Journal of
Applied Sciences

ISSN 1812-5654

science ANSI@??
alert http://ansinet.com

Journal of Applied Sciences 9 (1): 1-14, 2009
ISSN 1812-5654
© 2009 Asian Network for Scientific Information

Trends in Middleware Abstractions for Context Dissemination in
Mobile Ad-Hoc Networks

ViHakami and M. Dehghan
Wireless Network Laboratory, Department of IT and Computer Engineering,
Amirkabir University of Technology, PO Box 15875-4413,
No. 424 Hafez Street, Tehran, Iran

Abstract: Context dissemination completes the value chain of contextual information procurement and is
identified as a precondition to actual context use by enlarging the visibility scope of context sources beyond
the local acquisition or fusion entity and towards a network neighborhood. When leveraged for context-
aware services in MANETs (Mobile Ad-hoc NETworks), an often-stated goal is to cater for personalized
refinement and constant monitoring of a high volume of heterogeneous data with lower chance of
longevity. Context-aware middleware abstractions pave the way by masking the physical distribution of
data and by working out the appropriate logic for identifying the most relevant subset of context for use by
an application component. In this article, we compile the state-of-the-art trends in programming
abstractions built around the notion of context and present a detailed survey of their relevant middleware
incarnations. We also identify some key design considerations for MANET-based context dissemination
and will investigate how these requirements have been approached from a variety of directions by the
reviewed systems.

Keywords: context-aware computing, MANETS, information dissemination, programming abstractions,

middleware systems

INTRODUCTION

Systems sentience, as conceivable today, is growing
in dimension owing to the upward trend in technological
viability of sensory and perception artifacts: virtual,
social, physical, and physiological, to name a few. This
makes context-awareness, the associated computing
paradigm witness integral adoption in the emerging ICT
paragons e.g., “Autonomic Communications” (Dobson et
al., 2006) and “Ambient Intelligence” (Aml)
(Remagnino and Foresti, 2005). Exercising the idea in
the presence of the indispensable issue of ad hoc
mobility in B3G/4G wireless evolution as one promising
ambience enabler helps yield adaptation,
unobtrusiveness, and versatility for the array of solutions
meant to operate in such a state of flux.

Much of the challenge in context-aware ad-hoc
networking can be investigated from the context
dissemination perspective wherein the repercussions of
ad-hoc mobility on managing contextual information are
acknowledged as the key concern, an issue barely
touched in exploitation schemes featuring context as a
secondary or auxiliary element. The collection and
distribution of context information involves several

complex problems such as data integrity, discovery, real-
time update, secure storage, caching and replication.
Although these tasks have been studied under various
circumstances and for different types of networks, their
execution from an ad-hoc networking point of view is
little known and worth examining. In this article, we take
the initiative to provide a detailed survey on the latest
trends in middleware efforts towards addressing context
dissemination specific problems in MANETs. Our
classification is driven by the programming abstraction
adopted in each system and the style of communication it
promotes. We believe this fundamental perspective
yields a more accurate insight into the issues and
intricacies involved in context dissemination middleware
design. It is important to mention that no related work
exists on surveying solutions for context-aware ad-hoc
networking in general and the dissemination problem in
particular due to the complexity and the non-obvious
taxonomy of the available schemes. This investigation
will be among the first to provide a selection of well
studied models and approaches in the field.

Corresponding Author: Mehdi Dehghan, Department of IT and Computer Engineering, Wireless Networks Laboratory,
Amirkabir University of Technology, P.O. Box 15875-4413, No. 424 Hafez Street, Tehran, Iran
Tel: +98 21 6454 2749 Fax: +98 21 6649 5521

1

vesal
Highlight

J. Applied Sci., 9 (1): 1-14, 2009

IMPLICATIONS AND REQUIREMENTS

On top of the distinct challenges ad-hoc mobility
poses for every system development effort (1e.,
un-instrumented coincidental organization, topological
fluidity, episodic connectivity and resource scarcity, etc.),
providing for context-sensitivity brings about even more
as well novel requirements. This section identifies the
fundamental design principles and outlines the salient

features sought in solutions mediating context
dissemination for MANETS.
Contextual scoping: Contextual information is

distinguishable from other conceivable contents by its
situational semantics, 1.e., a particular context item only
makes sense relative to some notion of situation
characterizing its provider and consumer entities. In
effect, context can be considered as a function of time and
environment, the environment 1s mn turn a function of the
users, services, resources and other entities 1 the
network (Dobson et al, 2006). Driven by this property,
distribution of context naturally calls for a mechanism to
operate beyond traditional content-centric meta-data to
also capture as many environmental factors as per
required by application components. Contextual scoping,
accordingly, refers to the versatility of a dissemination
scheme 1n terms of scoping constramts it caters for to
customize context-related propagations i MANETSs.

Update management: The collection of information
available m the ad-hoc network is constantly changing,
due to both mobility of hosts and dynamicity of
applications. The volatility typical of contextual values
compounds the problem especially when entities or
activities need to be monitored in real-time. In such
systems, operation on stale data typically leads to wrong
decisions for context-aware services. An integral facet of
a dissemination solution is then its provision for efficient
maintenance constructs that satisfy data temporal
consistency and are responsive to environmental changes
in general.

Caching/replication: The non-uniform distribution of
nodes in the ad-hoc network 1mplies the possibility for the
accumulation of context sources in some place, thus
forming regions with a high coverage of available data,
while at the same time the gaps in between suffer from
scarcity of providers. Moreover, topological perturbations
due to mobility result in the quick disappearance of a
connected path between producer and consumer entities.
A reasonable approach to mitigate data unavailability 1s
to equip the dissemination scheme with a caching (or

replication) mechanism, which can also prove handy in
reducing costly propagation of repeated requests for
fairly stable context. It should be noted however that
introducing replication, apart from typical inconsistency
issues, might in turn lead to implications in terms of
Quality of Context (QoC) (Buchholz et al., 2003) demands;
for mstance, it might be required by the interested service
that the stored context always meet certain freshness or
accuracy conditions.

Security/privacy: In provisiomng of context-aware
applications, a well amount of sensitive information 1s
subject to communication. Since context data can disclose
a lot about an entity, unsafe interactions naturally pose as
a breach of confidentiality. Moreover, the heterogeneity
of users” privacy demands suggests the need for some
personalization and trust mechanism to let them control
the extent of access to their context information.
Consequently, the dissemination solution should also
account for the functionality to express policies and to
define ownership of context information, which is
communicated with other users/entities.

Scalability: Context dissemination must scale to large
population of participating nodes (i.e., the inclusion of
new context users and providers), to the increase in the
number of context categories and to varying degrees of
mobility.

CONTEXT DISSEMINATION ABSTRACTIONS

For the purpose of this study, context dissemination
middleware is classified based on the programming
abstraction adopted. A common ground for context
dissemination abstractions is that they intend to facilitate
the extension of the availability of context information
bevond a host’s immediate scope by providing a logical
view of the available resources while at the same time
unifying context-sensitive interactions. In dynamic or
unpredictable deployment settings such as ad-hoc
networls, an abstraction level should also mask the
complexity of mobility and chum resultant from the
P2P-style of interactions among the application
components. Two major categories of context
dissemination abstractions are recognized (Table 1),
namely: The Global Virtual Context Space (GVCS) (Huang,
2002) and Computational Fields (Co-Fields) (Marmei and
Zambonelli, 2006a).

