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However, in the majority of self-stabilizing protocols for 
wireless ad-hoc networks, it is routinely assumed that the 
network nodes will cooperate with each other so that the 
overall stabilization of the system is guaranteed. This is 
while in most practical settings, the nodes neither belong to 
the same authority, nor do they operate under a single 
administration domain. Hence, it might be the case that the 
nodes pursue some private goals that may be in conflict with 
the system-wide objective.  

Consider, in particular, virtual backbone construction 
using a self-stabilizing algorithm. Obviously, once the 
protocol stabilizes, the nodes serving in the backbone have to 
sacrifice more processing and communication resources to 
the benefit of the entire network. Hence, each backbone node 
faces a dilemma as to whether maintain its serving role in the 
constructed backbone, or alternatively, perturb the system 
hoping that the algorithm would re-stabilize this time into a 
new configuration where the node is a backbone client rather 
than a server.  

Motivated by the impact of node selfishness on protocol 
stabilization in ad-hoc networks, in this paper, we deal with 
perturbation-proneness in the context of virtual backbone 
construction in WANETs. The problem is first translated into 
minimum connected dominating set (MCDS) construction in 
the topological graph of the network. We then propose self-
stabilizing MCDS algorithms that prevent selfish nodes from 
post convergence perturbation of the system. A byproduct of 
our proposed scheme is faster recovery from all single-fault 
configurations with reduced message complexity, lower 
number of state transitions, and minimal topological re-
structuring, which contributes to saving energy and 
increasing network life. 

The underlying assumption in the proposed algorithms is 
that the rules are followed obediently by all nodes during 
system execution. However, it is more realistic to consider 
the case that each node also possesses some private goal and 
would behave selfishly towards achieving it. Since these 
private goals may not in general be aligned with the public 
goal of the algorithm (MCDS) [11], without enforcing some 
cooperation mechanism, self-stabilization can no longer be 
guaranteed. Based on this observation, we propose a         
new approach to guarantee self-stabilization in selfish 
networks. We first model the MCDS construction as a 
normal-form game, and analytically derive its mixed NE play 
probabilities.  

We then devise probabilistic self-stabilizing rules for 
MCDS construction in which the nodes execute their rules 
with probabilities corresponding to their part in the NE of the 
MCDS game. We argue that in this new system, the nodes 
would have no incentive for disobeying the rules of the 
algorithm. To the best of our knowledge, this is the first time 
game theory and probabilistic self-stabilization have been 
used synergistically to come up with a robust fault-tolerant 
system design. The rest of the paper is organized as follows: 
We briefly introduce the basic concepts and review the 
previous studies in section 2. In 3, the proposed algorithms 
are discussed and proofs are given to establish their 
correctness. Section 4 deals with the numerical evaluation of 
the algorithms and comparisons are made to contrast         
their performance against prior art. The paper ends with 
conclusions. 
 

2. Theoretical Background and Relevant 
Works 
 
A system is self-stabilizing, if and only if, two conditions are 
satisfied: a) convergence: starting from an arbitrary initial 
state, the system converges to a legitimate global 
configuration after a finite number of state transitions, b) 
closure: the system remains in legitimate configuration until 
no transient fault happens [2]. In this paper, we are interested 
in forming a virtual backbone substrate for wireless ad-hoc 
networks with robustness properties against both transient 
systemic faults and deliberate perturbations. A popular 
abstraction in prior art [1] has been to translate the virtual 
backbone formation problem into the construction of a 
minimum connected dominating set (MCDS) in the 
topological graph of the underlying network. In graph theory, 
a CDS of graph G is a set D of nodes which satisfy two 
conditions: a) D is a connected sub-graph of G. b) any node 
of G is either in D or is adjacent to at least one node in D. A 
CDS of G is an MCDS, if it has the minimum cardinality 
among all possible CDSs of G. In recent years, several self-
stabilizing algorithms have been proposed for constructing 
CDS. The majority of the existing self-stabilizing CDS 
algorithms, however, have been designed based on central 
daemon (scheduler) which is practically impossible to 
implement in wireless ad-hoc networks [3]. Furthermore, 
most of these works solely construct a CDS and their final 
product is not an approximation of MCDS [6]. Another 
drawback of all such algorithms is that they do not 
differentiate between faults with respect to their spread. 

