
S

De

Ab

Sel
eve
leg
cou
dom
cor
spe
self
con
upd
in b
con
alg

Ke

1.

It i
ene
is t
com
key
com
mu
[1]
pha
sub
foc
cre
pro

elf-Stab

A

epartment o

bstract

lf-stabilization
entually conver
itimate configu

unterpart of a v
minating set c
rresponds to a
ecifics of the n
fish nodes exp
nfigurations, wh
date messages d
both MCDSpf a
nfiguration. We
orithms outperf

eywords: Self-

Introduc

is a well-esta
ergy consump
the exchange
mes to the de
y measure of e
mmunication-
ulticast in WA
. The virtual b
ases: a) crea
bstrate, b) find
cus on the
eation and m
operties are

bilizing

Amirreza

of Computer

is a key prope
rges to a legitim
uration as long
irtual backbone
onstruction wi
Nash equilibriu

nodes’ utility fu
plicitly prefer t
hile MCDSpf a
during converge
and MCDSpf*
e propose a th
form comparab

-Stabilization, W

ction

ablished fact t
ption in wirele
 of packets b
sign of routin
efficiency is lo
-efficient struc
ANETs is the
backbone app
ation and up
ding and upda
first phase.

maintenance,
stability an

Virtua

Ramtin

r Engineerin

erty of fault-tol
mate configura
as no transient
e. In this paper,
ith provable p
um (NE). Our
unctions, while
to be out of th
always gives ri
ence, and stabil
algorithms is th

hird algorithm,
le schemes in t

Wireless Ad-Ho

that the funda
ess ad hoc netw
between node
ng mechanism
ow communic
cture for supp
e virtual back

proach to routi
pdate of a

ating the paths
Concerning
the two fo

nd self-confi

al Backb
Ad-H

 Ve

ng and Infor
T

lerant distribut
ation from arbit

fault occurs. In
, we propose tw
erturbation-pro
first algorithm
 the configurat
he virtual back
ise to a unique
lize with minim
hat the nodes d

called sMIS,
erms of stabiliz

oc Network, Vi

amental sourc
works (WAN
s. Hence, wh

ms for WANE
cation overhea
porting routing
kbone archite
ing consists of
virtual back

s. In this pape
virtual back

oremost desi
iguration wit

bone Co
Hoc Netw

esal Hakam

rmation Tec
Tehran, Iran

ted computing
trary initializat
n wireless ad-h
wo distributed s
oof property in
m, namely MCD
tions reached i
kbone. MCDSp

e configuration.
mum changes in
do not deviate f

which also re
zation time and

irtual Backbone

ce of
NETs)
hen it
Ts, a
ad. A
g and
ecture
f two

kbone
r, we

kbone
irable
thout

exte
topo
com
stab
self-

A
even
initi
conf
desi
prop
robu
their
com

onstruc
works

mi

chnology, A
n

systems. A se
tions without a
hoc networks, a
self-stabilizing
n the sense th
DSpf, always r
n our second a
pf* suits in pa
. Both algorithm
n the topologica
from the rules o
elaxes this assu

the number of

e, Selfishness, P

ernal interven
ology of W

mmunications
ility and self
-stabilization i
A self-stabiliz
ntually conver
al configurat
figuration as
gning virtua

perty has the
ustness agains
r internal st

mmunication st

tion in

 Mehd

Amirkabir U

lf-stabilizing a
any external int
a connected dom
algorithms for

hat the legitim
esults in an NE
algorithm, calle
articular for sc
ms increase ac
al structure. Ho
of the system d
umption. The s
state transitions

Perturbation, De

ntion, given
WANETs and

[4]. A pro
f-configuration
in distributed
zing algorithm
rges to the de
ion, and that
long as no t

al backbones
advantages

st: transient fa
tates, and o
tructure of the

The CSI J
Computer
Vol. 10, N
Pages 39-
Regular P

Selfish

di Dehghan

University o

lgorithm ensur
tervention, and
minating set is
approximate m

mate configurati
E configuration
ed MCDSpf*, a
cenarios with m
ccessibility, red
wever, the und

during converge
simulation resu
s.

eviation, Nash

the dynami
d the multi-
omising appr
n is to rely o
fault-toleranc

m guarantees
esirable state
t it remains
transient fault
s with the
of automatic

aults, node fai
occasional br
e system [8].

Journal on
r Science and E
No. 2 & 4 (b), 2
-46
Paper

Wirele

n

of Technolog

res that the sys
d it remains in
the graph-theor

minimum conne
ion of the sys
n regardless of
are NE only if
multiple legitim

duce the numbe
erlying assump

ence to a legitim
ults show that

Equilibrium.

ic and unsta
-hop nature
oach to rea
on the notion
ce [8].

that the sys
regardless of
in the desira
t occurs. Hen
self-stabilizat
structuring,

ilures, change
reakages in

Engineering
2012

ess

gy,

stem
that

retic
cted
stem
f the
f the
mate
er of
ption
mate

our

able
of

alize
n of

tem
f its
able
nce,
tion
and

es in
the

vesal
Highlight

vesal
Highlight

A. Ramtin, V. Hakami and M. Dehghan: Self-Stabilizing Virtual Backbone Construction in Selfish … (Regular Paper) 40

However, in the majority of self-stabilizing protocols for
wireless ad-hoc networks, it is routinely assumed that the
network nodes will cooperate with each other so that the
overall stabilization of the system is guaranteed. This is
while in most practical settings, the nodes neither belong to
the same authority, nor do they operate under a single
administration domain. Hence, it might be the case that the
nodes pursue some private goals that may be in conflict with
the system-wide objective.

Consider, in particular, virtual backbone construction
using a self-stabilizing algorithm. Obviously, once the
protocol stabilizes, the nodes serving in the backbone have to
sacrifice more processing and communication resources to
the benefit of the entire network. Hence, each backbone node
faces a dilemma as to whether maintain its serving role in the
constructed backbone, or alternatively, perturb the system
hoping that the algorithm would re-stabilize this time into a
new configuration where the node is a backbone client rather
than a server.

Motivated by the impact of node selfishness on protocol
stabilization in ad-hoc networks, in this paper, we deal with
perturbation-proneness in the context of virtual backbone
construction in WANETs. The problem is first translated into
minimum connected dominating set (MCDS) construction in
the topological graph of the network. We then propose self-
stabilizing MCDS algorithms that prevent selfish nodes from
post convergence perturbation of the system. A byproduct of
our proposed scheme is faster recovery from all single-fault
configurations with reduced message complexity, lower
number of state transitions, and minimal topological re-
structuring, which contributes to saving energy and
increasing network life.