The GVCS abstraction aims at offering an illusion of
a centralized information pool in which the request for a
local nvocation of a query operation will in effect be
disseminated on a global scale. Depending on whether

J. Applied Sci., 9 (1): 1-14, 2009

Table 1: Context dissemination middleware abstractions

Context Objectives

Global Virtual Context Space To maintain a uniform illusion of a

(GVCS) global dynamic context space and to
exploit it for making system-wide inquiries
for contextual information

Syrmmetric To offer the same complete perception of
the maximal context to all participating
parties

Asymmetric (Egocentric) To give each application direct control to

narrow its observations and operations on
its specitic context space, i.e., a projection
of the GVCS

To achieve flexible scoping in context-
related propagations and to reduce
components interaction to indirect and
local communications

Computational Fields
(Co-Fields)

this dissemination includes the whole community of the
connected components or only a designated portion of
the ad hoc network, the GVCS abstraction can be further
sub-classified into symmetric and asymmetric (or
egocentric) context sharing, respectively.

Field-assisted context dissemination promotes a
radically different perspective on context-awareness. In
this model, a sort of spatially distributed data structure,
namely, Computational Fields (Co-Fields) (Mamei and
Zambonelli, 2006a) 1s leveraged to achieve customizable
scoping of context-related propagations and to reduce
application interaction and information exchange mto
indirect and local communications.

GLOBAL VIRTUAL CONTEXT SPACE (GVCS)

As evidenced by a number of recent middleware
efforts (Murphy et al., 2006; Cugola and Picco, 2001;
Tulien and Roman, 2006; Schelfthout and Holvoeet, 2004;
Payton, 2006), a holistic data-centric view over the entire
ad-hoc network forms the basis to devise and support
several variations of a mobility-viable shared data space
abstraction which can also serve as a meta-model of
context and thus be leveraged to dissemmate contextual
information. Within this perspective, the maximal context
as conceivable by a particular application component
takes the form of a global virtual data repository whose
content is contributed by all sensors, both from the
application hosts or from the environment (Huang, 2002).
The main drive for the GVCS abstraction is to allow the
application developers to interact with spatially
distributed context as if it were local, 1.e., a programmer
simply queries the virtual repository to gam access to
context; behind the scenes, queries will be executed n a
distributed fashion over the ad hoc network
(Payton, 2006) and the accessible GVCS 1s actively

maintained in concert with dynamic changes in topology.

Context-aware middleware that incarnates the GVCS
concept can generally be divided mto two categories.
Symmetric context sharing systems such as Lime
(Murphy et al., 2006) and PeerWare (Cugola and Picco,
2001) essentially mimic traditional shared data space
models in that they intend to offer the same complete
perception of the maximal context to all participating
parties; this way, an application sees the world in its
entirety limited in extent only by the physical
connectivity. Accordingly, queries are issued over the
same virtual repository which is determined by the
logically merged contents of all the local data spaces held
by mutually reachable components.

However, as the extent of the underlying network
grows, the amount of context information which has the
potential to mfluence an application’s behavior becomes
large and unmanageable (Roman et al., 2007). Obviously,
maintaining a consistent up-to-date view for all the
observers 18 expensive in terms of commumnication and
processing costs. The need to scale has given rise to an
asymmetric (also called egocentric) notion of context
(Julien and Roman, 2006), i.e., each application component
observes and operates on its specific context space,
which is a projection of the GVCS (Huang, 2002). The key
ramification of this decision is that not every component
sees the same world, but rather, a personally tailored
representation. This asymmetry m viewable context 1s
justified by the observation that while all aspects of the
operational environment have the potential to influence
the behavior of an application, only a subset there of 1s
actually relevant to its behavior (Roman et al., 2007). To
utilize this idea in an ad-hoc setting, each application
should be given direct control over the scope of its
queries to specifically target a subset of the entire
network. Such a logical subnet is often defined by
of distance including physical distance,
bandwidth, throughput, or latency (Tulien and Roman,
2006). Further constraints are applicable to the attributes
of the applications possessing the context items and/or to

measures

the properties of their hosting device (location, speed,
direction, processing load, memory, battery power, etc.).
Figure la (Huang, 2002) shows the idea of GVCS and
Fig. 1b shows the reification of an egocentric context
wherein an application recruits its providers from among
nodes in its two-hop neighborhood whose CPU load is
less than 50%.

In what follows, we discuss middleware efforts
built around the concept of GVCS and will inspect
how each system accounts for the peculiarities of
context dissemination

mobility.

m the presence of ad-hoc

J. Applied Sci., 9 (1): 1-14, 2009

Global virtual context space Application
eI e L COMpONENtS

— s

e O ’
- [T
- .--'__I-_pll__'l |
i e !
¥ r.- (<rainfall, Double, 2.2 __J_..-" b
2L Esghumidity, Double, 90.2>)'-;_|;_ - %
! \-_,_ N et .:._ _ :.
1 e _ASQ —— = ™
g ‘_h':l S
Egocentric context spaces
(@

CPU load <50%

0 ~_ @ lj(erf]zr;neice IL"

B

Reference node’ <

|
context scope .

@
(b)

Fig. 1: (a) Global virtual context space and its application-specific projections (b) A node’s context scope

Symmetric context sharing using transiently shared data
spaces: In order to create an illusion of a centralized
information pool, Lime (Muphy et al., 2006) and
PeerWare (Cugola and Picco, 2001) put forth the notion of
transiently shared data spaces (Busi and Zavattaro, 2001).
In this model, each application umt is permanently
associated with a local data repository which contains
public data for use as context by others. When
applications are able to communicate, the model leverages
on precise rules to engage their data spaces in a sharing
relationship. In case these rules are uniform and
universally applied to all connected components,
applications will engage mdiscriminately with the whole
commumnity of their (transitively) reachable peers and thus
they will eventually perceive the same interaction space.
The engagement normally occurs in an atomic fashion and
entails the jomning of a group of hosts by a mobile unit
followed by transient merging of its local data space with
those of the overall group’s (Murphy et al., 2006). This
merging is dubbed transient since it occurs only at a
perceptual level, 1.e., the data spaces belonging to the
applications are not actually merged, but rather, the
results for all active queries will be re-computed so that
the content of the newly joined space is taken into
account. Similar considerations hold for the departire of
a mobile unit, resulting in the disengagement of the
corresponding data space; i.e., the content of the unit’s
data space is removed atomically from the transiently
shared space perceived by the remaining units.

The Lime’s approach to context dissemination
(Murphy et al., 2006; Murphy and Picco, 2004): Lime
fosters a Linda-like (Gelernter, 1985) instantiation of a
global transient sharing space through what 1s referred to
as a federated tuple space. Basically, the Linda tuple
space is divided into many subspaces, each permanently
attached to mobile hosts or agents. Transient sharng

accordingly allows dynamic re-configurability of the
individual tuple space contents based on changes in
connectivity. A proof-of-concept adaptation of the
middleware for physical context dissemination is shown
in (Murphy and Picco, 2004) which requires that context
and application data be msulated from one another and
stored in separate local spaces.

