers from running algorithm MIS are 27 in 
which 9 clusters of them are single member and consist of just 
one cluster-head. While in response to running MISfc algorithm, 
Cluster number is reduced to 15 and we have only two single 
member cluster. 
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Fig. 7. Number of time cycles (rounds) in MSI and MISfc (after fault injection) 

 

Fig. 8. Final Topology. a) MIS, b) MISfc 

V. CONCLUSION AND FUTURE WORKS 

Regarding the susceptibility of node fault, the possibility of 
environmental changes and lack of  accessibility to structure 
after placement of sensor network, clustering methods lead to 
higher stabilization of the system and its enjoyment from re-
configuration without external interference is more desirable. In 
this work, a clustering method has been presented based on 
constructing a maximal independent set with two feature of self-
stabilizing and fault containment. In addition to fast stabilization 
in small scale faults, it will improve necessary time for 
stabilization in start from any arbitrary initial configuration. 

 In other view which is based on cluster constructing and 
forming minimum dominated set, condition of non-neighbor for 
cluster-head nodes is not necessary and thus, in scenarios due to 
the moving of nodes after placement, it is possible to form 
cluster-heads in neighborhood of each other and numbers of 
state transitions for reaching to a legitimate configuration is 
lower. It is noteworthy that this algorithm has been designed and 
will be presented in future works.  
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