We set up our design on the self-stabilizing algorithm 
proposed in [7] which works under distributed scheduler 
with O(n2) time complexity. We refer to this algorithm as 
MCDSss in the rest of this paper. The CDS Constructed by 
this algorithm is based on a sequential scheme [7] that 
produces an 8ݐ݌݋ ൅ 1 approximation of MCDS in a given 
graph. We present two variants of MCDSss, which render the 
CDS construct immune to nodes’ intentional state 
manipulations. Such manipulations are typically motivated 
by individual node utilities in the sense that the nodes would 
naturally prefer to be a CDS client rather than a CDS server. 
A general approach to realize the perturbation-proof property 
for self-stabilizing systems has been discussed in [5]. It is 
argued that the final states in a self-stabilizing system are 
analogous to fixed points of a game; hence, a fixed point, 
which is also a Nash equilibrium, is obviously immune 
against unilateral node deviations. With a perturbation-aware 
design, a self-stabilizing system can be made either 
absolutely or relatively perturbation-proof. A system is 
absolutely perturbation-proof, if all its fixed points are Nash 
equilibria for any set of utility functions. On the other hand, a 
system is relatively perturbation-proof, if all its fixed points 
are Nash equilibria for some specific set of utility functions. 
 

3. Proposed Algorithm 
 
In this section, we first present two perturbation-proof 
variants of the MCDSss algorithm, namely MCDSpp and 
MCDSpp*. Next, we provide proofs of their self-stabilization 
and perturbation-proof properties. Finally, we propose the 
third algorithm (sMIS) which is based on game theory. 
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3.1. Discussion on Design and Functionality of 
Algorithms 
 
MCDSpp is designed based on the MCDSss algorithm [7]. 
MCDSss first constructs a breadth-first spanning (BFS) tree 
in the network graph. Next, starting from the root, a maximal 
independent set (MIS) is formed iteratively among the nodes 
of the same depth, which are not dominated by the nodes of 
lower depths. Integration of all these sets produces an MIS in 
network graph. It is proven that this MIS is a weakly 
connected dominating set (WCDS). Finally, a fully 
connected set is established by adding connecting nodes. 
Connecting nodes are the parents of the MIS members in the 
BFS tree. The final fully connected set is a CDS-tree. It is 
then proven that the CDS-tree is an 8opt+1 approximation of 
an MCDS. 

We assume that the tree T is formed in the network graph 
through a self-stabilizing BFS tree algorithm. Let “l” denote 
the distance of each node from the root. The state of each 
node is specified by two variables ind, dom א ሼܰܫ, ܱܷܶሽ in 
MCDS configuration. Each node in the legitimate 
configuration is in one of the three states: (IN, IN), (IN, 
OUT) and (OUT, OUT). The set of nodes in state (IN, IN) 
are MIS members. The union of nodes in state (IN, IN) and 
(IN, OUT) forms a CDS. In a legitimate configuration, any 
state transition can be deemed as a transient fault. 

In a legitimate configuration of a self-stabilizing system, 
1-fault situations correspond to the occurrence a single fault 
in a node v, which is induced by an undesirable change in its 
variables. It can be shown that two conditions apply a) one of 
the rules is active in v. b) it is possible to reach stability by 
execution of only one rule in v [9] [10].We aim to detect and 
resolve 1-fault states by restricting rule executions only on 
the faulty node, effectively preventing from error 
propagation by unwanted execution of rules in v’s neighbors 
N(v). 

We first define some predicates, which will appear as 
preconditions to state transitions. We also introduce some 
sets to facilitate the readability of the pseudo-code (figure 1). 
 

 
 

Figure 1. Set and Predicate definitions 
 

The sets PN, BN, MN, and CN denote the parent nodes 
(lower depth neighbors), sibling nodes (same depth 
neighbors), mature nodes (union of PN and BN), and child 
nodes (higher depth neighbors) of a node in the tree, 
respectively. The fifth expression identifies the parent of a 
given node. The parent of a node is its lowest id neighbor. 
The 6th and 7thexpressionsverifies whether a mature or parent 
neighbor is a member of MIS or not. The 8th term specifies if 

a node is pending. If neither a node nor its mature neighbors 
are members of MIS, that node is considered to be pending. 
The 9th term specifies if a node is in conflict. If a node and at 
least one of its mature neighbors are members of MIS, the 
conflict predicate is true in that node. The 10thpredicatewill 
hold in a node if at least one of its siblings is a member of 
MIS and its id is lower than that node. The 11thpredicate 
indicates a conflict between a node and one of its parent 
neighbors. The rules of MCDSpp are depicted in figure 2. 
 