The Lime’s primitives to interact with context are
basically those of Linda’s (read, m, out) supplemented
with ther non-blocking (rdp and inp) and bulk/group
(rdg and ing) counterparts; the bulk operations which
return a group of matching tuples are especially helpful in
retrieving historical context (e.g,. a user’s movement
itinerary) (Murphy and Picco, 2004). While these
primitives cater for proactive (pull-based) querying,
Lime’s reactive constructs suit contextual monitoring and
immediate adaptation to changes. A reaction R(s, p) 1s
defined by a code fragment s specifying the callback
function to be executed when a tuple matching the pattern
p appears in the federated space. As for pattern matching
needed for its operation set, Lime enjoys Linda’s content-
based data access, while at the same time extending its
usual exact matching semantics to allow for the provision
of more flexible constraints over tuple fields; in particular,
the LIGHTS (Balzarotti et al., 2007) package at the core of
Lime affords range queries, fuzzy matching and data
aggregation at the tuple level. These extensions can be
resorted to formulate complex descriptive queries coupled
with several QoC meta-data constraints.

Contextual scoping in Lime 18 provided by, besides
tuple templates, the option of annotating Linda primitives
with host or agent identifiers to single out a specific
provider from among the current contributors of the
federated space. To cater for these operations a presence
service maintains, on each host, a list of all accessible
hosts in the same partition. This service is implemented in
the foorm of a special group management protocol

J. Applied Sci., 9 (1): 1-14, 2009

(Huang et al., 2004) which also guarantees a consistent
community-wide update diffusion in the events of
engagements and disengagements. Key to this protocol
15 the notion of safe distance among hosts which 1s
constantly calculated by a designated leader as a
function over the speed and direction of the nodes
involved in the communication as well as the maximum
time necessary to complete a requested transaction
(atomic dis/engagement). Tf transactions can have longer
durations, the safe distance that defines allowable
network links becomes shorter and vice versa. In effect,
the goal 1s to prevent any harmful link failure by creating
the illusion of announced discomnections (from the
group) before a link failure affecting the group could
happen; that is, in case hosts are close enough, according
to some safe distance, disconnection is not possible and
if they are just far enough there is plenty of time to carry
out a configuration change before disconnection actually
occurs (Huang et al, 2004). However, the protocol’s
scalability will degrade as it strives to maintamn Lime’s
symmetric worldview while the number of devices,
comnections, or degree of mobility grows. Lime’s
scalability is also affected by its lack of an underlying
protocol support to effectively steer the requests in the
network (e.g., based on tuple templates) and unless
specifically addressing a certan provider, a query must
flood the accessible partition at each data search.

In terms of replication, a lightweight veneer on top of
the federated tuple space of Lime is outlined in
(Murphy and Picco, 2006) which locally copies tuples
according to user-specified profiles and consistency
modes. The profiles specify the tuples to be replicated
and the consistency modes come up with three
possibilities: never, which never updates a replica, master,
which updates only from the master version of the tuple
and any, which updates indifferently from master or
replica versions. The core of the implementation is to
exploit Lime’s reactive constructs to watch for master
tuples and depending on the consistency modes,
possibly for replica tuples as well. When a reaction fires
with a new tuple, the listener for that reaction must take
the appropriate measures to keep the replicas inside the
tuple space in line with the replication profile.

As for security/privacy, the studies by
Handorean and Roman (2003) has presented a way to add
on security features to the original Lime model The
extensions allow applications to protect selected tuple
spaces and even mdividual tuples through the use of
passwords. The same passwords can also be used to
encrypt communication among hosts when exchanging
messages related to sharing of specific tuple spaces.
Bravetti et al. (2005) mvestigates, in detail, the security
issues for TupleSpace-based systems.

PeerWare (Cugola and Picco, 2001): Of other studies
promoting the symmetric and transient sharing of
(primarily computational) context is PeerWare. Compared
to Lime’s flat tuple-based model, PeerWare introduces a
richer hierarchical tree-like data organization for the global
and mdividual spaces. Specifically, data 13 structured like
a standard file system with multiple roots where, the tree
nodes play the role of directories and the leaves, or
documents in PeerWare’s language, represent the files.
The global content 1s then perceived as the superposition
of all directories and documents shared by currently
connected hosts; 1e., if for instance a directory node N,
on peer A contains a single document D,, while its
homoelogous node on peer B contains a single document
D,, the logically merged content will feature N, parenting
both D, and D, PeerWare leverages on a synergic
combination of both TupleSpace and Publish/Subscribe
communication models to enable querymng the global
space and subscribing to events occurring in it.

The API to access the global context mcludes an
execute operation which runs an arbitrary action on the
projection of the data space identified by two filter
functions over nodes and documents. An interesting
feature 1s the use of mobile code technology to ship an
action’s application-specific code along with each query
to be fetched and executed on remote hosts, thus
achieving both bandwidth reduction and an appropriate
level of customization, in case no action s explicitly
specified, the operation simply returns matching contents,
unchanged. Similarly, a subscribe primitive exists which
allows peers to register interest for events of a particular
property occurring on a filtered set of items and to execute
an associated code fragment in case one of such events
occurs. In (Cugola and Picco, 2001), the expressiveness of
the language to formulate these filters 1s not specified and
the study does not go much beyond discussing the
usability of regular expressions or XML-like queries as
possible candidate solutions. In effect, PeerWare 1s meant
to be a conceptual middleware design and the specifics of
its run-time infrastructure are left up to real-life
implementations. Thus, for instance, the model does not
prescribe anything about how the routing of system
messages (i.e., queries, subscriptions and events) must be
performed ina MANET, e.g., what 1s the topology of the
network interconnecting the peers and what algorithms
are used to perform routing on top of it A potential
scalability benefit, however, lies in the hierarchical
structure of data which can be leveraged to naturally
scope the query operations, possibly through a content-
based routing scheme steering requests only toward
nodes that actually contain the relevant data. PeerWare
serves as the core of the MOTION platform (Kirda ef af.,
2002) which builds a framework of collaborative services

J. Applied Sci., 9 (1): 1-14, 2009

for mobile users of a mesh setting. The hierarchical
approach adopted assumes the existence of several thuck
nodes in the network, which may not always be the case
for MANETS.

Egocentric context computation using declarative
specifications: While the symmetric sharing paradigm
best suits (small-scale) Collaborative Working
Environments (CWHEs), the egocentric-style context-
awareness targets more individualized mteractions, where
applications tend to have their specific and independent
contextual needs from the environment. To support
application-controlled scoping of query execution,
middleware systems in this direction allow for an
application entity to abstractly, or rather, declaratively
specify its desirable context as well as the set of providers
featuring that context. Such declarative specification is
typically comprised of a group of constramts over
properties of data, applications, hosts and network links,
effectively restramning the application’s perception to a
pruned version of the global repository. Typically, these
specifications can be redefined at nm time as needs or
expectations change.

EgoSpaces (Julien and Roman, 2006): In the
computational model presented in EgoSpaces, software
agents are the units of modularity and mobility and mobile
hosts are only contamers characterized by ther
geographic location. Similarly to Lime, data is stored ina
local tuple space and provisions are made to move this
space along with its owning agent upon migration.
EgoSpaces structures context in terms of fine-grained
units called views. An agent may request one or more of
these views by providing declarative specifications, each
consisting of three tuple patterns (over data, agent
profiles and host profiles) and a set of network
constraints (including a link weight metric, a cost function
and a cut-off bound). It can be clearly seen that the
context definition in Fig. 1b easily fit in a view’s
comstramt-based declaration. EgoSpaces, agam, 1s
founded on the notion of transient sharing, ruled by view
specifications upon engagements and disengagements;
accordingly, views and the data belonging to them are not
actually calculated until or unless an application actively
queries the view. This way the overhead of constructing
and maintaining a view 1s ncurred only when access
operations are issued; however, the application always
benefits from the perception of a persistent data structure
that reflects the current contents of its view(s), ie., a
filtered set of tuples.

