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Learning Stationary Correlated Equilibria in
Constrained General-Sum Stochastic Games

Vesal Hakami and Mehdi Dehghan, Member, IEEE

Abstract—We study constrained general-sum stochastic games
with unknown Markovian dynamics. A distributed constrained
no-regret Q-learning scheme (CNRQ) is presented to guarantee
convergence to the set of stationary correlated equilibria of the
game. Prior art addresses the unconstrained case only, is struc-
tured with nested control loops, and has no convergence result.
CNRQ is cast as a single-loop three-timescale asynchronous
stochastic approximation algorithm with set-valued update incre-
ments. A rigorous convergence analysis with differential inclusion
arguments is given which draws on recent extensions of the theory
of stochastic approximation to the case of asynchronous recur-
sive inclusions with set-valued mean fields. Numerical results are
given for the exemplary application of CNRQ to decentralized
resource control in heterogeneous wireless networks.

Index Terms—Asynchronous stochastic approximation, con-
strained stochastic game, correlated equilibrium (CE), multiagent
systems, no-regret learning, Q-learning.

I. INTRODUCTION

STOCHASTIC games [1] are very broad framework, gen-
eralizing both Markov decision processes (MDPs) and

repeated games. In particular, stochastic games are extensions
of MDPs to the multiagent case, and of repeated games to the
multistate case. A stochastic game is played in a sequence of
stages. At the beginning of each stage, the game is in a certain
state. The agents select their actions, and each agent receives a
reward that depends on both current state and action profile of
all the agents. The game then transitions to a new state with a
certain probability which, by Markov property, depends only
on the previous state and the actions chosen by all agents. This
process recurs at the new state, and the interaction goes on for
a finite or infinite number of stages. Similarly to the case with
MDPs, each agent participating in a stochastic game aims to
maximize an expected cumulative reward measure often cal-
culated as either average reward per stage or total discounted
reward. However, the solution concept differs from the case of
MDPs in that the agents should settle instead for competitive
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optimality which corresponds to some notion of strategic equi-
librium. The most common notions of equilibria are Nash [2]
and correlated equilibria [3]. A Nash equilibrium (NE) is a
vector of independent strategies, each of which is a probabil-
ity distribution over actions, in which each agent’s strategy
is optimal given the strategies of the other agents. Correlated
equilibrium (CE) is more general than NE in that it allows
for dependencies among agents’ strategies: a CE is a prob-
ability distribution over the agents’ joint actions such that if
a joint action is drawn from this distribution (presumably by
a trusted third party), and each agent is told separately its
own component, then it has no incentive to choose a differ-
ent action, because, assuming that all others also obey, the
suggested action is the best in expectation.

Stochastic games are particularly appealing since they cap-
ture both strategic and stochastic aspects of a real-world
scenario. Stochastic games with constraints [4] are even more
interesting as they can also account for multiple objectives
or for bounds on consumption of resources. In constrained
stochastic games, the agents incur an additional cost at each
stage which, similarly to the instantaneous reward, is a func-
tion of both current state and current action profile of the
agents. The equilibrium policy should then be feasible under
the agents’ individual average/discounted constraints.

A. Literature Review

Computational methods for equilibria in stochastic games
have been actively pursued over the past decades. The major-
ity of the schemes work in an offline fashion, i.e., for
the case where Markovian dynamics (transition probabili-
ties) are known a priori. Under this assumption, an extensive
account on solution methods for stochastic games with spe-
cial structures and with various reward criteria is given in [5].
Constrained stochastic games are typically approached via
mathematical programming. See [4] and [6] for treatments of
constrained games with jointly-controlled and independently-
controlled state processes, respectively.

However, when Markovian dynamics are unknown, one may
instead resort to learning-theoretic online solutions. It is within
this perspective that stochastic games are also proposed as
the standard framework for multiagent reinforcement learn-
ing (MARL) [7]. Given the complexity of the strategy space in
stochastic games, the solution concept sought in MARL algo-
rithms is typically expressed in terms of stationary policies.
The stationarity of a policy implies that it depends on the his-
tory of the game only through the current state. Traditionally,
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the MARL literature’s prime interest has been directed toward
learning stationary NE. Such equilibria have been shown to
exist for both discounted and average reward stochastic games,
with an extra ergodicity assumption on the transition structure
of the latter [5]. These existence results also carry over to the
constrained case, albeit with an additional strong Slater feasi-
bility condition [4]. MARL algorithms for the computation of
stationary NE in infinite-horizon general-sum stochastic games
are primarily proposed for the unconstrained case. Depending
on their informational assumptions, these algorithms can be
divided into two broad classes: 1) joint action learning (JAL)
and 2) independent action learning (IAL).

JAL algorithms constitute the early research on learning
equilibria in stochastic games. These algorithms learn in the
joint action space, and require that agents observe the actions
and possibly the rewards of the other agents. Prominent
examples are Nash-Q for discounted games [8], its variant,
Nash-R [9] for average reward games, and FF-Q [10]. These
are all multiagent extensions of the celebrated Q-learning
scheme of the MDP literature [11], with the distinction that
they maintain Q-values for all joint actions at a given state.
The main drawback of the current instances of JAL algorithms
is that they all require repeated calls to an NE solver during
the learning process, and this solver needs that the agents’
Q-values be public information. Also, the convergence results
are limited to a restricted class of games (e.g., common inter-
est or zero-sum); finally, multiagent Q-learning algorithms can
generally take a long time to converge, and some recent studies
advocate the use of heuristics [12], model-based learning [13],
or leveraging prior knowledge [14] to speed up their con-
vergence. In IAL algorithms, on the other hand, the agents
only rely on their own past received rewards without know-
ing the actions or rewards of the other agents. IAL algorithms
can thus operate in more informationally opaque scenarios,
and unlike the case with JAL algorithms, their memory foot-
print is not exponential in the number of agents. A pioneer
IAL algorithm is win or learn fast policy hill climbing [15]
which is only empirically evaluated and its convergence is
not theoretically analyzed. The Markov game interconnected
learning automata algorithm in [16] is based on an intercon-
nected learning automata abstraction and is only provably
convergent in average reward games with pure NE policies.
More recently, an online stochastic game sub-problem algo-
rithm [17] has been proposed which is proved to be generally
convergent to stationary NE policies in discounted games.