The underlying assumption in the proposed algorithms is
that the rules are followed obediently by all nodes during
system execution. However, it is more realistic to consider
the case that each node also possesses some private goal and
would behave selfishly towards achieving it. Since these
private goals may not in general be aligned with the public
goal of the algorithm (MCDS) [11], without enforcing some
cooperation mechanism, self-stabilization can no longer be
guaranteed. Based on this observation, we propose a
new approach to guarantee self-stabilization in selfish
networks. We first model the MCDS construction as a
normal-form game, and analytically derive its mixed NE play
probabilities.

We then devise probabilistic self-stabilizing rules for
MCDS construction in which the nodes execute their rules
with probabilities corresponding to their part in the NE of the
MCDS game. We argue that in this new system, the nodes
would have no incentive for disobeying the rules of the
algorithm. To the best of our knowledge, this is the first time
game theory and probabilistic self-stabilization have been
used synergistically to come up with a robust fault-tolerant
system design. The rest of the paper is organized as follows:
We briefly introduce the basic concepts and review the
previous studies in section 2. In 3, the proposed algorithms
are discussed and proofs are given to establish their
correctness. Section 4 deals with the numerical evaluation of
the algorithms and comparisons are made to contrast
their performance against prior art. The paper ends with
conclusions.

2. Theoretical Background and Relevant
Works

A system is self-stabilizing, if and only if, two conditions are
satisfied: a) convergence: starting from an arbitrary initial
state, the system converges to a legitimate global
configuration after a finite number of state transitions, b)
closure: the system remains in legitimate configuration until
no transient fault happens [2]. In this paper, we are interested
in forming a virtual backbone substrate for wireless ad-hoc
networks with robustness properties against both transient
systemic faults and deliberate perturbations. A popular
abstraction in prior art [1] has been to translate the virtual
backbone formation problem into the construction of a
minimum connected dominating set (MCDS) in the
topological graph of the underlying network. In graph theory,
a CDS of graph G is a set D of nodes which satisfy two
conditions: a) D is a connected sub-graph of G. b) any node
of G is either in D or is adjacent to at least one node in D. A
CDS of G is an MCDS, if it has the minimum cardinality
among all possible CDSs of G. In recent years, several self-
stabilizing algorithms have been proposed for constructing
CDS. The majority of the existing self-stabilizing CDS
algorithms, however, have been designed based on central
daemon (scheduler) which is practically impossible to
implement in wireless ad-hoc networks [3]. Furthermore,
most of these works solely construct a CDS and their final
product is not an approximation of MCDS [6]. Another
drawback of all such algorithms is that they do not
differentiate between faults with respect to their spread.

We set up our design on the self-stabilizing algorithm
proposed in [7] which works under distributed scheduler
with O(n2) time complexity. We refer to this algorithm as
MCDSss in the rest of this paper. The CDS Constructed by
this algorithm is based on a sequential scheme [7] that
produces an 8ݐ݌݋ ൅ 1 approximation of MCDS in a given
graph. We present two variants of MCDSss, which render the
CDS construct immune to nodes’ intentional state
manipulations. Such manipulations are typically motivated
by individual node utilities in the sense that the nodes would
naturally prefer to be a CDS client rather than a CDS server.
A general approach to realize the perturbation-proof property
for self-stabilizing systems has been discussed in [5]. It is
argued that the final states in a self-stabilizing system are
analogous to fixed points of a game; hence, a fixed point,
which is also a Nash equilibrium, is obviously immune
against unilateral node deviations. With a perturbation-aware
design, a self-stabilizing system can be made either
absolutely or relatively perturbation-proof. A system is
absolutely perturbation-proof, if all its fixed points are Nash
equilibria for any set of utility functions. On the other hand, a
system is relatively perturbation-proof, if all its fixed points
are Nash equilibria for some specific set of utility functions.

3. Proposed Algorithm

In this section, we first present two perturbation-proof
variants of the MCDSss algorithm, namely MCDSpp and
MCDSpp*. Next, we provide proofs of their self-stabilization
and perturbation-proof properties. Finally, we propose the
third algorithm (sMIS) which is based on game theory.

The CSI Journal on Computer Science and Engineering, Vol. 10, No. 2 & 4 (b), 2012 41

3.1. Discussion on Design and Functionality of
Algorithms

MCDSpp is designed based on the MCDSss algorithm [7].
MCDSss first constructs a breadth-first spanning (BFS) tree
in the network graph. Next, starting from the root, a maximal
independent set (MIS) is formed iteratively among the nodes
of the same depth, which are not dominated by the nodes of
lower depths. Integration of all these sets produces an MIS in
network graph. It is proven that this MIS is a weakly
connected dominating set (WCDS). Finally, a fully
connected set is established by adding connecting nodes.
Connecting nodes are the parents of the MIS members in the
BFS tree. The final fully connected set is a CDS-tree. It is
then proven that the CDS-tree is an 8opt+1 approximation of
an MCDS.

We assume that the tree T is formed in the network graph
through a self-stabilizing BFS tree algorithm. Let “l” denote
the distance of each node from the root. The state of each
node is specified by two variables ind, dom א ሼܰܫ, ܱܷܶሽ in
MCDS configuration. Each node in the legitimate
configuration is in one of the three states: (IN, IN), (IN,
OUT) and (OUT, OUT). The set of nodes in state (IN, IN)
are MIS members. The union of nodes in state (IN, IN) and
(IN, OUT) forms a CDS. In a legitimate configuration, any
state transition can be deemed as a transient fault.

In a legitimate configuration of a self-stabilizing system,
1-fault situations correspond to the occurrence a single fault
in a node v, which is induced by an undesirable change in its
variables. It can be shown that two conditions apply a) one of
the rules is active in v. b) it is possible to reach stability by
execution of only one rule in v [9] [10].We aim to detect and
resolve 1-fault states by restricting rule executions only on
the faulty node, effectively preventing from error
propagation by unwanted execution of rules in v’s neighbors
N(v).

We first define some predicates, which will appear as
preconditions to state transitions. We also introduce some
sets to facilitate the readability of the pseudo-code (figure 1).

Figure 1. Set and Predicate definitions

The sets PN, BN, MN, and CN denote the parent nodes
(lower depth neighbors), sibling nodes (same depth
neighbors), mature nodes (union of PN and BN), and child
nodes (higher depth neighbors) of a node in the tree,
respectively. The fifth expression identifies the parent of a
given node. The parent of a node is its lowest id neighbor.
The 6th and 7thexpressionsverifies whether a mature or parent
neighbor is a member of MIS or not. The 8th term specifies if

a node is pending. If neither a node nor its mature neighbors
are members of MIS, that node is considered to be pending.
The 9th term specifies if a node is in conflict. If a node and at
least one of its mature neighbors are members of MIS, the
conflict predicate is true in that node. The 10thpredicatewill
hold in a node if at least one of its siblings is a member of
MIS and its id is lower than that node. The 11thpredicate
indicates a conflict between a node and one of its parent
neighbors. The rules of MCDSpp are depicted in figure 2.