EgoSpaces comes with roughly the same primitive set
as that of Lime’s, but an operation’s scope 1s restricted to
the extent of a particular view whose id is passed on to it

as an argument. A key component of the middleware is a
protocol that given the view’s networking constraints
calculates the qualifying subnet of hosts in the actual
network over which the view’s operations are issued. The
SICC protocol (Source-Tnitiated Context Construction)
discussed by Julien ez al(2008) operates by building and
mamntaining a bounded mimmum-cost spanmng tree
rooted in the view imtiating host and entailing all nodes
such that the cost of the shortest path connecting them
to the root satisfies the stipulated cut-off bound. Upon
nvocation of a query operation, the query manager
component of the middleware uses SICC to construct a
shortest path tree and at the same time disseminates the
request to every host which happens to lie within the
span of this tree; however, the query will be processed
only by those peers meeting the specified agent-level
constraints running on nodes meeting the specified host
constraints. Tn case of a blocking operation, the query
remams registered on eligible hosts until the issuer
explcitly deregisters it. Also, if new hosts move into the
tree boundary while the query remains active, they will
receive the request; likewise, the query is removed from
those walking out. When it comes to reply propagation,
the resultant structure essentially serves as a reverse
multicast tree that allows desired information to funnel
back to the requesting agent (Tulien and Stovall, 2006). As
with Lime, long-lived context monitoring is made viable
thanles asynchronous reactive
callbacks whose semantics is backed by SICC’s tree
maintenance. Tt might also be of note that in order to take
maintenance measures, SICC relies on the mformation
derived from an envionmental monitoring package,
namely CONSUL (Hackman ef al., 2005), which maintains
on each host a registry of sensors available locally and of
those on neighboring nodes. As monitor values change,
the query manager 1s notified of and the metric 1s
re-evaluated leading possibly to a topological-level
reaction from SICC.

SICC is basically a flooding protocol whose
determimstic behavior may achieve strongly consistent
results. A caveat, however, exists when concurrent
possibly overlapping view declarations grow in nmumber,
in which case the protocol’s egocentric design basis
plays havoc with the middleware’s scalability. Scaling
with SICC is more of an issue in dense networking
scenarios, wherein the protocol’s lack of a mechanism to
effectively curb the unnecessary forwarding may give rise
to the notorious broadcast storm problem. Moreover, in
order to ensure boundedness, the distance metric used for
building the view 1s assumed to always mcrease
monotonically the further the query message gets
propagated from the root. Defiming the context in this way

to the middleware’s

J. Applied Sci., 9 (1): 1-14, 2009

makes it hard, or rather ineffective to realize inherently
destination-based views (e.g., to find one or all
components at a specific coordinate in space). In sum,
although EgoSpaces i principle caters for nearly the
finest-grained contextual scoping as per required by a
context-aware application, yet the efficacy of the model is
practically limited by the fact that SICC performs the
actual dissemination based solely on link-level properties.

EgoSpaces is equipped with a basic support for data
duplication through a special built-in behavior construct,
the semantics of which essentially reduces to a high
priority reaction which copies remote tuples (belonging to
a specific view) and leaves the originals unaffected.
Unlike Lime, the middleware does not manage consistency
of the replicas.

An agent-specified access control function and a set
of per view credentials form the basis for the middleware’s
provision of security. The credentials can be a standard
set of attributes (e.g,. the agent’s 1d), or a third-party
authentication and are presented as a tuple. The access
control functions can be described by a set of policies
defined as patterns, or templates, which are evaluated on
an mdividual basis for each tuple adhering to the view
constraints; that 1s, a tuple belongs to a view only 1if it
satisfies the view constraints and as well, the requesting
agent’s credentials meet the requirement of the access
control function of the agent owning the tuple. The
function can also account for the type of operation
requested, e.g., some data should be restricted to read-
only access. EgoSpaces, however, should rely on some
third party cryptography scheme for the secure
transmission of credentials.

Object places (Schelfthout and Holvoet, 2004):
Declarative context specification is also pursued in
ObjectPlaces (Schelfthout and Holvoet, 2004) which offers
an analogous notion of egocentric views for automatic
gathering of data objects distributed across a set of
MANET nodes. Each application component mamtains
viewable data in a local collection of objects called an
objectplace, which is basically a tuplespace variant and
can be accessed by roughly the same associative
operations such as put, read and take. As 1s the case in
EgoSpaces, a remote application expresses its context of
interest in the form of a view declaration essentially
designated by the following four parameters: a distance
metric and a bound, a host constraint, an objectplace
name and an object template. However, unlike EgoSpaces
which allows remote removal of tuples, views as
presented in ObjectPlaces are purely observational, i.e.,
the contributing objectplaces are only subject to local
mamnipulations and remote applications can only observe

the associated collection and stay current on changes.
Also, while in the baseline design for EgoSpaces, a view
always has the interface of a tuplespace, ObjectPlaces
tailors the representation of the resultant view at the whim
of the application components (e.g., a sorted collection,
an accumulation to a value, etc.). Tt is further noticeable
that ObjectPlaces does not adopt the transient sharing
model, but rather, views are realized from the very moment
they are declared and are actively maintained ever since.

As for construction and maintenance,
ObjectPlaces again relies on a bounded spanming tree
protocol, namely View (Schelfthout et al., 2005), which
can be considered as an alternative to SICC of EgoSpaces
(Tulien and Roman, 2006; Julien ef al., 2008). In order to
observe a view, an application component executes a
watch operation with the given object template on all
qualifying objectplaces residing on nodes satisfying the
stipulated host constraints and lying within the scope of
the tree. In effect, the watch directive 1s the only method
in the middleware’s API for issuing a distributed query,
basically implementing the semantics needed for long-
lasting context monitoring. To keep its viewers posted
with respect to its changing content, an objectplace
provides an event-based asynchronous mterface which,
compared to the reactive constructs of Lime’s and
EgoSpaces’, triggers notifications upon both insertion
and deletion of data objects.

Though both SICC of EgoSpaces and the View
protocol of ObjectPlaces study by building an overlay
structure on demand of an application’s explicit request,
the View protocol account for topological
reconfigurations in a proactive fashion; that 1s, while in
SICC changes in the network are only propagated when
1t 18 detected that a link 1s out of specs, View handles thus
by regularly sending update messages, essentially
achieving more robustness at the expense of some
overhead. This proactive behavior also proves handy in
detecting network partitions in that when a subset of
nodes becomes disconnected from the root, they will no
longer receive stabilizing distance updates, resulting in
their measures to eventually grow out of bound. Also,
while changes in the profiles of hosts and applications
may affect their qualification status for being a member of
an application’s context over time, SICC makes no explicit
attempt to report such changes to the viewing
component. In ObjectPlaces, however, a node disqualifies
itself by stopping the expectedly regular unicast of a
so-called member message which, once past a specific
time-out period, will lead to its removal from the root’s
acquaintance list; needless to say that the newly qualified
nodes will announce their membership in a similar mamner.
Finally, it might be of note that the View protocol, as 1s,

view

J. Applied Sci., 9 (1): 1-14, 2009

does not factor in any non-uniform weights with regard to
communication links and ‘hop count’ is the sole metric
used to build contextual subnets.