In this paper, we depart from the NE-centric mainstream of
MARL research, and instead address the problem of learning
stationary CE in stochastic games [18]. The importance of CE
arises from the fact that unlike NE, the concept of CE permits
coordination between agents, and CE that are not NE can achieve
higher rewards than NE, by avoiding positive probability mass
on less desirable outcomes [3]. Within the context of normal-
form games, the most efficient procedure for learning CE is
the no-regret algorithm [19], [20]. No-regret learning essen-
tially requires that agents depart from their current play with
probabilities that are proportional to measures of regret for not
having used other strategies in the past. It is shown in [19] that
once all the players’ regrets approach zero, the joint empirical

frequency of play converges with probability one to the set of
CE of the game. A key property of no-regret learning is that it
is an uncoupled update rule [21]; i.e., each agent only needs to
know its own reward function and to monitor the actions taken
by the others to adjust its play probabilities.

When it comes to stochastic games, however, the literature
on learning CE is very thin. The existence of stationary CE
is implied by the existence of stationary NE in general-sum
stochastic games. A direct proof is also given in [18] using a
fixed point argument. As for the algorithms, CE-Q [22] and
QnR [23] are the only MARL algorithms we know of that
address the problem of learning stationary CE. Both algorithms
belong to the JAL family, and use Q-learning to estimate the
joint action values for each state of the game. Similarly to
Nash-Q, CE-Q relies on an equilibrium solver with access
to all agents’ Q-tables to update the CE policy in each iter-
ation. Given the structural simplicity of CE with respect to
NE (convex polytope versus fixed points), each call to a CE
solver requires solving a set of linear inequalities, as opposed
to an NE solver which has to deal with a nonlinear program.
Yet again, the convergence results for CE-Q are limited to
zero-sum and common-interest games only. QnR [23], on the
other hand, is a fully decentralized algorithm. Realizing that
a no-regret algorithm can serve as a natural learning back-
drop for the agents to reach CE, QnR eliminates the calls
to a bulky equilibrium solver by interfacing Q-learning with
no-regret-learning in a nested loop configuration. In the outer
loop, the agents update their Q-values based on the empirical
frequency of play that arises from the no-regret algorithm in
the inner loop. The inner loop is in itself a virtual game gov-
erned by no-regret updates to which Q-values from the outer
loop are fed as the agents’ rewards. Hence, each iteration of
the outer loop should essentially await the asymptotic con-
vergence of the inner loop to zero-regret play probabilities.
QnR’s main advantage is that it works without the luxury of
a CE solver, and thus the agents’ Q-tables remain private. In
fact, owing to the uncoupledness of the no-regret algorithm,
all an agent needs to observe is its opponents’ play at each
stage. Hence, QnR itself can also be regarded as an uncoupled
learning rule. The convergence of the algorithm, however, has
not been analyzed in [23]. Moreover, it is challenging in prac-
tice to synchronize the agents for a virtual game in between
two actual plays. Finally, the QnR’s nested loop configuration
also makes it difficult to extend the algorithm to a constrained
stochastic game setup.

B. Contributions and Outline

In this paper, we take the first step toward revitalizing inter-
est in CE-centric MARL research by revamping QnR in two
ways: 1) removing its virtual game interlude and 2) extending
it to also handle constrained games. In particular, we make the
following contributions.

1) Realizing that no-regret and Q-learning are both vari-
ants of stochastic approximation algorithms [20], [24],
we exploit the multi-timescale extension of the theory
of stochastic approximation to operate QnR’s inner and
outer loops concurrently with two different step-size
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schedules. More specifically, we recast QnR as a single-
loop algorithm with no-regret learning moving on an
effectively faster timescale than Q-learning. This way,
we remove the virtual game interlude, while still pre-
serving QnR’s main spirit: no-regret learning sees cur-
rent Q-values as quasi-static, while Q-learning sees the
estimated CE policy as essentially equilibrated.

2) QnR’s recast as a stochastic approximation also makes
it readily extensible to constrained setups. To show this,
we first exploit the methodology in [18] to view the
dynamics of the constrained game through the prism of
a single agent. This is done by having each agent assume
all the others adhere to the policy of an imaginary cor-
relation device so that the environment reduces to a
constrained MDP (CMDP) in its eyes. Using standard
Lagrange duality [25] and the one-shot deviation princi-
ple of MDPs [26], we argue how the realization of CE in
stochastic game amounts to simultaneous primal maxi-
mization in all agents’ CMDPs. With this understanding,
we may view the coupled iterates on joint policy and
Q-values as primal ascent in individual agents’ CMDPs
which should then be augmented by a dual descent in
Lagrange multiplier (LM) space. With QnR’s recast as a
stochastic approximation, this augmentation can be done
as easily as running stochastic sub-gradient descent on a
slower third timescale. We refer to the overall algorithm
as constrained no-regret Q-learning (CNRQ).

3) Given the set-valued update increments of no-regret
learning and the asynchronous nature of Q-learning
iterations, CNRQ would essentially correspond to a
three-timescale asynchronous stochastic approximation
with set-valued update increments. We give rigorous
convergence results with differential inclusion argu-
ments which draw on recent extensions of the theory
of stochastic approximation to the case of asynchronous
recursive inclusions with set-valued mean fields. The
proof framework is due to Perkins and Leslie [27]
who come up with conditions under which the asyn-
chronicity of the process can be incorporated into
the mean field to yield convergence results similar to
those of an equivalent synchronous process. We ver-
ify that CNRQ in fact satisfies these conditions and
thus its asymptotic analysis can be facilitated via the
arguments in [27].