Figure 2. Rules of MCDSpp algorithm

The process of constructing MIS in the tree proceeds
from root towards the last depth according to rules 1 to 5.
The first rule determines the root’s state. This node must
become a member of MIS. The second rule determines the
membership of the root neighboring nodes (first depth).
Rules 3, 4, and 5 govern the membership of the nodes in
MIS. Anode may become a member by performing rule 3
and may cancel its membership by performing rule 4 or 5.
While MIS forms, deeper nodes states has no effect on upper
nodes states in T. The state of deeper nodes has no effect on
the shallower ones. In order to break symmetry of nodes, we
give priority of MIS membership to the nodes that have
lower id than their siblings in the same depth of the tree. To
detect 1-fault situations, each node needs to know the
membership status of all its 2-hop neighbors. This
information guarantees that if a 1-fault occurs in a given
node’s parent or sibling, no rule will become active on the
node. According to rule 6, members of MIS i.e. the nodes for
which the ind is in IN state, join MCDS. Rule 7 or 8 checks
membership or none-membership of the remaining nodes in
CDS, respectively. Nodes that are fathers of members of
MIS, become members of MCDS by executing rule 7.

There is only one legitimate configuration in a system
based on MCDSpp algorithm. In other words, it always
terminates in a unique virtual backbone. However, if we
assign weights to the nodes, the members of the final CDS

ሻݒሺݎ݋ܾ݄݃݅݁ܰݐ݊݁ݎܽܲ݊݅~ ר ݓ׊
א ܲܰሺݒሻ: ሻݓሺ݃݊݅݀݊݁݌~

ר ൬ݓ׊ א :ሻݒሺܰܤ ݅݀. ݓ

൐ ݅݀. ݒ ቀ݅݊݀. ܷܱܶ ݓ

ר ൫݅݊ܲܽݎ݋ܾ݄݃݅݁ܰݐ݊݁ݎሺݓሻ

ש ሻ൯ቁ൰ݓሺ݀ܫݎ݁ݓ݋ܮ݄ݐܹ݅ݎ݄݁ݐ݋ݎܤ݊݅ ՜ ݅݊݀. ݒ

ؔ , ܰܫ .݉݋݀ ݒ ؔ ܰܫ

R1. ݈. ݒ ൌ 0 ר ሺ݅݊݀. ݒ ൌ ש ܷܱܶ .݉݋݀ ݒ ൌ ܱܷܶሻ ՜ ݅݊݀. ݒ ؔ
ܰܫ , .݉݋݀ ݒ ؔ ܰܫ

R2. ݈. ݒ ൌ ר 1 ݅݊݀. ݒ ൌ ܰܫ ՜ ݅݊݀. ݒ ؔ ܱܷܶ
R3. ݈. ݒ ് 0 ר ݈. ݒ ് 1 ר ݅݊݀. ܷܱܶ ݒ ר

R4. ݈. ݒ ് 0 ר ݈. ݒ ് 1 ר ሻݒሺݐ݊݁ݎ݄ܽܲݐܹ݅ݐ݈݂ܿ݅݊݋ܿ ר
൫ݓ׊ א ܲܰሺݒሻ: ሻ൯ݓሺݐ݈݂ܿ݅݊݋ܿ~ ՜ ݅݊݀. ݒ ؔ ܱܷܶ

R5. ݈. ݒ ് 0 ר ݈. ݒ ് 1 ר ݅݊݀. ݒ ൌ
ܰܫ ר ሻݒሺݐ݊݁ݎ݄ܽܲݐܹ݅ݐ݈݂ܿ݅݊݋ܿ~ ר ሺݓ׊ א :ሻݒሺܰܤ ݅݊݀. ݓ ൌ
ܰܫ ר ሻݓሺݐ݊݁ݎ݄ܽܲݐܹ݅ݐ݈݂ܿ݅݊݋ܿ~ ר
ሻݓሺ݀ܫݎ݁ݓ݋ܮ݄ݐܹ݅ݎ݄݁ݐ݋ݎܤ݊݅~ ר ݅݀. ݓ ൏ ݅݀. ሻݒ ՜ ݅݊݀. ݒ ؔ
ܱܷܶ

R6. ~ܴ2 ר ~ܴ4 ר ~ܴ5 ר ݅݊݀. ݒ ൌ ܰܫ ר .݉݋݀ ݒ ൌ ܱܷܶ ՜
.݉݋݀ ݒ ؔ ܰܫ

R7. ~ܴ3 ר ݅݊݀. ݒ ൌ ܱܷܶ ר .݉݋݀ ݒ ൌ ܱܷܶ ר ሺݓ׌ א
:ሻݒሺܰܥ ݅݊݀. ݓ ൌ ܰܫ ר ሻݓሺݐ݈݂ܿ݅݊݋ܿ~ ר ሻݓሺݎ݄݁ݐ݂ܽ ൌ ሻݒ ՜
.݉݋݀ ݒ ؔ ܰܫ

R8. ~ܴ3 ר ݅݊݀. ݒ ൌ ܱܷܶ ר .݉݋݀ ݒ ൌ ܰܫ ר ሺݓ׊ א
:ሻݒሺܰܥ ሻݓሺݎ݄݁ݐ݂ܽ ്
ݒ ש ൫݅݊݀. ݓ ൌ ܱܷܶ ר ሻ൯ሻݓሺ݃݊݅݀݊݁݌~ ՜ .݉݋݀ ݒ ؔ ܱܷܶ

ሻ࢜ሺࡺ࡮ .1 ؔ ሼݓ א ܰሺݒሻ|݈. ݓ ൌ ݈. ሽݒ
ሻ࢜ሺࡺࡼ .2 ؔ ሼݓ א ܰሺݒሻ|݈. ݓ ൏ ݈. ሽݒ
ሻ࢜ሺࡺ࡯ .3 ؔ ሼݓ א ܰሺݒሻ|݈. ݓ ൐ ݈. ሽݒ
ሻ࢜ሺࡺࡹ .4 ؔ ሼݓ א ܰሺݒሻ|݈. ݓ ൏ൌ ݈. ሽݒ
ሻ࢜ሺ࢘ࢋࢎ࢚ࢇࢌ .5 ؔ minሼ݅݀. ݓ|ݓ א ܲܰሺݒሻሽ
ሻ࢜ሺ࢘࢕࢈ࢎࢍ࢏ࢋࡺࢋ࢛࢚࢘ࢇࡹ࢔࢏ .6 ؠ ݓ׌ א :ሻݒሺܰܯ ݅݊݀. ݓ ൌ ܰܫ
ሻ࢜ሺ࢘࢕࢈ࢎࢍ࢏ࢋࡺ࢚࢔ࢋ࢘ࢇࡼ࢔࢏ .7 ؠ ݓ׌ א ܲܰሺݒሻ: ݅݊݀. ݓ ൌ ܰܫ
ሻ࢜ሺࢍ࢔࢏ࢊ࢔ࢋࡼ .8 ؠ ݅݊݀. ݒ ൌ ר ܷܱܶ ሻݒሺݎ݋ܾ݄݃݅݁ܰ݁ݎݑݐܽܯ݊݅~
ሻ࢜ሺ࢚ࢉ࢏࢒ࢌ࢔࢕ࢉ .9 ؠ ݅݊݀. ݒ ൌ ܰܫ ר ሻݒሺݎ݋ܾ݄݃݅݁ܰ݁ݎݑݐܽܯ݊݅
ሻ࢜ሺࢊࡵ࢘ࢋ࢝࢕ࡸࢎ࢚࢏ࢃ࢘ࢋࢎ࢚࢕࢘࡮࢔࢏ .10 ؠ ݓ׌ א :ሻݒሺܰܤ ݅݊݀. ݓ ൌ