Query ME (Payton, 2006): Yet another middleware effort
to be assimilated into egocentric-style context data
dissemination 1s presented in (Paytor, 2006). QueryME
envisions a database-like GVCS abstraction and provides
for the execution of highly customized SQL-like queries
over the virtual repository in order for the applications to
acquire a tailored portion of the global context. Code
mobility forms the mainstay of QueryME’s design m that
it renders an application capable of bundling with each
query an assortment of policy specializations dictating the
details of its execution. Specifically, mobile code
fragments can be installed over the network to
encapsulate three customizable elements of a typical
query context policy declaring an
application’s desired context scope in terms of constraints
umposed on properties of the physical network as well as
on hosts and applications within the associated sub-
network, a propagation policy to further truncate the
spread of query over the designated scope (usmg eg.,
controlled flooding, random sub-tree, random path, etc.),
and finally, a reply processing policy, an option to encode

execution: a

some in-network processing scheme in order for the
nodes to aggregate query responses and cut down on the
costs by communicating only the aggregate result as the
query reply.

Despite its SQL-like interface, QueryME again uses
tuples as the baseline representation for context data
items; vet, unlike EgoSpaces where each application 1s
associated with its own tuplespace, QueryME stores the
items contributed by all the applications residing on a
particular node in a single host-level space, accessible
only by the components of the middleware’s query
service. A typical query invocation in QueryME is then
specified by, apart from the aforementioned trio of
policies, a data constraint fumetion mn the form of a tuple
template along with a tag, identifying the kind of
operation to be performed (e.g., GET, EXISTS, MIN,
MAX, etc.). Both QueryME and EgoSpaces draw on a
semantically enhanced — tuplespace engine wlich
essentially adds on complex constrant functions to
Linda’s classic content-based retrieval.

Upon issuance from a given application, a query is
passed on to the manager component of the QueryME’s
service which first processes the network constraints
portion of its context policy in order to begin constructing
the overlay data structure. To do so, the middleware relies
on a distributed spanning tree protocol, almost akin to
SICC of EgoSpaces (Julien and Roman, 2006;

Tulien et al., 2008), which will include only those nodes
whose path cost satisfies the specified context bound.
Once a set of neighbors have been determined to be
potential candidates for belonging to the tree, the
propagator component applies the propagation scheme to
specify a subset of these neighbors that are eligible for
propagation and returns this set as the actual context
children. The service dissemmates the query along with
its mobile code specializations to the duly elected
neighbors. Hosts and application constraints that
comprise the remainder of the context policy are then
imposed on the corresponding profiles, (also captured as
a tuple) to see if the recipient is qualified to further
process the query. A processor component on those
peers eligible to mitiate a response will utilize the local
results from the host-level repository and, in case dictated
by the in-network aggregation policy, replies from the
peer’s set of actual context children.

Featuring a TupleSpace core, QueryME enjoys a
similar notion of reactions as in EgoSpaces to provide for
reactive evaluation of long-lived queries over a
topologically maintained context.
introduces the concept of anti-tuples as a way to also
signal the deletion of a reported context item. In particular,
when a piece of data is removed from the tuplespace, a
corresponding dummy (anti) tuple is inserted into the
space effectively coaxing its associated reaction to fire.

As 18 the case mn 1its previously discussed
counterparts, QueryME’s both contextual scoping and
scalability are limited by its underlying spanning tree
protocol, yet its ability to account for several propagation
policies brings in customization superiority.

The middleware

FIELD-ASSISTED CONTEXT DISSEMINATION

A Computational Field (Co-Field) (Mamei and
Zambonelli, 2006a) can be considered a simple, yet
spatially spreading data structure characterized by a
unque identifier, a propagation rule, a location-dependent
numeric value (expressing the strength of a field at a
specific location and taking values that depend on the
propagation rule) and any needed number of additional
data (to encode and convey any information that can be
of use to application components) (Mamer and
Zambonelli, 2006b). With the support of a particular
middleware infrastructure, fields are injected into the
network and get propagated driven by their propagation
rule. A field can rely on any computable rule for how its
strength value will have to vary as it gets propagated; the
strength can simply increase from hop to hop in the
network, either linearly or according to other monotonic
functions. It may mcrease up to a specific distance from

J. Applied Sci., 9 (1): 1-14, 2009

Fig. 2: Context dissemination using field-based gradient
routing

the source and then start decreasing or it could even vary
according to some periodic function of the distance
(Mame1 and Zambonelli, 2006b). By assuming different
values at different nodes, fields can effectively build a
distributed overlay data structure, which can be further
used by application components to communicate
(Mamei et al., 2003). In effect, applications will only have
to locally sense propagated fields to acquire contextual
information, exchange information with each other and
react accordingly to the configuration and shape of the
perceived fields, much the same as a physical mass moves
in accord with a locally sensed gravitational field
(Mamei and Zambonelli, 2006a).

Figure 2 sketches the very basic idea of a field-
assisted context querying scheme, using hop count as the
sole mechanism to control the propagation. A requesting
device can iyject a field-like data structure conveying an
application query for a particular set of sensorial events
up to a maximum of 4 hops. The propagation rule
accordingly demands that the field diffuse to all peers and
have its strength value incremented as it hops. The
source nodes lying within the bound can then locally
perceive the income of a query and react by injecting an
answer field, which will simply follow downhill the query
field’s strength gradient reaching back the requester.

Through properly formulated propagation rules, the
model has the potential to shape the field structure so as
to meet a broad range of scoping constraints (e.g.,
distance, velocity, spatial direction, etc.). Moreover, the
spatial overlays induced by fields’ self-routing mecharnism
can also self-mamtain their structures (Mameil and
Zambonelli, 2005), given that the fields’ propagation
patterns are supposed to be dynamically re-shaped by the
supporting middleware in order to reflect network and
application dynamics.

The abstraction of Co-Fields is instantiated in TOTA
(Tuples On The Air) (Mamei et af, 2003) via tuple
objects of the form: T = <content, propagation rule>. The
content 1s an ordered set of typed elements representing
the information carried by the tuple (i.e., its strength value
as well as any arbitrary semantic information), while the
propagation rule will be encoded by unplementing an
abstract propagate method. Fach node executing an
instance of the TOTA middleware hosts a single (non-
mobile) application process for which TOTA maintains a
local tuple space to store the armving tuples. The TOTA
APT provides functionalities allowing the application to
igect and delete tuples n the local middleware and to read
tuples both from the local tuple space and as well as from
those of the node’s one-hop neighborhoodneighbors’.
Applications may also subscribe and unsubscribe to
TOTA’s event interface and react accordingly to the
imncome of new tuples matching specific templates.
However, there i1s no primitive notion of distributed
queries in TOTA, which means application code must be
provided to have the target peers interpret a distributed
tuple as a query at the application level.