 
 

Figure 2. Rules of MCDSpp algorithm 
 

The process of constructing MIS in the tree proceeds 
from root towards the last depth according to rules 1 to 5. 
The first rule determines the root’s state. This node must 
become a member of MIS. The second rule determines the 
membership of the root neighboring nodes (first depth). 
Rules 3, 4, and 5 govern the membership of the nodes in 
MIS. Anode may become a member by performing rule 3 
and may cancel its membership by performing rule 4 or 5. 
While MIS forms, deeper nodes states has no effect on upper 
nodes states in T. The state of deeper nodes has no effect on 
the shallower ones. In order to break symmetry of nodes, we 
give priority of MIS membership to the nodes that have 
lower id than their siblings in the same depth of the tree. To 
detect 1-fault situations, each node needs to know the 
membership status of all its 2-hop neighbors. This 
information guarantees that if a 1-fault occurs in a given 
node’s parent or sibling, no rule will become active on the 
node. According to rule 6, members of MIS i.e. the nodes for 
which the ind is in IN state, join MCDS. Rule 7 or 8 checks 
membership or none-membership of the remaining nodes in 
CDS, respectively. Nodes that are fathers of members of 
MIS, become members of MCDS by executing rule 7. 

There is only one legitimate configuration in a system 
based on MCDSpp algorithm. In other words, it always 
terminates in a unique virtual backbone. However, if we 
assign weights to the nodes, the members of the final CDS 
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always have the lowest weight among their neighbors, and in 
general, it is possible that there exist better MCDS 
approximations which are ignored by MCDSpp. To solve 
this problem, we design a new algorithm called 
MCDSpp*which differs from MCDSpp in just the third rule. 

In rule 3 of the MCDSpp*, we address situations that the 
occurrence of 1-faults in members may spread to their 
neighbors. This situation occurs when a none-member node v 
has no pending sibling neighbor and has only one member 
sibling w whose id is greater than that of v’s. In this situation, 
if a fault happens in w, after re-convergence, node v will 
become member of MCDS instead of w. Therefore,12-
thpredicate in rule 3 captures such occurrences in the 
legitimate configurations. 
 

 
 

Figure 3. The third rule of MCDSpp* algorithm 
 
3.2. Proof of Correctness 
 
In this part, we prove the correctness of MCDSpp through a 
sequence of lemmas and theorems. For the most parts, the 
proofs associated with MCDSpp*proceed along the same 
lines, and are thus skipped here due to space limitations. 
Lemma 1. Assume that the spanning tree T is valid up to the 
i-th depth and MIS is constructed up to (i-1)th depth by 
MCDSpp rules. It then holds that the MIS is constructed up 
to the ith depth after the maximum of m rounds. In addition, 
no node changes its state in the absence of transient faults. 
Proof. The root becomes a member of MIS by executing rule 
1 at the first round. It is obvious that this membership is 
permanent because rules 2-5 are not executed in the root. 
Similarly, neighbors of root (l=1) leave membership of MIS 
via rule 2 at the first round and this decision will be 
permanent. It is clear that the membership of deeper nodes 
has no effect on the membership of the ith depth in MIS 
according to rules 1-5. If a node gets out because of rule 4 or 
gets in because of rule 3, assuming that no ‘in brother with 
lowerid’ term has been active in rule 3, the new state of node 
will be permanent. The reason is that all predictions are 
related either to lower depth nodes for which the validation 
and stability are assumed, or to the base information like id. 
Yet in rule 3 or 5, there is the predicate ‘in brother with 
lowerid’, which is also related to the state of the same depth 
nodes. At the first round in all nodes that rule 4 is active, ind 
variable becomes equal to OUT. It is obvious that OUT state 
(non-membership in MIS) is permanent in these nodes. 
Following the first round, in the second round, ind variable 
in all nodes which rule 3 is active in them becomes equal to 
IN. After the second round, either ind variable value is 
permanently OUT in all nodes of ith depth or at least there is 
one node (v) that is in IN state, a permanent state. In the third 
round, neighboring nodes with the same depth of node v, 
which are in IN state switch to OUT state (rule 5). It can be 
shown that this state is permanent in those nodes and does 