ܰܫ ר ݅݀. ݓ ൏ ݅݀. ݒ
ሻ࢜ሺ࢚࢔ࢋ࢘ࢇࡼࢎ࢚࢏ࢃ࢚ࢉ࢏࢒ࢌ࢔࢕ࢉ .11 ؠ ݅݊݀. ݒ ൌ

ܰܫ ר ሻݒሺݎ݋ܾ݄݃݅݁ܰݐ݊݁ݎܽܲ݊݅

A. Ramtin, V. Hakami and M. Dehghan: Self-Stabilizing Virtual Backbone Construction in Selfish … (Regular Paper) 42

always have the lowest weight among their neighbors, and in
general, it is possible that there exist better MCDS
approximations which are ignored by MCDSpp. To solve
this problem, we design a new algorithm called
MCDSpp*which differs from MCDSpp in just the third rule.

In rule 3 of the MCDSpp*, we address situations that the
occurrence of 1-faults in members may spread to their
neighbors. This situation occurs when a none-member node v
has no pending sibling neighbor and has only one member
sibling w whose id is greater than that of v’s. In this situation,
if a fault happens in w, after re-convergence, node v will
become member of MCDS instead of w. Therefore,12-
thpredicate in rule 3 captures such occurrences in the
legitimate configurations.

Figure 3. The third rule of MCDSpp* algorithm

3.2. Proof of Correctness

In this part, we prove the correctness of MCDSpp through a
sequence of lemmas and theorems. For the most parts, the
proofs associated with MCDSpp*proceed along the same
lines, and are thus skipped here due to space limitations.
Lemma 1. Assume that the spanning tree T is valid up to the
i-th depth and MIS is constructed up to (i-1)th depth by
MCDSpp rules. It then holds that the MIS is constructed up
to the ith depth after the maximum of m rounds. In addition,
no node changes its state in the absence of transient faults.
Proof. The root becomes a member of MIS by executing rule
1 at the first round. It is obvious that this membership is
permanent because rules 2-5 are not executed in the root.
Similarly, neighbors of root (l=1) leave membership of MIS
via rule 2 at the first round and this decision will be
permanent. It is clear that the membership of deeper nodes
has no effect on the membership of the ith depth in MIS
according to rules 1-5. If a node gets out because of rule 4 or
gets in because of rule 3, assuming that no ‘in brother with
lowerid’ term has been active in rule 3, the new state of node
will be permanent. The reason is that all predictions are
related either to lower depth nodes for which the validation
and stability are assumed, or to the base information like id.
Yet in rule 3 or 5, there is the predicate ‘in brother with
lowerid’, which is also related to the state of the same depth
nodes. At the first round in all nodes that rule 4 is active, ind
variable becomes equal to OUT. It is obvious that OUT state
(non-membership in MIS) is permanent in these nodes.
Following the first round, in the second round, ind variable
in all nodes which rule 3 is active in them becomes equal to
IN. After the second round, either ind variable value is
permanently OUT in all nodes of ith depth or at least there is
one node (v) that is in IN state, a permanent state. In the third
round, neighboring nodes with the same depth of node v,
which are in IN state switch to OUT state (rule 5). It can be
shown that this state is permanent in those nodes and does

not change in following rounds. In the next round, nodes that
rule 5 is active in them get out and it is permanent. Then,
rounds 3 and 4 will be repeated until there is still some nodes
in which rules 3 or 5 are active. So, a number of rounds up to
a maximum equal to the number of ith depth nodes are
traversed until MIS is constructed at this depth.
Lemma 2. MIS structure in T is formed after n rounds. n is
number of tree nodes.
Proof. We use induction to prove this lemma. In lemma 1, it
has been shown that the root and the second-depth nodes of
T enter to valid state of MIS just in one round (basis:
statement holds for d=1, 2). Using lemma 1, inductive step
will be proven for d>1. Due to lemma 1, if MIS is formed up
to the ith depth, after ݉௜ rounds, it will be formed up to
(i+1)th depth. Therefore time complexity of MIS construction
is ݋ሺ∑ ݉௜

஽
௜ୀଶ ሻ which is equal to o (n). D is depth of T.

Lemma 3. (convergence). The MCDSpp algorithm
constructs MCDS after RT+n+1 rounds.
Proof. T in RT and then MIS in n rounds are constructed.
According to rules 6-8, members of MIS and connecting
nodes join to MCDS. The MCDS members with active rule
#8 exit in one round. Since all terms of those three rules
depend on id and ind variables, and not on dom, final states
are permanent.
Lemma 4. (closure).
Proof. We prove this lemma by contradiction. Suppose that
the closure condition does not hold; hence, at least one rule is
active in legitimate configuration. This is while due to
lemmas 1-3, the final states are permanent and no rules will
be executed in the legitimate configuration.

3.3. Proof of Perturbation-Proof Feature

Lemma 5. Occurrence of 1-fault in ind variable of a node in
the ith depth has no effect on the state of upper or lower depth
nodes.
Proof. Since the MIS is formed prior the 1-fault incident,
either of the pending or conflict predicates will hold. The
state of parents affects the preconditions of rules 3-5 in a
node. To be sure that those rules will not be activated by the
1-fault incident in lower depth nodes, some terms are added
to them, checking whether the pending or conflict predicates
are active in the parent neighbors or not. Similarly, in rules
7-8, those predicates are checked for upper depth nodes
given that the states of children affect the preconditions for
those rules. It is obvious that preconditions of rules 1, 2 and
6 have no relevance to the states of the neighbors.
Lemma 6. In a system based on MCDSpp algorithm,
occurrence of1-fault in ind variable of an ith depth node has
no effect on the other ith depth nodes.
Proof. It is obvious that the change in ind variable of a node
has no impact on the dom variables of its siblings. Hence, we
only focus on the 1-faults in q node v and its impact on the
ind variables of the ith depth 1-hop neighbor z and 2-hop
neighbor k.