4) Finally, we present an example constrained stochastic
game setup from the wireless networking domain. We
use this example as a test bed to evaluate CNRQ’s
performance and convergence behavior.

The outline of the rest of this paper is as follows. In
Section II, we express the formalism of constrained stochas-
tic games, with emphasis on both individual agent-level and
system-wide control problems. In Section III, we present
the machinery for learning stationary CE. To this end, we
remark on the connection of both Q- and no-regret learning
with stochastic approximation, and highlight the main idea
in QnR-learning, which paves way for the description of our
CNRQ algorithm. In Section IV, we establish CNRQ’s con-
vergence. Finally, in Section V, we present numerical results

for application of CNRQ-learning to an exemplary case from
wireless networks. This paper concludes in Section VI.

II. CONSTRAINED GENERAL-SUM STOCHASTIC GAME

In this section, we begin with some notation and terminol-
ogy that are associated with the definition of a constrained
general-sum stochastic game. We then continue by formal-
izing the decision problem faced by each individual agent
in Section II-A, and the social-level control problem in
Section II-B which leads to the definition of a stationary CE.
Finally, in Section II-C, we give an example embodiment of
the game specification which serves both as a motivation for
our algorithm in Section III and as a test bench to present
numerical experiments in Section V.

A discrete-time, constrained stochastic game is denoted by
a quintuple � = 〈K, A,S, (uk(.))k∈K, (ck(.))k∈K〉 and can be
defined as follows (see [4] for similar specifications).

1) Agents: The agents participating in the game are indexed
by the set K = {1, 2, . . . , K}, in which K = |K| (i.e.,
the cardinality of the set K).

2) Actions: We use an
k ∈ Ak to denote the control

action of the kth agent at time n = 0, 1, 2, . . .. Let
an=(an

1, . . . , an
K) ∈ A denote the composition of the

actions from all the agents at time n, where A is their
joint action space. Also, denote by an

−k = (an
ḱ
)
ḱ∈K,́k �=k

the action profile of agent k’s opponents at time n.
3) States: The stochastic system state is modeled as a dis-

crete time Markov decision chain. We use the random
variable sn ∈ S = {1, 2, . . . , S} to indicate the system
state at time n. We denote byPsaś the transition probability
between states s and ś under the joint action a ∈ A.

4) Instantaneous Utilities: The utility un
k accrued by each

agent k at time n can generally be expressed by a func-
tion uk : S × A → e of both system state sn and action
profile (an

k, an
−k). e denotes a compact interval in R.

5) Instantaneous Constraints: The immediate cost cn
k

incurred by each agent k at time n is specified by a
function ck : S × A → d of both system state sn and
action profile (an

k, an
−k). d denotes a compact interval

in R. We specify later that the costs cn
k are involved in

a long-term discounted constraint to be satisfied by the
kth agent.

6) Stationary Randomized Joint Policies: Since we are
interested in the set of CE of the game, it is easier to
abstractly assume that there is a referee (or a correlation
device in game-theoretic parlance) which issues recom-
mendations to the agents at each stage of the game. Let
π s(.) be the policy used by the referee to sample joint
plays at state s. π s(.) is defined to be stationary in that
it is a randomization over the joint action space A given
only the current state s and is independent of the his-
tory of the game. Each entry π s(ak, a−k) represents the
joint probability of taking action ak ∈ Ak by agent k and
action profile a−k∈ A−k by others at state s. We denote
the entire set of the referee’s joint policies over all states
by � = (�(A))|S|; i.e., π s(.) ∈ �(A). The nth stage
of the game � unfolds as follows: all agents and the
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referee observe the system state sn; based on its policy
π sn(.), the referee recommends an action aref,n

k to each
agent k. Given its recommendation, each k chooses an
action an

k , and the joint action an is played. All agents
accrue payoffs uk(sn, an), and incur cost ck(sn, an). The
play proceeds to stage (n+1) where sn+1 is determined
randomly by Psnansn+1 .

A. Individual Agent’s Control Problem

Assume all other agents but k play according to the referee’s
policy π . Knowing π and given its recommended play aref

k at
state s ∈ S, the agent k can form a posteriori belief about the
joint opponents’ play a−k

π s

(
a−k

∣∣∣ aref
k

)
= π s

(
a−k, aref

k

)
∑

b−k∈A−k
π s
(
b−k, aref

k

) . (1)

Hence, from the point of view of the kth agent, the environ-
ment reduces to a CMDP. Similarly to [18], in this MDP, we
may break down the nth stage of the play (from n = 1, 2, . . .

onward) as: agent k first observes the actions an−1
−k taken by

its opponents in the previous round of �, perceives the payoff
un−1

k it has accrued during the (n − 1)st stage together with
its cost constraint cn−1

k . It then observes the current state sn,
receives its advice aref,n

k from the referee, and chooses an
action an

k . We denote this CMDP by Mk = 〈Ăk, S̆k, ŭk(.), c̆k(.)〉
as follows.

1) Actions: Ăk = Ak.
2) States: We include in state s̆k of agent k from the

stochastic game �, the previous actions of the other
agents a−k, the current state s, and the referee’s advice
aref

k ; i.e., S̆k = {(a−k, s, aref
k ) ∈ A−k×S×Ak | π s(aref

k ) >

0}. The transition probabilities associated with this new
state definition can be calculated as follows. Let s̆k =
(a−k, s, aref

k ) and ´̆sk = (á−k, ś, áref
k ). We have

P̆s̆kak ´̆sk
= π s

(
á−k

∣∣∣ aref
k

)
· Ps(ak,á−k)ś · π ś

(
áref

k

)
. (2)

3) Utility: ŭk(s̆k, ak, ´̆sk) = uk(s, (ak, á−k)).
4) Constraint: c̆k(s̆k, ak, ´̆sk) = ck(s, (ak, á−k)).
Let π̆k,s̆k(.), ∀s̆k ∈ S̆k denote agent k’s stationary policy,

and consider a discount factor ρ ∈ [0, 1]. Then, k’s discounted
utility conditioned on initial state s̆k ∈ S̆k is defined as