When a tuple arrives i a node (either as a result of
injection into the local middleware or propagation through
the network), TOTA begins processing by first evaluating
1ts propagate method. The propagation schema at the core
of the middleware’s Tuple class hierarchy (Mamei et al.,
2003) prescribes the following sequence of execution:
The middleware first decides on the tuple’s acceptance
into the system based on any application-specific policy
(e.g., the standard implementation discards the
duplicates). Next, the tuple’s propagation condition is
verified to determine if it needs to be further propagated.
Following this verification, the tuple’s content goes
through possible modification, typically to update its
strength value. A tuple is then provided with the option
of placing subscriptions in the middleware so as to be
able to react to events when they happen after the tuple
completes its execution. Finally, TOTA stores the tuple in
the local tuple space and also propagates it to
neighboring nodes only if the tuple has formerly satisfied
the propagation condition. Since each node will only have
to propagate the tuple to its immediate neighbors, the
global effort to spread the tuple is fairly partitioned
between the constituting nodes, making the propagation
phase practically scalable in MANETs. Also, given that
the tuple’s content 1s duplicated m each visited host
(assuming a read-only mode), data availability would be
maintained in case of disconnections or even partitioning;
however, TOTA comes with no particular support for

J. Applied Sci., 9 (1): 1-14, 2009

replica reconciliation. Also, the middleware lacks any kind
of security policy to rule accesses to distributed tuples
and their updates.

Tuples leverage on subscriptions they make to
TOTA’s event interface in order to take self~maintenance
measures 1 the face of topological perturbations;
specifically, each local tuple can subscribe to the mcome
or the removal of other tuples (belonging to its same type)
in its one-hop neighborhood. Upon a removal, each tuple
reacts by checking if it is still in a safe-state, i.e. whether
its predecessor is alive, or else, it is the source of the
distributed overlay. An unsafe tuple erases itself from the
local tuple space, leading eventually to a cascading tuple
deletion wntil a safe-state tuple can be found, the source
15 ultimately reached, or even all the tuples in the
associated subnet are deleted. It might also be the case
that a safe-state tuple, observing a deletion in its
neighborhood, fills the gap and reacts by propagating to
that node (Mamei and Zambonelli, 2006b). Similar
considerations apply with respect to arrival events; for
instance, tuples may re-propagate, overwriting outdated
values, and effectively cutting the distributed shape into
steeper gradient towards the Though
experimental results in (Mamei and Zambonelli, 2006b)
show that updates are almost invariably confined within

da SOUrce.

a locality scope from where they took place, the algorithm
could not converge if the network topology changes
faster than the time required by the self-maintenance
process to complete. Also, in order to alleviate the critical
race condition likely to happen as a result of a spurious
propagation cycle, the self-maintenance algorithm should
introduce artificial delays before each deletion
(Mame1 and Zambonelli, 2006b), which inevitably
prolongs the convergence time and can lead to scalability
problems, especially in highly mobile scenarios.

TOTA’s main superiority over the previous tuple-
based systems would be from the very customizability of
field-based dissemination schemes, 1.e., the potential to
map TOTA peers onto a useful assortment of virtual
space topologies. Whether TOTA would be an efficient
altemative 1n each case, then, depends and on the actual
requirements of the applications and its usability should
be weighed against the overheads mvolved. A proof-of-
concept application of TOTA for a GHT-like
(Ratnasamy et al., 2002) storage and retrieval is outlined
in (Mamei and Zambonelli, 2005), where GPSR (Karp and
Kung, 2000) is embedded in tuple’s propagation rule,
effectively conveying data (and or queries) towards
geographical coordinates — resultant the
application of a pre-defined hash function over the
data (or query) key words.

from

10

DISCUSSION

Devising programming abstractions to properly
capture, disseminate and exploit context is an open
research problem. In the dynamic and self-orgamzing
milieu of ad-hoc networks, Tuple or space-based
computing has one very strong advantage. It de-couples
two orthogonal dimensions involved in context exchange:
space. This spatio-temporal uncoupling
accounts for the model’s particular support for context-
aware interactions than for more bulky data sharing
operations. Tt should be noted however that while a tuple
space can act as a natural repository of context resulting

time and

in environmental awareness for software components, the
flat structure of tuples impedes complex data organization.
More expressive representations
propositioned by some of the approaches (e.g., PeerWare
and QueryME) were highlighted throughout our review.
However, the emerging trends (Sudha ef a/., 2007) mn the
area of ubiquitous systems promote a synergistic blend of
Tuple Space and Semantic Web namely, Semantic Space
(Sudha et al., 2007), primarily to enhance tuple’s basic
representation as well as to augment Linda with
vocabulary decoupling; still, an efficient transplantation
of this architecture in the fluid world of MANETSs is an
open topic and thus forms an mteresting direction for
future research.

The field-theoretic approaches also prove promising
for adoption i ad-hoc systems in that the resultant
only

communications; moreover, the coCo-field’s Field’s

contextual as

interactions involve mdirect and local
customizable propagation strategy is ideal for achieving
flexible scoping
However, probably the biggest 1ssue with field-based
abstractions lies in the mismatch between the underlying
basic model and the solution they offer at the application

level, which can result in complex and tricky

i context-related transmissions.

implementations for field-assisted services.

As can be seen in the Table 2, replication and
security are the most lightly treated areas. The lack of
study along the line of replication might in part be
attributable to the nature of context (as opposed to
ordinary data) since the proposed systems mostly deal
with context featuring locality in terms of spatial and
temporal semantics whose availability across the entire
network is by no means guaranteed. With respect to
security, EgoSpaces provides for fine-grained access
control policies at the tuple level TLime’s security
extension in (Handorean and Roman, 2003), introduces
password protection measures to tuple spaces and allows
for encrypted communication of messages between hosts.

Table 2: Summary of context dissemination middleware

J. Applied Sci., 9 (1): 1-14, 2009

Global Virtual Context Space (GVCS)

Symmetric
Field-assisted
Lime’s proof-of- Asymmetric (egocentric) context
concept C-A dissemination
Middleware criterion adaptation PeerWare EgoSpaces ObjectPlaces QueryME TOTA
Features Insulation of context Directory-like Context as Custornizable Code mobility Encapsulation of
from application tuples, representation, tuples, agent. context view to customize context-related
agent migration Code mobility migration representation query information in
for on-site execution fields tuples
primitive policies
execution
Communication n model Linda, transient Linda in synergy ~ Linda, transient Linda synergy of Linda-like Co-Fields
sharing of context of Pub/Sub sharing of tuple Pub/Sub cormimunication
tuple spaces transient spaces rled by at the core of
Superposition of view declarations the middleware
directions and
documents
Supporting protocols Unicast routing for N.A. SICC: composition View: single Composite None (application-
TD-annatated op erations, metric minimuum metric minimum metric level self-routing)
A group service to spanning tree spanning tree [nirimum

manage (dis)
Engagements

spanning tree

Distributed query operations (Non) blocking Linda A core execute (Non) blocking A non-blocking 8QL-like ApI Requires
primitives (RIO)+bulk primitive with Linda primitives Linda-like (GET, MAX, application
modes of read and in prograrmmable (Ry+bulk modes watch directive AVE, etc) code
for historical context actions of read and in

Scoping constraints Tuple templates, Data and event Constraints over Constraints over Constraints Depends on
host/agent Ids filters links, host, agents, hosts, over links, propagation

and tuples objectplaces hosts, e
and objects applications,
and data,
Propagation
Policies

Context update Reactive callbacks Subscriptions Reactive callbacks Subscriptions Reactive Subscriptions

managernent. callbacks

Caching/ Replication Yes No Duplication, no No No Duplication, no

replica managing replica
managing

Security and privacy Yes No Yes No No No

Scalability Low (symmetric Depends on Limited by SICC Limited by Limnited by Good (Not in
sharing, partition- MANET (broadcast stonm, view (broadcast RICC-like highly mobile
wide flooding for implementation tree maintenance) storm, tree 8PT protocol scenarios)
data search) symmetric sharing Maintenance)

The other systems do not use security concepts, which 1s
one of their major shortcomings.