If 1-fault (IN to OUT) happens in v, the only rule that
might be active in z is rule 3. Note that state of z is OUT. If
node z has a parent in IN state or its id is greater than v, rule
3 does not activate. Otherwise it is evident that in the valid
states, rule 3 did not execute in z because of another brother
like w that had a lower ݅݀ than z and was in IN state.
Because 1-fault happens in z, not w, rule 3 still do not
activate in z. If state of k is IN, the only rule that might be

R'3. ݈. ݒ ് 0 ר ݈. ݒ ് 1 ר ݅݊݀. ݒ ൌ ܱܷܶ ר ሻݒሺݎ݋ܾ݄݃݅݁ܰݐ݊݁ݎܽܲ݊݅~ ר
ݓ׊ א ܲܰሺݒሻ: ~݃݊݅݀݊݁݌ሺݓሻ ר ሺሺݓ׊ א :ሻݒሺܰܤ ݅݊݀. ݓ ൌ ܱܷܶ ר
ሺ݅݀. ݓ ൐
݅݀. ݒ ש ሺ݅݊ܲܽݎ݋ܾ݄݃݅݁ܰݐ݊݁ݎሺݓሻ ש
ሻሻሻሻݓሺ݀ܫݎ݁ݓ݋ܮ݄ݐܹ݅ݎ݄݁ݐ݋ݎܤ݊݅ ש ሺሺݓ׊ א
:ሻݒሺܰܤ ሻ ሻݓሺ݃݊݅݀݊݁݌~ ר ሻሻሻݒሺ݀ܫݎ݁ݐܽ݁ݎܩݎ݄݁ݐ݋ݎܤ݊ܫ݁݊݋ ՜
݅݊݀. ݒ ؔ , ܰܫ .݉݋݀ ݒ ؔ ܰܫ

ሻ࢜ሺࢊࡵ࢘ࢋ࢚ࢇࢋ࢘ࡳ࢘ࢋࢎ࢚࢕࢘࡮࢔ࡵࢋ࢔࢕ .12 ؠ ሺݓ׌ א :ሻݒሺܰܤ ݅݊݀. ݓ ൌ ܰܫ ר
݅݀. ݓ ൐ ݅݀. ሻݒ ר ሺ|ሼݓ א .݀݊݅|ሻݒሺܰܤ ݓ ൌ |ሽܰܫ ൌ 1ሻ

The CSI Journal on Computer Science and Engineering, Vol. 10, No. 2 & 4 (b), 2012 43

active in that node is rule 5. However, in rule 5,even if term
‘~in brother with lowerid’ is active, term ‘ind. w=IN’ must
be active concurrently either, but in the previous paragraph
we show that 1-hop brother of v remains in OUT state. If
node k is in OUT state, rule 3 certainly cannot be active in it,
because there is no preconditions in that rule that holds with
occurrence of 1-fault.

Assuming that 1-fault (OUT to IN) happens in v, if state
of z is OUT, it cannot activate any rule in z. If state of z is
IN, the only rule that might be active is rule 5. Because valid
state of v had been OUT, there were some preconditions of
rule 3 that had not hold. It is not possible that node v can
activate rule 5 in another node because of those
preconditions. In legitimate configuration, MIS membership
states in two-hop neighborhood of v (k z v) is one of these
three cases: (010,100,000). In the first case, the only rule that
might be active is rule 3, but term ‘ind.w=OUT’ must hold if
rule 3 is active. Therefore, 1-fault cannot activate rule 3 in k,
because state of z is still IN. In the second case, the only rule
that can be active is rule 5, but as the term ‘ind.w=IN’ exists
in rule 5, it cannot activate, because z is in OUT state. In the
last case, although it seems that rule 3 can activate in node k,
but a brother or a parent in IN state has existed and they still
do not allow rule 3 being active in node k.
Lemma 7. In a system based on MCDSpp* algorithm,
occurrence of 1-fault in ind variable of a ith depth member
node (IN to OUT) has no effect on the other ith depth nodes.
Proof. It is obvious that ind variable change in a node has no
effect on the dom variables of its brothers. Hence, we
investigate effect of 1-fault in node v on ind variables of the
ith depth 1-hop neighbor z. For a2-hop neighbor, it is
completely like lemma 6.

If 1-fault (IN to OUT) happens in v, the only rule that
might be active in z is rule 3. Note that state of z is OUT. If
node z has a parent in IN state, its id is greater than v or is
still pending, rule 3 does not activate. Now assume that node
z is pending and its id is lower than v. It is concluded that
before occurrence of 1-fault in v, node z have had only one
member neighbor with higher id. Because system has been in
legitimate configuration, all neighbors of z were in none-
pending state. However, with considering the terms of rule 3,
before occurrence of 1-fault in v, rule 3 has been activated in
z that is in contradiction with definition of legitimate
configuration.
Lemma 8. 1-faults in the dom variable of an ith depth node
have no effect on the states of is neighbors.
Proof. Since in preconditions of rules 1-8 do not refer to dom
variables of neighbors, it is obvious that the change of dom
variable in a node has no effect on the others.
Theorem 1. If a 1-fault occurs in the system, faulty nodes
and only that node enters to the valid state that it was in
before.
Proof. The convergence property of an algorithm explains
that the system converges from an illegitimate configuration
to a legitimate one. We also showed in lemmas 5-8 that the
occurrence of 1-faults has no effect on the neighbors. With
these in mind, it is easy to see that with the execution of the
self-stabilizing rules in the faulty node, the system will return
to a legitimate configuration.
Theorem 2. If the self-stabilizing rules cause that after
perturbation of any selfish node in a legitimate configuration,
the system returns to that legitimate configuration, that
configuration is a Nash equilibrium.