Ŭk,s̆k(π̆k)
def= E

[
(1 − ρ)

∞∑
n=1

ρn−1ŭk

(
s̆n

k, an
k, s̆n+1

k

)∣∣∣s̆1
k = s̆k

]

(3)

where the normalization factor (1 − ρ) ensures that the range
of Ŭk falls in the compact set e|S̆k| ⊂ R

|S̆k|. Now, the control
problem faced by the kth agent can be expressed as follows:

max
π̆k

Ŭk,s̆k(π̆k), ∀s̆k ∈ S̆k

s.t. the discounted cost constraint : C̆k,s̆k(π̆k)

def= E

[
(1 − ρ)

∞∑
n=1

ρn−1c̆k

(
s̆n

k, an
k, s̆n+1

k

)∣∣∣s̆1
k = s̆k

]
≤ Dk.

(4)

The constrained problem in (4) can be converted
into an unconstrained form using standard Lagrangian
approach [25], [28]. Let λk ≥ 0 be a real number, called
the LM. For agent k, define the instantaneous Lagrangian
�̆k : R

+ × S̆k × Ak × S̆k → c, where c is a compact interval
whose boundaries can be specified from e, d, and by ensur-
ing that λk is within an interval, say [0, MAX] ⊂ R

+. The
function �̆k is defined as

�̆k

(
λk, s̆k, ak, ´̆sk

)
def= ŭk

(
s̆k, ak, ´̆sk

)

− λk

(
c̆k

(
s̆k, ak, ´̆sk

)
− Dk

)
. (5)

For ∀s̆k ∈ S̆k, the expected total discounted Lagrangian
associated with (5) is as follows:

L̆λk
k,s̆k

(π̆k)
def= Ŭk,s̆k(π̆k) − λk

[
C̆k,s̆k(π̆k) − Dk

]

= E

[
(1 − ρ)

∞∑
n=1

ρn−1�̆k

(
λk, s̆n

k, an
k, s̆n+1

k

)∣∣∣s̆1
k = s̆k

]
.

(6)

The unconstrained counterpart to (4) is to determine the
optimal pair (π̆∗

k , λ∗
k) such that the following saddle point

optimality condition holds for ∀s̆k ∈ S̆k [28]:

L̆λ∗
k

k,s̆k
(π̆k) ≤ L̆λ∗

k
k,s̆k

(
π̆∗

k

) ≤ L̆λk
k,s̆k

(
π̆∗

k

)
. (7)

With (7) satisfied, L̆λ∗
k

k,s̆k
(π̆∗

k ) is the optimal value of the
problem (4), and it can be computed as [28]

L̆λ∗
k

k,s̆k

(
π̆∗

k

) = min
λk≥0

max
π̆k

L̆λk
k,s̆k

(π̆k), ∀s̆k ∈ S̆k. (8)

However, in the setup described by �, the maximization
in (8) is solved concurrently by all agents, which undermines
our simplifying single-agent abstraction. Next, we introduce
a system-wide objective, which, when realized, amounts to
L̆λk

k,s̆k
(π̆k) being maximized simultaneously for all k ∈ K.

B. System-Wide Objective: Stationary Correlated Equilibria

Before giving a formal definition of stationary CE, we
first express the long-term discounted Lagrangian of agent
k under the assumption that all agents (including k) follow
the recommendations from a given referee’s policy π . Let
λ = [λ1, . . . , λK]T be a fixed vector of LMs for ∀k ∈ K.
Similarly to �, define �λ as the set of all stationary joint
policies for the unconstrained version of the game � with
λk-parameterized individual Lagrangian utilities (denoted by
�λ for easier reference). We have for ∀s ∈ S

Lλk
k,s(π) = E

[
(1 − ρ)

∞∑
n=0

ρn�k
(
λk, sn, an)∣∣s0 = s

]
(9)

where �k(λk, s, a)
def= uk(s, a) − λk(ck(s, a) − Dk). It is

well-known that Lλk
k,s has the following standard dynamic

programming expansion (also known as Bellman equations):

Lλk
k,s

(
Qλk

k ,π
)
=

∑
a∈A

π s(a) · Qλk
k,(s,a), ∀s ∈ S (10)
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where Lλk
k,s is defined with an abuse of notation by making

its dependence on Qλk
k explicit. Qλk

k : c|S| → c|S×A| is a
|S×A|-dimensional λk-parameterized mapping whose (s, a)th
component evaluated at Lλk

k is defined as

Qλk
k,(s,a)

(
Lλk

k

)
= (1−ρ).E[�k(λk, s, a)]

+ ρ
∑
ś∈S

PsaśLλk
k,ś

(
Qλk

k ,π
)
. (11)

Clearly, Qλk
k is an affine function of Lλk

k , and the value
function Lλk

k : c|S×A| × �λ → c|S| is a bilinear function of
the policy π and action value function Qλk

k . The dependence
of Lλk

k on the policy as well as the interdependence of Lλk
k

and Qλk
k is made explicit only on few occasions for emphasis.

This dependence is otherwise suppressed to simplify notation.
Now, we are ready to define �λ’s set of stationary CE.