In terms of scalability, Lime is designed for small ad-
hoc networks and draws on flooding at the network level
which can result in low performance and high searching
overhead. It also adopts a symmetric sharing paradigm
which cannot scale to large communities of users. While
this is also the case m PeerWare, the structural
organization of data can still be leveraged to devise more
scalable solutions 1 general. Middleware systems based
on Egocentric notion of GVCS have a better chance of
scaling in MANETSs, yet current implementations rely on
spanning tree overlays whose construction and
maintenance often proves overkill in dynamic settings. An
efficient alternative would be the use of gossiping
protocols (Friedman et al., 2007) to reduce costly multi-

hop communications mto opportumistic pair-wise

interactions. Such interactions can be seen m TOTA’s
tuple propagation strategy, vet the self-maintenance
algorithm based on cascaded subscriptions is not
guaranteed to converge quickly especially in highly
dynamic scenarios.

As discussed earlier, the versatility of a
dissemination scheme in terms of its provision for
contextual scoping is a significant property to have. In an
1deal solution, to cater for different scoping constramnts
would suggest the need for a multi-protocol architecture
(e.g., geographic routing, content-based routing, QoS
routing, etc.) as well as the viability to dynamically switch
between these protocols at run-time. One promising
direction would be the adoption of an ActiveNet-like
(Tennenhouse and Waetherall, 2007) architecture in
middleware’s design; in particular, the ActiveNet’s
underlying 1dea of putting mtelligence in the network by

11

J. Applied Sci., 9 (1): 1-14, 2009

letting messages execute snippets of code to dynamically
compute their next hop destinations can also be utilized in
a dissemmation architecture to flexibly route context-
dependent propagations. An added wvalue also lies in
ActiveNet’s interposed computing paradigm, which can
be adapted to perform in-network processing or
information fusion as has been the case m research
studies for the parallel area of WSNs (Wireless Sensor
Networks) (Levis et al., 2005). Tn effect, by having query
replies processed in the network, nodes aggregate
responses and communicate only the collective result as
the query reply, thus achieving performance benefits
compared to when naively contacting each node on the
route individually and then locally aggregating the
responses. thoughts and prototypical
unplementations of ActiveNet-nspired approaches to
context dissemination in mobile settings can be explored
by Kang et «l. (2004), Riva (2006) and Stovall and
Tulien (2007).

Yet another important direction of research 1s
concerned with the relatively new notion of quality of
context (QoC) (Buchholz et al., 2003), which requires that
context be provided together with describing metadata
(e.g., accuracy of the mformation), primarily with the
intention of allowing for the estimation of the reliability of
the resultant values. The reviewed systems in this study
provide only partial support for QoC-bound services in
that they merely consider the definition of metadata
metrics to resolve a flavor of quality-constrained
contextual queries. A more demanding aspect of QoC
support can be viewed with reference to update

Iritial

management requirements, le., the ability to schedule
context-related transmissions so as to maximize data
freshness, while at the same tine imposing the least
possible burden over the MANET and its participants. In
other terms, it 18 necessary to somehow establish a proper
trade-off between QoC and QoS and in fact between up-
to-dateness and performance (overhead). Striking a
balance between timing and resource constramts can
effectively be achieved through the incorporation of
adaptive scheduling mechanisms (Bése et al, 2006;
Yau and Huang, 2004). A common ground for adaptive
schemes 1s to let the providers periodically conduct some
sort of a divergence analysis on their local provision of
context and trigger update diffusion only when the
estimated deviation exceeds a negotiated (or enforced)
threshold (e.g., as specified by the node itself or through
feedback from consumers). Resource-aware policies can
be incorporated into the calculation of divergence and the
threshold values can be tuned adaptively to suit varying
network conditions or in line with changes i nodes’

behavior.

12

Finally, given the heterogeneous nature of a MANET
setting, an open 1ssue would be the design of contextual
data formats and appropriate network algorithms to enable
interoperability by supporting various types of sources as
well as finding the right balance of developing a universal
context model and mtelligent infrastructures for future
COIteXt-aware services.

CONCLUSIONS

In mobile ad-hoc networks, context dissemination
involves managing personalized access to a dynamic
collection of distributed and heterogeneous contextual
information. In this study, context dissemination has been
nvestigated through the
middleware abstractions. A common ground 1s to facilitate
the sharing of and interaction with context data by
providing a logical view of the available resources while
at the same time umifying context-sensitive nteractions.

prism of context-aware

The study conducted a thorough investigation of the
latest trends in middleware efforts towards providing for
such abstractions and highlighted their key properties
with
requirements. The researchers believe that the design and

reference to context dissemination specific
implementation of middleware abstractions that fully
satisfy all the implications and challenges imposed by
context-aware ad-hoc networking entail trade-offs among
usability, flexibility, efficiency and scalability.

A scrupulous observation of the prior art i this area
suggests that a comprehensive taxonomy of the existing
strategies would best fit in a trilogy of abstractions,
architectures and protocols; hence, a part of our future
work would be to undertake mvestigations covering the

other two.
ACKNOWLEDGMENT

The research described m this study has been
supported in part by the Iran Telecommunications
Research Center (ITRC) under Grant No. 86-2670.

REFERENCES

Balzarotti, D., P. Costa and G.P. Picco, 2007. The LighTS
tuple space framework and its customization for
context-aware applications. J. Web Intell. Agent
Syst., 5: 215-231.

Bravetti, M., N. Busi, R. Gorrieri, R. Lucchi and
(. Zavattaro, 2005. Security issues in the tuple-space
coordmation model. Int. Federat. Inform. Process.,
173:1-12.

J. Applied Sci., 9 (1): 1-14, 2009

Buchholz, T., A. Kupper and M. Schiffers, 2003. Quality of
context: What 1t 13 and why we need it. Proceedings
of the 10th Workshop of the HP OpenView
University Association, July 6-9 2003, University of
Geneva, Switzerland, pp: 1-14.

Busi, N. and G. Zavattaro, 2001. Some thoughts on
transiently shared dataspaces. Proceedings of the
Workshop on Software Engineering and Mobility,
Co-Located with the 23rd International Conference on
Software Engineering, (ICSE’01), USA., pp: 1-5.

Base, 1.5, K. Hahn, M. Scholz, H. Schweppe and A.
Voisard, 2006. Using moving object databases to
provide context mformation m mobile ad-hoc
networks. Proceedings of the 7th International
Conference on Mobile Data Menagement, May 10-12,
IEEE Computer Society, Washington, DC., USA.,
pp: 75-82.