not change in following rounds. In the next round, nodes that 
rule 5 is active in them get out and it is permanent. Then, 
rounds 3 and 4 will be repeated until there is still some nodes 
in which rules 3 or 5 are active. So, a number of rounds up to 
a maximum equal to the number of ith depth nodes are 
traversed until MIS is constructed at this depth. 
Lemma 2. MIS structure in T is formed after n rounds. n is 
number of tree nodes. 
Proof. We use induction to prove this lemma. In lemma 1, it 
has been shown that the root and the second-depth nodes of 
T enter to valid state of MIS just in one round (basis: 
statement holds for d=1, 2). Using lemma 1, inductive step 
will be proven for d>1. Due to lemma 1, if MIS is formed up 
to the ith depth, after ݉௜  rounds, it will be formed up to 
(i+1)th depth. Therefore time complexity of MIS construction 
is ݋ሺ∑ ݉௜

஽
௜ୀଶ ሻ which is equal to o (n). D is depth of T. 

Lemma 3. (convergence). The MCDSpp algorithm 
constructs MCDS after RT+n+1 rounds. 
Proof. T in RT and then MIS in n rounds are constructed. 
According to rules 6-8, members of MIS and connecting 
nodes join to MCDS. The MCDS members with active rule 
#8 exit in one round. Since all terms of those three rules 
depend on id and ind variables, and not on dom, final states 
are permanent. 
Lemma 4. (closure). 
Proof. We prove this lemma by contradiction. Suppose that 
the closure condition does not hold; hence, at least one rule is 
active in legitimate configuration. This is while due to 
lemmas 1-3, the final states are permanent and no rules will 
be executed in the legitimate configuration. 
 

3.3. Proof of Perturbation-Proof Feature 
 
Lemma 5. Occurrence of 1-fault in ind variable of a node in 
the ith depth has no effect on the state of upper or lower depth 
nodes. 
Proof. Since the MIS is formed prior the 1-fault incident, 
either of the pending or conflict predicates will hold. The 
state of parents affects the preconditions of rules 3-5 in a 
node. To be sure that those rules will not be activated by the 
1-fault incident in lower depth nodes, some terms are added 
to them, checking whether the pending or conflict predicates 
are active in the parent neighbors or not. Similarly, in rules 
7-8, those predicates are checked for upper depth nodes 
given that the states of children affect the preconditions for 
those rules. It is obvious that preconditions of rules 1, 2 and 
6 have no relevance to the states of the neighbors. 
Lemma 6. In a system based on MCDSpp algorithm, 
occurrence of1-fault in ind variable of an ith depth node has 
no effect on the other ith depth nodes. 
Proof. It is obvious that the change in ind variable of a node 
has no impact on the dom variables of its siblings. Hence, we 
only focus on the 1-faults in q node v and its impact on the 
ind variables of the ith depth 1-hop neighbor z and 2-hop 
neighbor k. 

If 1-fault (IN to OUT) happens in v, the only rule that 
might be active in z is rule 3. Note that state of z is OUT. If 
node z has a parent in IN state or its id is greater than v, rule 
3 does not activate. Otherwise it is evident that in the valid 
states, rule 3 did not execute in z because of another brother 
like w that had a lower ݅݀  than z and was in IN state. 
Because 1-fault happens in z, not w, rule 3 still do not 
activate in z. If state of k is IN, the only rule that might be 

R'3. ݈. ݒ ് 0 ר  ݈. ݒ ് 1 ר ݅݊݀. ݒ ൌ ܱܷܶ ר ሻݒሺݎ݋ܾ݄݃݅݁ܰݐ݊݁ݎܽܲ݊݅~ ר
ݓ׊ א ܲܰሺݒሻ: ~݃݊݅݀݊݁݌ሺݓሻ ר ሺሺݓ׊ א :ሻݒሺܰܤ ݅݊݀. ݓ ൌ ܱܷܶ ר
ሺ݅݀. ݓ ൐
݅݀. ݒ ש ሺ݅݊ܲܽݎ݋ܾ݄݃݅݁ܰݐ݊݁ݎሺݓሻ ש
ሻሻሻሻݓሺ݀ܫݎ݁ݓ݋ܮ݄ݐܹ݅ݎ݄݁ݐ݋ݎܤ݊݅ ש ሺሺݓ׊ א
:ሻݒሺܰܤ ሻ  ሻݓሺ݃݊݅݀݊݁݌~ ר ሻሻሻݒሺ݀ܫݎ݁ݐܽ݁ݎܩݎ݄݁ݐ݋ݎܤ݊ܫ݁݊݋ ՜
݅݊݀. ݒ ؔ , ܰܫ .݉݋݀ ݒ ؔ  ܰܫ