Definition 1: The set Cλ
ce ⊂ �λ is called the set of station-

ary CE of the stochastic game �λ if under each πce ∈ Cλ
ce,

it holds that for each agent k, for ∀s ∈ S, for ∀aref
k ∈ Ak

with πce
s (aref

k ) > 0, and any alternative action ák ∈ Ak
∑

a−k∈ A−k

πce
s

(
a−k

∣∣∣ aref
k

)
· Qλk

k,
(
s,
(
aref

k ,a−k
))

≥
∑

a−k∈ A−k

πce
s

(
a−k

∣∣∣ aref
k

)
· Qλk

k,(s,(ák,a−k))
. (12)

The inequality in (12) can be better understood if we intu-
itively consider �λ as a set of auxiliary normal-form games
indexed by s ∈ S and with payoffs Qλk

k,(s,a) (see [1], [5]). By
playing joint action a in the sth auxiliary game, agent k’s pay-
off is the sum of its instantaneous payoff and the payoff it
expects to gain from the next state onward, assuming joint
policy π . Now, πce ∈ Cλ

ce if and only if it is simultaneously a
CE for all auxiliary games s ∈ S; i.e., if the referee draws its
actions from πce, k realizes that every recommendation aref

k
it receives in each game s ∈ S is a best response to the esti-
mated play of the other agents (assuming they all follow their
recommendations). Now, we relate this collective notion with
the agent-level objectives through the following theorem.

Theorem 1: For ∀k ∈ K, ∀s̆k ∈ S̆k, it holds that:
L̆λk

k,s̆k
(π̆∗

k ) = Lλk
k,s(Q

λk
k ,πce).

Proof: As argued in [18, Th. 7], if all other agents but k
play according to the referee’s policy πce, then from the point
of view of the kth agent, the environment reduces to MDP
Mk, defined in Section II-A. By construction in [18], based
on the one-shot deviation principle for MDPs [26], the ref-
eree’s policy πce is a CE in the stochastic game if and only if
its implementation in Mk is an optimal policy simultaneously
for all k ∈ K. It then follows that the expected discounted
Lagrangian of all agents under the CE policy πce is equal
to the expected discounted Lagrangian of the corresponding
optimal policy in their MDPs.

Now define Lagrange dual function Gk(λk)
def=

Lλk
k (Qλk

k ,πce) as the solution of the primal problem
maxπ̆k L̆λk

k,s̆k
(π̆k) for ∀s̆k ∈ S̆k in (8). The optimal λ∗

k can
then be obtained by conducting dual descent on Gk,s(λk)

for ∀s ∈ S. In Section III, we present a distributed learning

Fig. 1. Example constrained stochastic game setup. Decentralized resource
control in two-tier small-cell networks. (a) Uplink. (b) Downlink.

procedure to compute πce together with the optimal λ∗
k

for ∀k ∈ K.

C. Illustrative Example

Before delving into the technicalities of learning a station-
ary CE, we give an illustrative example as typical real-world
problems that can be modeled by the generic game described
above. This example is a simplified yet an illustrative scenario
from the domain of wireless networks which also provides a
test bench to demonstrate both convergence behavior as well
as efficacy of the algorithm discussed in Section III. The set-
ting we consider is the resource control problem in hierarchical
small-cell networks, more generally known as heterogeneous
networks (HetNets) [29]. HetNets are wireless deployments
where small cells (e.g., femto-cells) with lower signal power
are positioned within the coverage area of a macro-cell primar-
ily to multiply the capacity of this area. Traffic steering and
load balancing are key aspects of HetNets as femto-cells can
be installed in hotspots to offload much of the traffic from the
macro layer. As envisioned in [30], HetNets will be integral to
wireless deployments in near future. However, the coexistence
of macro and small cell elements is not without ramifications.
As argued in [30], HetNet topologies call for a new approach
to run networks that is more complex, that requires a higher
level of automation and more sophisticated resource control.
Our examples in Sections II-C1 and II-C2 entail uplink and
downlink HetNet communication scenarios, respectively.

1) Spectrum Access Control in Uplink Communications:
Consider a two-tier CDMA femto-cell network [see Fig. 1(a)].
It is assumed that the system consists of a single macro-cell
base-station (MBS) receiving data from macro-user equip-
ments (MUEs) in a region. Within this region, there are
also K co-channel femto-cells deployed by home or office
users on the same frequency band (with bandwidth W) as
the macro-cell. In each femto-cell, there is one femto base-
station (FBS) receiving data from a number of femto user
equipments (FUEs). For simplicity, only one active FUE is
assumed in each cell. Let hu

kḱ
denote the gain of the link

between FUE k and FBS ḱ. Also, No denotes the noise
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power on all channels. Each FUE seeks to maximize its
own transmission rate which, by Shannon–Hartley’s theo-
rem (see [31]), depends on its received signal-to-interference
plus noise ratio (SINR). We assume each FUE only gets to
decide how aggressively (high/low in terms of power) it should
transmit its signal; i.e., au,n

k ∈ Ak = {Low, High}. Due to the
shared nature of the wireless channel, each FUE’s perceived
SINR depends not only on its own action but also on the
actions of other FUEs. An FUE transmitting at a high power
level, though may increase its own SINR, will interfere with
the transmissions of the other FUEs, prompting them in turn
to adopt a more aggressive behavior. Such a situation is unde-
sirable since FUEs usually operate on limited batteries which
require judicious consumption. In fact, the immediate cost cu,n

k
incurred by each FUE k from choosing action au,n

k is its con-
sumed power, i.e., cu,n

k = au,n
k , with the restriction that the

average power consumption over time should not exceed a pre-
specified constraint au

k . Moreover, given the two-tier structure
of our setup, the activity of the MUEs is yet another source
of interference, causing FUEs’ signals to be further attenuated
at their FBSs. Let gu

0k denote the channel gain between MUE
and FBS k. MUE’s interference activity over the shared chan-
nel is typically modeled as a time-homogenous discrete time
Markov chain (see [32]). We use the binary random variable
sn ∈ S = {0, 1} to indicate the macro activity at time n; i.e.,
sn = 1 if the channel is occupied, in which case the inter-
ference power sensed at kth FBS would be: gu

0k · a0, where
a0 denotes the MUE’s transmit power, and gu

0k denotes the
gain of the link between MUE and FBS k. Also, sn = 0, if
the channel is idle. Hence, the uplink spectrum access con-
trol problem gives rise to a setting which is both strategic and
stochastic. It is strategic since the FUEs’ objectives are cou-
pled due to mutual interference, and it is stochastic because
FUEs’ decisions have to be made under the effect of MUEs’
Markovian dynamics. In this scenario, the utility uu,n

k accrued
by each FUE k at time n is its instantaneous Shannon rate

uu,n
k = uu

k

(
sn, au,n

k , au,n
−k

)

= W · log2

[
1 + au,n

k .hu
kk

No + I{sn}.gu
0k.a

u
0 + ∑

ḱ∈K,́k �=k au,n
ḱ

.hu
ḱk

]
.