Proof. Consider the definition of a Nash equilibrium: a
legitimate configuration of a self-stabilizing system is a Nash
equilibrium, if no node can profit by unilateral deviations
from its state. The main drive for a node to induce
perturbations in a self-stabilizing system is the possible
convergence of the algorithm into an alternative legitimate
configuration so that its utility increases in the new
configuration. In a legitimate configuration of a self-
stabilizing system, perturbation of a node is analogous to the
occurrence of a 1-fault in that node. Given that the rules in
MCDSpp guarantee that after any 1-fault in a given node, the
system converges back to the same legitimate configuration,
no node will have any incentive to deviate from its valid
state, and thus the algorithm, once stabilizes, gives rise to a
Nash equilibrium configuration.
Theorem 3. A system based on MCDSpp algorithm is
absolutely perturbation-proof.
Proof. According to theorem 1, in a system based on
MCDSpp algorithm, after 1-fault incident in legitimate
configuration, system will return to that legitimate
configuration again only by one move. In theorem 2, we said
that if self-stabilizing rules force system to return to the
previous legitimate configuration after perturbation of a
selfish node, that configuration is in Nash equilibrium.
Therefore, stable states of a self-stabilizing system based on
MCDSpp algorithm are in Nash equilibrium for any utility
functions. It means that the MCDSpp algorithm is absolutely
perturbation-proof.
Theorem 4. A system based on MCDSpp* algorithm is
relatively perturbation-proof.
Proof. In a system based on MCDSpp* algorithm, after any
1-fault in dom variables and IN to OUT 1-faults in ind
variables, the system will return to the previous configuration
only by one move. In theorem 2, we said that if the self-
stabilizing rules force the system back to the pre-perturbation
configuration, this configuration is a Nash equilibrium.
Therefore, the stable states of a self-stabilizing system based
on MCDSpp*algorithm are Nash equilibria with respect to
the utility functions that drive a member node to perturb and
get out of the virtual backbone construction. It means that the
MCDSpp algorithm is relatively perturbation-proof and no
member node has an incentive to exit from the membership
of the virtual backbone construction.

3.4. Preventing From Deviation

At the proposed algorithms for construction of virtual
backbone, at the beginning, in each level of T tree, a
maximal independent set was constructed. Assuming this set
has been constructed, non-member nodes profit v and
member nodes profit v-c. v is a profit from construction of set
(forming virtual backbone) and c is the responsibility cost of
member node (communication and calculation overhead). It
is obvious that value of c is less than v-c [12].
Theorem 5.Structure of MIS which is constructed at the
network graph corresponds to a Nash equilibrium.
Proof. At a MIS, each node is a member or it has a
neighborhood member and also none of two member nodes
are adjacent. Assuming that a member node changes its state,
then the profit of the node is equal to zero instead of v-c.
Moreover, if a non-member node unilaterally become a
member, then the profit of the node will be v-c instead of v.

A. Ramtin, V. Hakami and M. Dehghan: Self-Stabilizing Virtual Backbone Construction in Selfish … (Regular Paper) 44

Therefore, any nodes will not profit more by unilateral
deviation. This is the definition of Nash equilibrium.

Assuming that each node to decide to be a member of
MIS, interact with the rest of nodes rationally. Therefore,
each node which itself and its neighbors are not member of
MIS, is reluctant to become a member of MIS. It is obvious
that in this condition, selfish nodes do not follow algorithm
rules. In general, non-cooperation of nodes in performing the
rules is not a part of conventional self-stabilization
definition.

Assuming nodes are aware of construction rules of MIS,
utility function in a network consisting of N selfish nodes
which are neighbors, will be like the equation 1.

௜ݑ ൌ

ە
ۖ
۔

ۖ
ۓ

ݐܽݐݏ ,0 ௝݁ ൌ ܱܷܶ, ݆׊ א ܰ
ݒ െ ௜݁ݐܽݐݏ ,ܿ ൌ א ݆׊ ݀݊ܽܰܫ .ݏܰ ݐܽݐݏ .ݐ ௝݁ ൌ ܱܷܶ

,ݒ ௜݁ݐܽݐݏ ൌ ܱܷܶܽ݊݀ห൛݆ห݆׊ א ݐܽݐݏ .ܰ ௝݁ ൌ ܱܷܶൟห ൌ 1

0, ห൛݆ห݆׊ א ݐܽݐݏ .ܰ ௝݁ ൌ ܱܷܶൟห ൐ 1

(1)

The lowest profit has two state: several nodes decide the

strategy of membership, or any nodes do not become a
member. If just a one node become a member, then profit of
member node is v-c and the profit of other nodes are v.
Theorem 6: In a MIS membership game, the probability of
that a player choose IN strategy, is based on equation 2.

݌ (2) ൌ
ݒ െ ܿ

ݒܰ െ ܿ

Proof: For calculating the probability of IN mixed strategy
from symmetric Nash equilibrium in MIS membership game
with utility function of u, we first calculate profit of both
strategies of IN and OUT.

ܷே஽ ൌ ሽ݁ݎ݈ܽܿ݁݀݁ݏ݈݁݁݊݋݋ሼ݊ݎܲ · ܿ ൅ ሽݏ݁ݎ݈ܽܿ݁݀݁݊݋ݕ݈݊݋ሼݎܲ
· ݒ ൅ ሽ݁ݎ݈ܽܿ݁݀݁݊݋݄݊ܽݐ݁ݎ݋ሼ݉ݎܲ · 0

ܷ஽ ൌ ሽ݁ݎ݈ܽܿ݁݀݁ݏ݈݁݁݊݋݋ሼ݊ݎܲ · ሺݒ െ ܿሻ
൅ ሽݏ݁ݎ݈ܽܿ݁݀݁ݏ݈݁ ݁݊݋݁݉݋ݏሼݎܲ · 0
ൌ ሺݒ െ ܿሻ · ሺ1 െ ሻேିଵ݌

In equilibrium two profits are equal, because any nodes
do not wish to disrupt the equilibrium. Therefore,

(3)
ሺݒ െ ܿሻ · ሺ1 െ ሻேିଵ݌

ൌ ܿ · ሺ1 െ ሻேିଵ݌ ൅ ݒ · ݌
· ሺܰ െ 1ሻ · ሺ1 െ ሻேିଶ݌

By solving equilibrium 3 the value of p is such as

equation 2.
For designing the algorithm, the concept of probabilistic

self-stabilization has been used. Unlike a deterministic self-
stabilization algorithm, in a probabilistic self-stabilization
algorithm, some moves will be done bases on probabilities.

The game between pending nodes is a MIS membership
game. Because, it’s been assumed that these selfish nodes are
aware of MIS construction rules.

The rules of selfish MIS algorithm are shown at figure 4.
The value of p in rule 1 is calculated from equation 2.

In equation 2 to simplify calculation of mixed Nash
probability, it was assumed that all nodes are neighbors for
symmetric game. In this state, network graph is a complete
graph.

Figure 4. Rules of sMIS algorithm

4. Performance Evaluation

In this section, we conduct a number of experiments to
compare the performance of our two virtual backbone
construction algorithms MCDSpp and MCDSpp*with that of
MCDSss [7]. The comparisons are made in terms of the
number of update packets (overhead) and stabilization time.
We simulate the algorithms under two operational scenarios:
arbitrary configuration (ind and dom variables take on
random values from the set{IN,OUT}) and multiple fault
configuration. All experiments are implemented with OM
net++ simulator under an unfair scheduler, and the reported
data points are the average of 100 tests in each scenario. The
MAC configuration adheres to IEEE 802.11 and the channel
model is simple path loss. Each node asynchronously notifies
its neighbors of its current state by broadcasting update
packets. In our proposed algorithms, each node needs to be
notified of the states of its neighbors. This can increase
message overhead dramatically. To solve this problem, a
self-stabilizing synchronization algorithm has been designed
that manages notifications based on prediction changes
(figure 5).