ሻ࢜ሺࢊࡵ࢘ࢋ࢚ࢇࢋ࢘ࡳ࢘ࢋࢎ࢚࢕࢘࡮࢔ࡵࢋ࢔࢕ .12 ؠ ሺݓ׌ א :ሻݒሺܰܤ ݅݊݀. ݓ ൌ ܰܫ ר
݅݀. ݓ ൐ ݅݀. ሻݒ ר ሺ|ሼݓ א .݀݊݅|ሻݒሺܰܤ ݓ ൌ |ሽܰܫ ൌ 1ሻ 
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active in that node is rule 5. However, in rule 5,even if term 
‘~in brother with lowerid’ is active, term ‘ind. w=IN’ must 
be active concurrently either, but in the previous paragraph 
we show that 1-hop brother of v remains in OUT state. If 
node k is in OUT state, rule 3 certainly cannot be active in it, 
because there is no preconditions in that rule that holds with 
occurrence of 1-fault. 

Assuming that 1-fault (OUT to IN) happens in v, if state 
of z is OUT, it cannot activate any rule in z. If state of z is 
IN, the only rule that might be active is rule 5. Because valid 
state of v had been OUT, there were some preconditions of 
rule 3 that had not hold. It is not possible that node v can 
activate rule 5 in another node because of those 
preconditions. In legitimate configuration, MIS membership 
states in two-hop neighborhood of v (k z v) is one of these 
three cases: (010,100,000). In the first case, the only rule that 
might be active is rule 3, but term ‘ind.w=OUT’ must hold if 
rule 3 is active. Therefore, 1-fault cannot activate rule 3 in k, 
because state of z is still IN. In the second case, the only rule 
that can be active is rule 5, but as the term ‘ind.w=IN’ exists 
in rule 5, it cannot activate, because z is in OUT state. In the 
last case, although it seems that rule 3 can activate in node k, 
but a brother or a parent in IN state has existed and they still 
do not allow rule 3 being active in node k. 
Lemma 7. In a system based on MCDSpp* algorithm, 
occurrence of 1-fault in ind variable of a ith depth member 
node (IN to OUT) has no effect on the other ith depth nodes. 
Proof. It is obvious that ind variable change in a node has no 
effect on the dom variables of its brothers. Hence, we 
investigate effect of 1-fault in node v on ind variables of the 
ith depth 1-hop neighbor z. For a2-hop neighbor, it is 
completely like lemma 6. 

If 1-fault (IN to OUT) happens in v, the only rule that 
might be active in z is rule 3. Note that state of z is OUT. If 
node z has a parent in IN state, its id is greater than v or is 
still pending, rule 3 does not activate. Now assume that node 
z is pending and its id is lower than v. It is concluded that 
before occurrence of 1-fault in v, node z have had only one 
member neighbor with higher id. Because system has been in 
legitimate configuration, all neighbors of z were in none-
pending state. However, with considering the terms of rule 3, 
before occurrence of 1-fault in v, rule 3 has been activated in 
z that is in contradiction with definition of legitimate 
configuration. 
Lemma 8. 1-faults in the dom variable of an ith depth node 
have no effect on the states of is neighbors. 
Proof. Since in preconditions of rules 1-8 do not refer to dom 
variables of neighbors, it is obvious that the change of dom 
variable in a node has no effect on the others. 
Theorem 1. If a 1-fault occurs in the system, faulty nodes 
and only that node enters to the valid state that it was in 
before. 
Proof. The convergence property of an algorithm explains 
that the system converges from an illegitimate configuration 
to a legitimate one. We also showed in lemmas 5-8 that the 
occurrence of 1-faults has no effect on the neighbors. With 
these in mind, it is easy to see that with the execution of the 
self-stabilizing rules in the faulty node, the system will return 
to a legitimate configuration. 
Theorem 2. If the self-stabilizing rules cause that after 
perturbation of any selfish node in a legitimate configuration, 
the system returns to that legitimate configuration, that 
configuration is a Nash equilibrium. 