(13)

Each FUE seeks a policy which maximizes its long-run rate
utility subject to its power constraint. At the collective, social-
level, it is desired to coordinate FUEs’ decisions by striking a
CE-based consensus. Our algorithm in Section III-B3 allows
FUEs to reach this consensus based only on their instantaneous
rate and power consumption as feedbacks.

2) Power Control in Downlink Communications: In the
same topology, consider the reverse scenario of down-
link transmissions from MBS to its MUE and from FBSs
down to their associated FUEs [Fig. 1(b)]. We assume
that MBS transmits at a constant power ad

0, while each
FBS chooses its power ad,n

k from a finite set of power
levels. Let hd

kḱ
denote the gain of the link between FBS k

and FUE ḱ; likewise, {gd
0k}k∈K (resp. {gd

k0}k∈K) denotes
MBS-FUE (resp., FBS-MUE) channel gains. Consistent with

the common characterization of femto entities as best effort
users, the traffic in FBS is assumed to be backlogged, while
it is bursty and stochastic in MBS. Let An be the random
number of packets arrived in the nth timeslot to MBS’s buffer
whose capacity is capped by NB packets. The process {An}n∈N

is assumed to be i.i.d. with general distribution P{A} and mean
E[A]. By Shannon’s law, MBS’s achievable bit rate is given
below

rn
0 = W · log2

[
1 + ad

0 · gd
00

No + ∑
k∈K ad,n

k · gd
k0

]
. (14)

Accordingly, the evolution of the system state (i.e., the
buffer length in MBS) can be described as follows:

bn+1
0 = min

((
bn

0 − τ.rn
0

L

)+
+ An, NB

)
(15)

where τ denotes the timeslot duration, L is the packet length
in bits, and (.)+ stands for max(., 0). In this game, FBS agents
are interested in maximizing their expected physical through-
put (16) with the restriction that their interference to the macro
layer be low enough so that the expected length of MBS’s
buffer remains below a certain threshold b0

ud,n
k = ud

k

(
sn, ad,n

k , ad,n
−k

)

= W · log2

⎡
⎣1 + ad,n

k · hd
kk

No + gd
0k · ad

0 + ∑
ḱ∈K,́k �=k ad,n

ḱ
· hd

ḱk

⎤
⎦.

(16)

Again, it is desired that FBSs learn a stationary CE behavior
by only receiving instantaneous feedbacks on their own rate
ud,n

k and on MBS’s buffer occupancy state bn
0.

III. LEARNING STATIONARY CORRELATED EQUILIBRIA

As with the case of MDPs, the fundamental update proce-
dure for learning a policy can be derived from operationalizing
Bellman equations in (10) and (11). For now, consider an
unconstrained game, and imagine a centralized entity itera-
tively running the update equations below, for all k ∈ K, for
all s ∈ S, and for all a ∈ A(s)

V̂n+1
k,s :=

∑
a∈A(s)

π̂n
s (a)Q̂n

k,(s,a) (17)

Q̂n+1
k,(s,a)

:= (1 − γ ).uk(s, a) + γ.
∑
ś∈S

PsaśV̂
n+1
k,ś (18)

π̂n+1
s ∈ �ce

({
Q̂n+1

k,(s,.)

}
k∈K

)
(19)

where �ce returns the set of all policies satisfying Definition 1.
The first step to make this procedure more practical is to do
without assuming that the matrix P of transition probabilities
is known a priori. This is of particular interest in applications
where the statistical knowledge regarding the processes under-
lying the system evolution is not available beforehand. In the
context of our example from Section II-C, this corresponds
to FUEs having to reach a consensus with no knowledge of
the MUE’s stochastic occupancy behavior, or FBSs adjust-
ing their power levels without knowing the statistics of the
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TABLE I
SKETCH OF THE CE-Q ALGORITHM [22]

packet arrival process in MBS (e.g., E[A]). The standard way
to tackle the case of unknown P is to adopt an asynchronous
variant of (18) with a decaying step size, better known as
Q-learning. With this modification, the learning task would
proceed by simulating a joint action, actually observing the
next state, and run (18) for one state-action pair per learning
iteration (see Table I for a procedure of this spirit).

The second step toward practice is decentralization so
that each agent runs its local version of the above process.
A naive decentralization, however, is subject to possible mis-
coordination in the equilibrium selection step in (19). We
discuss the known remedies for this issue as we review the
existing CE learning processes in the sequel. Another issue
concerns the extent of knowledge an agent is assumed to have
about its opponents. In fact, one can distinguish between cou-
pled and uncoupled equilibrium learning processes [21]. In
coupled learning, agents must know the utilities of their oppo-
nents [e.g., the rates in (13) and (16)]; uncoupled learning,
however, is more practical as it proceeds without that luxury.

In this section, we first review the existing ideas for learn-
ing stationary CE. We begin by the coupled algorithm of
CE-Q [22], and highlight its shortcomings. Then, we turn to
uncoupled QnR learning [23], which prepares the ground for
presentation of our CNRQ algorithm, a provably convergent,
constrained, and single-loop recast of QnR.

A. Existing Procedures for Learning CE in Stochastic Games

CE-Q [22] and QnR [23] are the only algorithms we know
of that address the problem of learning stationary CE. At each
iteration, both CE-Q and QnR use Q-learning to update the
Q-values based on the estimated CE policy for the next state.
However, when it comes to update the CE policy itself, CE-Q
and QnR differ significantly. In what follows, we briefly dis-
cuss the idea utilized in each algorithm for estimating CE and
highlight their shortcomings.