Figure 5. Self-stabilizing synchronization algorithm

In figures 6 and 7, the number of update packets
(overhead) and stabilization time of MCDSpp, MCDSpp*
and MCDSss are reported, respectively. Average
connectivity degree is 8 and we have varied the number of
nodes. As can be seen, the performance superiority of
MCDSpp and MCDSpp* over MCDSss becomes even more
apparent as the number of nodes increases. Overall,
MCDSpp has the best performance among the three
algorithms.

In another scenario, we evaluate the performance of the
algorithms when faults are injected into the legitimate
configuration (see figures8 and 9). In this scenario, the
number of fault injections varies from 1 to 20. The network
consists of 25 nodes with average connectivity degree of 3.
MCDSpp stabilizes from single faults using only one
notification packet.

.݁ݐܽݐݏ .1 ݒ ൌ ሾܱܷܶ ՜ ሿܰܫ ื ,ݐ݁݇ܿܽ݌ ܿ݊ݕݏሺ݀݊݁ݏ ݁ݐܽ݀ ൌ 1ܺܺሻ
.݁ݐܽݐݏ .2 ݒ ൌ ሾܰܫ ՜ ܱܷܶሿ ื ,ݐ݁݇ܿܽ݌ ܿ݊ݕݏሺ݀݊݁ݏ ݁ݐܽ݀ ൌ 1ܺܺሻ
.݁ݐܽݐݏ .3 ݒ ൌ ר ܷܱܶ ሾ݃݊݅݀݊݁݌ሺݒሻ ՜ ሻሿݒሺ݃݊݅݀݊݁݌~ ื

,ݐ݁݇ܿܽ݌ ܿ݊ݕݏሺ݀݊݁ݏ ݁ݐܽ݀ ൌ 00ܺሻ
.݁ݐܽݐݏ .4 ݒ ൌ ר ܷܱܶ ሾ~݃݊݅݀݊݁݌ሺݒሻ ՜ ሻሿݒሺ݃݊݅݀݊݁݌ ื

,ݐ݁݇ܿܽ݌ ܿ݊ݕݏሺ݀݊݁ݏ ݁ݐܽ݀ ൌ 01ܺሻ
.݁ݐܽݐݏ .5 ݒ ൌ ר ܰܫ ሾܿݐ݈݂ܿ݅݊݋ሺݒሻ ՜ ሻሿݒሺݐ݈݂ܿ݅݊݋ܿ~ ื

,ݐ݁݇ܿܽ݌ ܿ݊ݕݏሺ݀݊݁ݏ ݁ݐܽ݀ ൌ 10ܺሻ
.݁ݐܽݐݏ .6 ݒ ൌ ר ܰܫ ሾ~ܿݐ݈݂ܿ݅݊݋ሺݒሻ ՜ ሻሿݒሺݐ݈݂ܿ݅݊݋ܿ ื

,ݐ݁݇ܿܽ݌ ܿ݊ݕݏሺ݀݊݁ݏ ݁ݐܽ݀ ൌ 11ܺሻ
7. ൣ൫~݅݊݀ܫݎ݁ݓ݋ܮ݄ݐܹ݅ݎ݄݁ݐ݋ݎܤሺݒሻ ר ሻ൯ݒሺݎ݋ܾ݄݃݅݁ܰݐ݊݁ݎܽܲ݊݅~ ՜

൫݅݊݀ܫݎ݁ݓ݋ܮ݄ݐܹ݅ݎ݄݁ݐ݋ݎܤሺݒሻ ש ሻ൯൧ݒሺݎ݋ܾ݄݃݅݁ܰݐ݊݁ݎܽܲ݊݅ ื
,ݐ݁݇ܿܽ݌ ܿ݊ݕݏሺ݀݊݁ݏ ݁ݐܽ݀ ൌ ܺܺ1ሻ

8. ሾሺ݅݊݀ܫݎ݁ݓ݋ܮ݄ݐܹ݅ݎ݄݁ݐ݋ݎܤሺݒሻ ש ሻሻݒሺݎ݋ܾ݄݃݅݁ܰݐ݊݁ݎܽܲ݊݅ ՜
ሺ~݅݊݀ܫݎ݁ݓ݋ܮ݄ݐܹ݅ݎ݄݁ݐ݋ݎܤሺݒሻ ר ሻሻሿݒሺݎ݋ܾ݄݃݅݁ܰݐ݊݁ݎܽܲ݊݅~ ื
ܿ݊ݕݏሺ݀݊݁ݏ ,ݐ݁݇ܿܽ݌ ݁ݐܽ݀ ൌ ܺܺ0ሻ

R1. ݁ݐܽݐݏ. ݒ ൌ ܱܷܶ ר ݓ׊ א ܰሺݒሻ: .݁ݐܽݐݏ ݓ ൌ ܱܷܶ
௣
՜ .݁ݐܽݐݏ ݒ ൌ ܰܫ

R2. ݁ݐܽݐݏ. ݒ ൌ ܰܫ ר ݓ׌ א ܰሺݒሻ: .݁ݐܽݐݏ ݓ ൌ ܰܫ ՜
݁ݐܽݐݏ ݒ ؔ ܱܷܶ

The

F

Fig
tim

Fig
ove

Fig
stab

e CSI Journal o

Figure 6. The i

gure 7. The im
me

gure 8. The i
erhead

gure 9. The i
bilization tim

on Computer Sc

impact of the

mpact of the n

mpact of the

mpact of the
e

cience and Engi

number of no

number of nod

 number of f

 number of f

ineering, Vol. 1

odes on overhe

des on stabiliz

fault injection

fault injection

0, No. 2 & 4 (b

ead

zation

ns on

ns on

W
and4
injec
decr

5. C

In th
algo
base
algo
topo
our
selfi
back
featu
fault
prev
We
the p

Re

[1]
Back
Netw
Com

[2]
Stab
and

[3]
and
(We
Skel
71, n

[4]
Rou
Jour
pp. 1

[5]
Stab
Safe
2009

[6]
Algo
Grap
Com
2005

[7]
Dist
Con
and

[8]
Theo
2010

b), 2012

While MCDS
4.4 notificatio
ctions, the pe
reases.

Conclusio

his paper, two
orithms have b
ed on the notio
orithms are s
ology changes
algorithms g

ish nodes hav
kbone once
ured by our a
t configuration

vents from dev
plan to exten
probabilities a

ferences

X. Cheng, M
kbone Cons
works," Journ

mputing, vol. 6

A. Dasgupta
bilization," Pr
Security of D

D. Dubhashi
A. Sriniva

eakly) Conne
letons," Journ
no. 4, pp. 467

L. Gao, M. L
uting Structure
rnal of Compu
123-135, 2010

M. Gouda,
bilizing Syste
ety, and Secu
9.

A. Jain, and
orithm for Fi
ph," Proc. IE

mputing, Appl
5.