Proof. Consider the definition of a Nash equilibrium: a 
legitimate configuration of a self-stabilizing system is a Nash 
equilibrium, if no node can profit by unilateral deviations 
from its state. The main drive for a node to induce 
perturbations in a self-stabilizing system is the possible 
convergence of the algorithm into an alternative legitimate 
configuration so that its utility increases in the new 
configuration. In a legitimate configuration of a self-
stabilizing system, perturbation of a node is analogous to the 
occurrence of a 1-fault in that node. Given that the rules in 
MCDSpp guarantee that after any 1-fault in a given node, the 
system converges back to the same legitimate configuration, 
no node will have any incentive to deviate from its valid 
state, and thus the algorithm, once stabilizes, gives rise to a 
Nash equilibrium configuration.  
Theorem 3. A system based on MCDSpp algorithm is 
absolutely perturbation-proof. 
Proof. According to theorem 1, in a system based on 
MCDSpp algorithm, after 1-fault incident in legitimate 
configuration, system will return to that legitimate 
configuration again only by one move. In theorem 2, we said 
that if self-stabilizing rules force system to return to the 
previous legitimate configuration after perturbation of a 
selfish node, that configuration is in Nash equilibrium. 
Therefore, stable states of a self-stabilizing system based on 
MCDSpp algorithm are in Nash equilibrium for any utility 
functions. It means that the MCDSpp algorithm is absolutely 
perturbation-proof. 
Theorem 4. A system based on MCDSpp* algorithm is 
relatively perturbation-proof. 
Proof. In a system based on MCDSpp* algorithm, after any 
1-fault in dom variables and IN to OUT 1-faults in ind 
variables, the system will return to the previous configuration 
only by one move. In theorem 2, we said that if the self-
stabilizing rules force the system back to the pre-perturbation 
configuration, this configuration is a Nash equilibrium. 
Therefore, the stable states of a self-stabilizing system based 
on MCDSpp*algorithm are Nash equilibria with respect to 
the utility functions that drive a member node to perturb and 
get out of the virtual backbone construction. It means that the 
MCDSpp algorithm is relatively perturbation-proof and no 
member node has an incentive to exit from the membership 
of the virtual backbone construction. 
 

3.4. Preventing From Deviation 
 
At the proposed algorithms for construction of virtual 
backbone, at the beginning, in each level of T tree, a 
maximal independent set was constructed. Assuming this set 
has been constructed, non-member nodes profit v and 
member nodes profit v-c. v is a profit from construction of set 
(forming virtual backbone) and c is the responsibility cost of 
member node (communication and calculation overhead). It 
is obvious that value of c is less than v-c [12]. 
Theorem 5.Structure of MIS which is constructed at the 
network graph corresponds to a Nash equilibrium. 
Proof. At a MIS, each node is a member or it has a 
neighborhood member and also none of two member nodes 
are adjacent. Assuming that a member node changes its state, 
then the profit of the node is equal to zero instead of v-c. 
Moreover, if a non-member node unilaterally become a 
member, then the profit of the node will be v-c instead of v. 
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Therefore, any nodes will not profit more by unilateral 
deviation. This is the definition of Nash equilibrium. 

Assuming that each node to decide to be a member of 
MIS, interact with the rest of nodes rationally. Therefore, 
each node which itself and its neighbors are not member of 
MIS, is reluctant to become a member of MIS. It is obvious 
that in this condition, selfish nodes do not follow algorithm 
rules. In general, non-cooperation of nodes in performing the 
rules is not a part of conventional self-stabilization 
definition. 

Assuming nodes are aware of construction rules of MIS, 
utility function in a network consisting of N selfish nodes 
which are neighbors, will be like the equation 1. 
 
௜ݑ ൌ

 

ە
ۖ
۔

ۖ
ۓ

ݐܽݐݏ                     ,0 ௝݁ ൌ ܱܷܶ, ݆׊ א ܰ
ݒ െ ௜݁ݐܽݐݏ   ,ܿ ൌ א ݆׊ ݀݊ܽܰܫ .ݏܰ ݐܽݐݏ  .ݐ ௝݁ ൌ ܱܷܶ

,ݒ ௜݁ݐܽݐݏ ൌ ܱܷܶܽ݊݀ห൛݆ห݆׊ א ݐܽݐݏ  .ܰ ௝݁ ൌ ܱܷܶൟห ൌ 1

0, ห൛݆ห݆׊ א ݐܽݐݏ  .ܰ ௝݁ ൌ ܱܷܶൟห ൐ 1

(1) 

 
The lowest profit has two state: several nodes decide the 

strategy of membership, or any nodes do not become a 
member. If just a one node become a member, then profit of 
member node is v-c and the profit of other nodes are v. 
Theorem 6: In a MIS membership game, the probability of 
that a player choose IN strategy, is based on equation 2. 
 