1) CE-Q Learning: Much in the same way as the basic
update rules in (17)–(19), in CE-Q [22], the estimate for
the CE policy is obtained by solving the system of linear

TABLE II
SKETCH OF THE QNR ALGORITHM [23]

inequalities corresponding to the definition of CE (step 5
in Table I). Therefore, each agent k is assumed to observe
the rewards of all others and to maintain a model of their
Q tables. This requirement makes CE-Q a coupled learn-
ing procedure. For ease of reference, we call this version
of CE-Q as semi-distributed. Also, as argued in [22], in the
presence of multiple equilibria, semi-distributed CE-Q is sub-
ject to mis-coordination in the equilibrium selection step.
This problem has been alleviated in [22] by introducing some
equilibrium selection mechanisms. For instance, a utilitar-
ian selector chooses an equilibrium which maximizes the
sum of all agents’ Q-values; however, except in very special
games (e.g., zero-sum), CE-Q in general needs that the play
be centralized. We refer to this version of CE-Q as centralized
CE-Q learning.

2) QnR Learning: The QnR algorithm in [23] eliminates
the need for calls to an equilibrium solver. Instead, each
agent relies on a no-regret learning algorithm to indepen-
dently generate its own policy. Agents play according to their
own policies, and compute their respective value functions
based on the joint empirical distribution of play. This approach
is theoretically sound since in the context of normal-form
games, no-regret algorithms converge in empirical frequency
to CE [19]. As we also rely on a no-regret procedure for our
algorithm in Section III-B, we first briefly review the idea
of no-regret learning, and then present QnR’s pseudo-code
in Table II.

Consider a normal form game with payoff functions
(rk(.))k∈K. In no-regret learning [19], the agents reinforce the
actions they regret not having played enough in the past. In
particular, each agent k has a regret matrix Rk,〈i,j〉 which main-
tains, for every pair of actions i, j ∈ Ak, the difference in
average payoff if k had taken action j in the past every time
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it took action i; that is

Rn
k,〈i,j〉 = 1

n

n∑
τ=1

[
rk
(

j, aτ
−k

) − rk
(
i, aτ

−k

)] · I{aτ
k =i}. (20)

In (n + 1)st round, given an
k = i, agent k transi-

tions to action an+1
k = j with a probability Tn+1

k (an+1
k =

j|an
k = i) proportional to Rn

k,〈i,j〉, and sticks to i with 1 −∑
j∈Ak,j �=i Tn+1

k (an+1
k = j|an

k = i). In fact, the play probabili-
ties pn+1

k for the next stage (n + 1) are obtained by solving
the following balance equations:

pn+1
k (i)

∑
j �=i

Tn+1
k,〈i,j〉 =

∑
j �=i

pn+1
k ( j).Tn+1

k,〈j,i〉. (21)

The learning proceeds by exploring choices and transition-
ing to actions which are conceived better according to the
regret measure. Naturally, an agent’s objective is to select a
sequence of actions which guarantees to it no regret in the
long run, no matter what the other agents do. Let zn(a) be the
number of times the joint action profile a is actually played
in the first n periods, divided by n. In fact, zn(a) denotes the
empirical distribution of play and is a probability distribu-
tion over A. The no-regret learning of [19] has the property
that when all agents’ regret matrices approach to the nonpos-
itive orthant R

|Ak×Ak|− , zn converges to the set of CE. Now, in
QnR [23], in order to utilize the idea of no-regret learning in
the context of stochastic games, each agent k runs two nested
control loops: 1) Q-learning as the outer loop and 2) multi-
ple copies of the no-regret algorithm (one per state) as the
inner loop (see Table II). At each outer loop iteration, the sth
copy of the no-regret algorithm of the inner loop starts afresh,
fed by the current estimate of Q-values as k’s payoff function.
The inner loop iterates until the agent’s regret matrix Rm

k,s con-
verges to the nonpositive orthant. Once inner loop converges,
the outer loop begins its next iteration knowing that the joint
empirical frequency of play for state s corresponds to a CE of
the game in s. QnR learning goes on until all Q-table entries
converge.

QnR’s advantage is that it works without requiring an
equilibrium solver, and that the agents need not know their
opponents’ rewards to update their play strategies. Hence, QnR
falls into the category of boundedly rational uncoupled learn-
ing dynamics [21]. QnR’s main disadvantage, however, is its
nested loop structure. This not only makes it difficult to con-
duct a theoretical convergence analysis, but has some practical
implications too. First, the virtual play in the inner loop, apart
from being an interlude in the actual game, would require that
the agents agree on a second iteration index during the learn-
ing process. The other drawback is with the extension of this
paradigm to handle constrained problems, which leads to a
third control loop and even more complications.

B. Proposed Algorithm

In this section, we present a stochastic approximation-
based re-expression of QnR which handles constrained games
and, more importantly, is amenable to convergence anal-
ysis. As discussed in Section III-A2, QnR relies on the
joint operation of no-regret and Q-learning working together

in a nested loop configuration. Since both of these algo-
rithms can be expressed in the form of a typical stochastic
approximation [24], [33], [34], we first very briefly remark
on some general forms of stochastic approximation algo-
rithms in Section III-B1, and then highlight the connection
of no-regret- and Q-learning with relevant notions from the
theory of stochastic approximation in Section III-B2. Finally,
in Section III-B3, we give our version of things, referred to
as CNRQ-learning.

1) Some General Forms of Stochastic Approximation
Algorithms: Let J = {1, . . . , |J |}. A general stochastic
recursive process has the following structure [34]:

xn+1 − xn = κ(n) · f
(
xn, vn) (22)

where xn ∈ R
|J |, f (xn, vn) : R

|J |×R
|J | → R

|J |, vn ∈ R
|J | is

a random noise, and {κ(n)}n∈N is a sequence of small, usually
decreasing step-sizes. It is common to capture the noise effect
as an additive term, by introducing: F(xn) = Ev[ f (xn, vn)],
and Vn+1 = f (xn, vn)−Ev[ f (xn, vn)], where F(xn) is referred
to as the mean field, and {Vn}n∈N is, by construction, a mar-
tingale difference sequence. In cases where the mean-field F
is a set-valued map (correspondence), we refer to the iter-
ation above as a stochastic approximation with set-valued
update increments or more concisely as a stochastic recursive
inclusion [33]

xn+1 − xn ∈ κ(n) ·
[

F
(
xn) + Vn+1

]
.