S. Kamei,
tributed Appr
nnected Domin

Distributed P

S. Tixeuil, S
ory of Comp
0.

Spp* and MC
on packets, r
rformance ga

on

o distributed
been proposed
on of MCDS
elf-stabilizing

s. We proved t
ives rise to a

ve no motivat
the system

algorithms is
ns. We also p
viation of self

nd the third alg
as the network

M. Ding, D.
truction in

nal of Wireless
6, no. 2, pp. 18

a, S. Ghosh
roc. IEEE In
istributed Sys

, A. Mei, A.
asan, "Fast
ected Domin
nal of Compu
-479, 2005.

Li, B. Li, and
es in Wireles
uter Science a
0.

and H. Ac
ms," Proc. IE

urity of Distr

A. Gupta, "
inding a Con
EEE Intl Co
lications and

and H. Ka
roximation A
nating Set," P

Processing, pp

Self-stabilizing
putation Hand

CDSss need
respectively. W
ain of MCDSp

virtual backb
d for wireless
in graph theo

g against tran
that the stable
a Nash equili
tion to perturb
converges. T
fast converge
roposed a nov

fish nodes dur
gorithm to ad

k topology cha

H. Du, and
Multihop A

s Communica
83-190, 2006.

h, and S. T
tl Conf. Stab

stems, pp. 231

Panconesi, J
Distributed

nating Sets
uter and Syste

d W. Zhou, "V
ss Adhoc Ne

and Technolog

charya, "Nas
IEEE Intl Co
ibuted System

A Distributed
nnected Dom
onf. Parallel
d Technologie

akugawa, "A
Algorithm for
Proc. IEEE In
p. 1-8, 2007.

g Algorithms,
dbook, Chap

on average
With more f
pp over MCD

bone construct
ad-hoc netwo
ry. The propo

nsient faults
e configuration
brium, and th
b the construc
The other m
ence from sin
vel algorithm
ring convergen
daptively regu
anges.

X. Jia, "Vir
Adhoc Wire
ations and Mo

Tixeuil, "Sel
bilization, Saf
-243, 2006.

. Radhakrishn
Algorithms
and Linear-

em Sciences,

Virtual Backb
etworks," Glo
gy, vol. 10, no

sh Equilibria
onf. Stabilizat
ms, pp. 311-3

d Self-stabiliz
minating Set i

and Distribu
es, pp. 615-6

Self-stabiliz
r the Minim
tl Symp. Para

 Algorithms
man and H

 45

1.2
fault
DSss

tion
orks
osed
and
n of
hus,
cted

merit
ngle
that
nce.

ulate

rtual
less
bile

lfish
fety,

nan,
for

size
vol.

bone
obal
o. 4,

in
tion,
324,

zing
in a
uted
619,

zing
mum
allel

and
Hall,

A.

[9]
Sta
Ga
pp.

[10
"Fa
Jou
200

[11
Phi
Tak
stab
Co

[12
Ap
Jou
93,

E-

E-

res
Iran
the
Ma
of A
E-

P

R
A
C
D
T
T

Ramtin, V. Hak

 S. Köhler,
abilization in
ap," Proc. IEE
. 418-427, 201

0] S. Ghosh, A
ault-containin
urnal of Distr
07.

1] S. Dolev,
ilippas, "Strat
keovers Imp
bilizing Auto

ommunications

2] G. Koltsida
pproach to Cl
urnal of Teleco
, 2010

mail:a_ramti

mail: vhakam

spectively. Sin
n Telecommu

e area of Qu
anagement. H
Amirkabir Un
mail: dehgha

Paper Handl

Submitted: 19
Received in re
Accepted: 21.
Correspondin
Department o
Technology,
Tehran, Iran.

kami and M. De

and V. Tu
Asynchronou

EE Intl Conf. D
10.

A. Gupta, T.
ng Self-stabil
ributed Compu

E. M. Schi
tegies for Re
plementable
mata," Journa
s Systems, vol

as, and F.-N. P
lustering of A
ommunication

Amirre
Comput
Univers
in 2011
Techno
Univers
Tehran,

in@aut.ac.ir

Vesal
MSc i
Amirk
Tehran
respec
studen
Amirk

mi@aut.ac.ir

Mehdi
Compu
Univers
(IUST)
MSc
Univers
Tehran,

nce 1995, he
unication Rese
ality of Serv

He joined Com
niversity of Te
an@aut.ac.ir

ling Data:

9.05.2014
evised form: 2
.10.2014

ng author: Dr.
of Computer E

Amirkabir

ehghan: Self-St

urau, "Fault-
us Systems wi
Distributed Co

Herman, and
lizing Distrib
uting, vol. 20

iller, P. G.
peated Game
by Determin

al of Autonom
l. 4, no. 1, pp.

Pavlidou, "A
Adhoc and S
n Systems, vol

eza Ramtin re
ter engineerin
sity of Techno
1, and his M
logy fro
sity of Tec
, Iran in 2013.

Hakami rece
in Computer

kabir Universi
n, Iran in 2
ctively. He is
nt of Informat
kabir Universi

Dehghan re
uter engineer
sity of Scienc
, Tehran, Iran
and PhD
sity of Tec
, Iran in 1
has been a re
earch Center (
vice provision
mputer Engine
echnology in 2

28.09.2014

Mehdi Dehgh
Engineering a
University o

tabilizing Virtu

-Containing
ith Constant F
omputing Sys

S. V. Pemma
buted Protoc

0, no. 1, pp. 53

Spirakis, an
es with Subsy
nistic and

mous and Adap
24-38, 2011.

Game Theore
Sensor Netwo
l. 47, no. 2, pp

eceived his B
ng from Amirk
ology, Tehran,
Sc in Inform
m Amirk

chnology (A
.

eived his BSc
engineering

ity of Techno
2005, and 2
s currently a
ion Technolog
ity of Technol

ceived his BS
ring from

ce and Techno
n in 1992, an
from Amirk

chnology (A
1995, and 2
esearch scient
(ITRC) workin
ning and Netw
eering Depart
2004.

han,
and Informati
of Technolog

ual Backbone Co

Self-
Fault-
tems,

araju,
cols,"
3-73,

nd P.
ystem
Self-

aptive

etical
orks,"
p. 81-

Sc in
kabir
, Iran

mation
kabir

AUT),

c and
from
logy,
2007,
PhD

gy in
logy.

Sc in
Iran

ology
nd his
kabir

AUT),
2001,
tist at
ng in
work
tment

ion
gy,

onstruction in SSelfish … (Reguular Paper) 46

	Vol. 10, No. 2 & 4 (b), 2012 (latin)