Cugola, G. and G.P. Picco, 2001. Peerware: Core
middleware support for peer-to-peer and mobile
systems. Technical Report, Politecnico di Milano.
http://citeseer.ist. psu.edu/479980 . html.

Dobson, S, S. Denazis, A. Fernandez, D. Gaiti and
E. Gelenbe et al., 2006. A swvey of autonomic
communications. ACM Trans. Auton. Adapt. Syst,
1:223-259.

Friedman, R., D. Gavidia, L. Rodrigues, A.C. Viana and
3. Voulgaris, 2007. Gossiping on MANETs: The
beauty and the beast. ACM SIGOPS Operat. Syst.
Rev., 41: 67-74.

Gelemter, D., 1985. Generative communication mn linda.
ACM Trans. Programm. Languages Syst., 7: 80-112.

Hackmann, G., C. Julien . Payton and G.C. Roman, 2005.
Supporting generalized context interactions. Lecture
Notes Comput. Sci., 3437: 91-106.

Handorean, R. and G.C. Roman, 2003. Secure sharing of
tuple spaces in ad hoc settings. Elect. Notes Theoret.
Comput. Sci., 85: 1-20.

Huang, Q., 2002. Supporting context-aware computing in
ad hoc mobile environments. Techmcal Report
WUCS-02-36, Washington University, Department of
Computer Science.

Huang, ., C. Julien and G.C. Roman, 2004. Relying on
safe distance to achieve strong partitionable group
membership in ad hoc networks. TEEE Trans. Mobile
Comput., 3: 192-205.

Tulien, C. and G.C. Roman, 2006. EgoSpaces: Facilitating
rapid development of context-aware mobile
applications. TEEE Trans. Software Eng., 32: 281-298.

Julien, C. and D. Stovall, 2006. Enabling ubiquitous
coordination using application sessions. Lecture
Notes Comput. Sci., 4038: 130-144.

13

Tulien, C., G.C. Roman and Q. Huang, 2008. SICC: Source-
mitiated context construction mn mobile ad hoc
networks. [EEE Trans. Mobile Comput.,
7: 401-415.

Kang, P., C. Borcea, G. Xu, A. Saxena, U. Kremer and
L. Iftode, 2004. Smart messages: A distributed
computing platform for networks of embedded
systems. The Comput. T., 47: 475-494,

Karp, B. and H.T. Kung, 2000. GPSR: Greedy perimeter
stateless routing for wireless networks. Proceedings
of the 6th Annual International Conference on
Mobile Computing and Networking (Mobicom),
August 6-11, DBoston, Massachusetts, USA,
pp: 243-254.

Kirda, E., H. Gall, P. Fenkam and G. Reif, 2002, MOTION:
A peer-to-peer platform for mobile teamwork support.
Proceedings of the
Conference on Computer Software and Applications,
(COMPSAC'02), Viemma, Austria, pp: 1115-1117.

Levis, P, D. Gay and D. Culler, 2005. Active sensor
networks. Proceedings of the 2nd Conference on
Symposium on Networked Systems Design and
Implementation, May 2-4, TUSENTX Association,
Berkeley, CA., UUSA., pp: 343-356.

Mamei, M., F. Zambonelli and L.. Leonardi, 2003. Tuples
on the amr: A DMiddleware for context-aware
computing m dynamic networks. Proceedings of the

on Distributed

19-22, USA,

26th Ammual International

Conference
May

23rd International
Computing Systems,
pp: 342-347.

Mamei, M. and F. Zambonelli, 2005. Location-based and
content-based information access in mobile peer-to-
peer computing: The TOTA approach. Lecture Notes
Comput. Sci., 2872: 162-173.

Mamei, M. and F. Zambonelli, 2006a. Field-Based
Coordination for Pervasive Multi-agent Systems. 1st
Edn., Springer, Germany.

Mamei, M. and F. Zambonelli, 2006b. Theory and practice
of field-based motion coordination m multiagent
systems. I. Applied AL, 20: 305-326.

Murphy, A.L. and G.P. Picco, 2004. Using coordination
middleware for location-aware computing: A LIME
case study. Lecture Notes Comput. Sci,
2949: 263-278.

Murphy, A. and G.P. Picco, 2006. Using lime to support
replication for availability in mobile ad hoc networks.
Lecture Notes Comput. Sci., 4038: 194-211.

Murphy, A., G.P. Picco and G.C. Roman, 2006, LIME: A
coordination model and middleware supporting
mobility of hosts and agents. ACM Trans. Software
Eng. Methodol., 15: 279-328.

J. Applied Sci., 9 (1): 1-14, 2009

Payton, T, 2006, A query-centered approach to
supporting the development of
applications for mobile ad hoc networks. PhD
Dissertation, Department of Computer Science and
Engineering, Washington University in Saint Louis,
MO, USA.

Ratnasamy, S., B. Karp, L. Yin, F. Yu, D. Estrin,
R. Govindan and S. Shenker, 2002. GHT: A
geographic hash table for data-centric storage.

context-aware

Proceedings of the International Workshop on
Wireless Sensor Networks and Applications,
September 28-28, Atlanta, Georgia, USA,
pp: 78-87.

Remagnino, P. and G.I. Foresti, 2005. Ambient
intelligence: A new multidisciplinary paradigm. IEEE
Trans. Syst. Man Cybernet., 35: 1-6.

Riva, O, 2006. Contory: A middleware for the
provisioning of context information on smart phones.
Lecture Notes Comput. Sci., 4290; 219-239.

Roman, G.C., C. Julien and I. Payton, 2007. Modeling
adaptive behaviors in Context UNITY. Theoret.
Comput. Sci., 376: 185-204.

Schelfthout, K. and T. Holvoet, 2004. ObjectPlaces: An
environment for situated multi-agent systems.
Proceedings of the 3rd International Joint Conference
on Autonomous Agents and Multi-Agent Systems,
July 19-23, New York, USA., pp: 1500-1501.

3

14

Schelfthout, K., T. Holvoet and Y. Berbers, 2005. Views:
Customizable abstractions for contextaware
applications in MANETs. Proceedings of the 2005
Workshop on Software Engineering for Large-Scale
Multi-Agent Systems, May 15-16, St Louis,
Missouri, pp: 1-8.

Stovall, D. and C. Tulien, 2007. Resource discovery with
evolving tuples. Proceedings of the International
Workshop on Engineering of Software Services for
Pervasive Environments, September 04-04,
Dubrovnik, Croatia, pp: 1-10.

Sudha, R., M.R. Rajagopalan, M. Selvanavali and
S.T. Selvi, 2007. Ubiquitous semantic space: A
context-aware and coordination middleware for
ubiquitous computing. Proceedings of the 2nd
International Conference on Communication Systems
Software and Middleware, Jan. 7-12, Bangalore,
pp: 1-7.

Tennenhouse, D.L. and D.J. Wetherall, 2007. Towards an
active network architecture. ACM SIGCOMM
Comput. Commun. Rev., 37: 81-94.

Tim, B.L., I. Hendler and ©. Lassila, 2001. The semantic
web. Scienti?c Am., 284: 34-43.

Yau, S.5. and D.D. Huang, 2004. An adaptive, lightweight
and energy-efficient context discovery protocol.
Proceedings of the 10th IEEE International Workshop
on Future Trends of Distributed Computing Systems,
May 26-28, Suzhou, China, pp: 261-267.