݌ (2) ൌ
ݒ െ ܿ

ݒܰ െ ܿ
 

 
Proof: For calculating the probability of IN mixed strategy 
from symmetric Nash equilibrium in MIS membership game 
with utility function of u, we first calculate profit of both 
strategies of IN and OUT. 
 

ܷே஽ ൌ ሽ݁ݎ݈ܽܿ݁݀݁ݏ݈݁݁݊݋݋ሼ݊ݎܲ · ܿ ൅ ሽݏ݁ݎ݈ܽܿ݁݀݁݊݋ݕ݈݊݋ሼݎܲ
· ݒ ൅ ሽ݁ݎ݈ܽܿ݁݀݁݊݋݄݊ܽݐ݁ݎ݋ሼ݉ݎܲ · 0 

ܷ஽ ൌ ሽ݁ݎ݈ܽܿ݁݀݁ݏ݈݁݁݊݋݋ሼ݊ݎܲ · ሺݒ െ ܿሻ
൅ ሽݏ݁ݎ݈ܽܿ݁݀݁ݏ݈݁ ݁݊݋݁݉݋ݏሼݎܲ · 0
ൌ ሺݒ െ ܿሻ · ሺ1 െ  ሻேିଵ݌

In equilibrium two profits are equal, because any nodes 
do not wish to disrupt the equilibrium. Therefore, 
 

(3) 
ሺݒ െ ܿሻ · ሺ1 െ ሻேିଵ݌

ൌ ܿ · ሺ1 െ ሻேିଵ݌ ൅ ݒ  ·          ݌
· ሺܰ െ 1ሻ · ሺ1 െ  ሻேିଶ݌

 
By solving equilibrium 3 the value of p is such as 

equation 2. 
For designing the algorithm, the concept of probabilistic 

self-stabilization has been used. Unlike a deterministic self-
stabilization algorithm, in a probabilistic self-stabilization 
algorithm, some moves will be done bases on probabilities. 

The game between pending nodes is a MIS membership 
game. Because, it’s been assumed that these selfish nodes are 
aware of MIS construction rules. 

The rules of selfish MIS algorithm are shown at figure 4. 
The value of p in rule 1 is calculated from equation 2. 

In equation 2 to simplify calculation of mixed Nash 
probability, it was assumed that all nodes are neighbors for 
symmetric game. In this state, network graph is a complete 
graph. 

 
 

Figure 4. Rules of sMIS algorithm 
 

4. Performance Evaluation 
 
In this section, we conduct a number of experiments to 
compare the performance of our two virtual backbone 
construction algorithms MCDSpp and MCDSpp*with that of 
MCDSss [7]. The comparisons are made in terms of the 
number of update packets (overhead) and stabilization time. 
We simulate the algorithms under two operational scenarios: 
arbitrary configuration (ind and dom variables take on 
random values from the set{IN,OUT}) and multiple fault 
configuration. All experiments are implemented with OM 
net++ simulator under an unfair scheduler, and the reported 
data points are the average of 100 tests in each scenario. The 
MAC configuration adheres to IEEE 802.11 and the channel 
model is simple path loss. Each node asynchronously notifies 
its neighbors of its current state by broadcasting update 
packets. In our proposed algorithms, each node needs to be 
notified of the states of its neighbors. This can increase 
message overhead dramatically. To solve this problem, a 
self-stabilizing synchronization algorithm has been designed 
that manages notifications based on prediction changes 
(figure 5). 
 

 
 

Figure 5. Self-stabilizing synchronization algorithm 
 

In figures 6 and 7, the number of update packets 
(overhead) and stabilization time of MCDSpp, MCDSpp* 
and MCDSss are reported, respectively. Average 
connectivity degree is 8 and we have varied the number of 
nodes. As can be seen, the performance superiority of 
MCDSpp and MCDSpp* over MCDSss becomes even more 
apparent as the number of nodes increases. Overall, 
MCDSpp has the best performance among the three 
algorithms. 

In another scenario, we evaluate the performance of the 
algorithms when faults are injected into the legitimate 
configuration (see figures8 and 9). In this scenario, the 
number of fault injections varies from 1 to 20. The network 
consists of 25 nodes with average connectivity degree of 3. 
MCDSpp stabilizes from single faults using only one 
notification packet. 
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