Finally, let 2J be the power set of J . If we denote by
J

n ∈ 2J the components of the iterates {xn}n∈N updated at
iteration n, we may use a counter χn( j) = ∑n

i=1 I{j∈J
i} to

record how many times each component of {xn}n∈N have been
updated until n. The following process, then, is called an asyn-
chronous stochastic approximation [33] since it is no longer
the case that all components of xn get updated simultaneously
at time n:

xn+1
j − xn

j = κ
(
χn( j)

) · I{j∈J
n}
[

Fj
(
xn) + Vn+1

j

]
.

2) Q-Learning and No-Regret Learning as Stochastic
Approximations: Fix π ∈ � as a stationary randomized pol-

icy over the joint action space A. The function Qk,(s,a)
def=

(1−ρ) · E[rk(s, a)] + ρ
∑

ś∈S PsaśVk,ś(Q̂k,π) is the expected
long-term value of taking action a in state s, and following π

thereafter. To learn this value without having to know about P ,
one can use the Q-learning algorithm [11]. Due to [24], the
exact form of the Q-learning update equation (e.g., step 5 in
Table II) is given below

Q̂n+1
k,(s,a) − Q̂n

k,(s,a) := κ
(
χn(s, a)

) · I{(s,a)=(sn,an)}

×
[

F(s,a)

(
Q̂n

k,π
)

+ Vn+1
k,(s,a)

]
(23)

with mean-field F(s,a)(Q̂n
k) = Qk,(s,a) − Q̂n

k,(s,a), noise Vn+1
(s,a) =

(1 − ρ) · rk(s, a) + ρ.Vn
k,sn+1 − Qk,(s,a), and Vn

k,s = ∑
a πs(a) ·

Q̂n
k,(s,a). Of particular note in (23) is the use of asynchronous

counters χn(s, a)
def= ∑n

i=1 I{(si,ai)=(s,a)}. Such counters are
needed as the time to visit each (s, a) is random, and we
might not have complete control over which component is
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to be updated next. Hence, by structure, Q-learning is an
asynchronous stochastic approximation.

As for no-regret learning, it is noted in [20] that (20) can
be cast as a moving average with step size κ(n) = 1/n

Rn+1
k − Rn

k = κ(n) ·
([

rk
(

j, an
−k

) − rk
(
i, an

−k

)] · I{an
k=i} − Rn

k

)
.

(24)

Also, it has been shown in [20] that the above equation has
the following correspondence F(Rn

k) as its mean field:

F
(
Rn

k

) = Ck
(
pn

k × �(A−k)
) − Rn

k (25)

and, for x ∈ �(A), Ck(x) is a |Ak| × |Ak| matrix with entries

Ck,〈i,j〉(x)
def=

∑
a∈A:ak=i

x(a) · [rk( j, a−k) − rk(i, a−k)
]
. (26)

Hence, the regret update procedure can be rewritten as a
stochastic recursive inclusion of the form

Rn+1
k − Rn

k ∈ κ(n) ·
(

F
(
Rn

k

) + Vn+1
k

)
(27)

where the random noise term Vn+1
k is given below

Vn+1
k ∈ [

rn
k

(
j, an

−k

) − rn
k

(
i, an

−k

)] · I{an
k=i}

−Ck
(
pn

k × �(A−k)
)
. (28)

3) CNRQ Learning: In Section III-B2, we remarked on
the fact that both no-regret- and Q-learning are, by struc-
ture, special cases of stochastic approximation algorithms. In
this section, we resort to the multi-timescale extension of
standard stochastic approximation theory [34] to recast the
nested loop structure of the QnR algorithm as a single-loop
two-timescale stochastic approximation. The idea is to have
the Q-learning and no-regret iterations proceed simultane-
ously with different step-size schedules so that Q-table entries
get updated on a slower effective timescale compared to the
regret-matrix updates. Multi-timescale arguments of stochas-
tic approximation [34] then guarantee that no-regret iterations
see Q-learning as quasi-static while the latter sees the former
as nearly equilibrated, thus mimicking the QnR’s nested loop
configuration. Following the same methodology, we introduce
an even slower third timescale for updating the LMs associated
with the game’s constraints. More specifically, we leverage on
Theorem 1 and the saddle point property in (7) to cast the algo-
rithm as a primal-dual scheme; i.e., given a fixed λk for each
agent k, “primal” maximization reduces to computing, in a dis-
tributed fashion, a CE behavior πce (see Definition 1) of the
stochastic game �λ. Also, given that Gk(λk) = Lλk

k (Qλk
k ,πce),

the correct multiplier λ∗
k can be learned by stochastic gra-

dient descent in the “dual” space, performed on the slowest
timescale, so that it sees the primal maximization as hav-
ing essentially equilibrated. We refer to the overall algorithm
as CNRQ-learning. Given the set-valued update increments
of no-regret learning and the asynchronous nature of the Q-
learning iterations, CNRQ would essentially correspond to a
three-timescale asynchronous stochastic recursive inclusion.
We save the formalization of these ideas for Section IV, where
we give a detailed convergence analysis. Here, we mainly

TABLE III
CNRQ

establish notation and discuss the algorithm’s workflow. Let
the learning rates {α(n)}n∈N, {β(n)}n∈N, and {γ (n)}n∈N satisfy
the following:

∑
n

α(n) =
∑

n

β(n) =
∑

n

γ (n) = ∞
∑

n

(
α(n)2 + β(n)2 + γ (n)2

)
< ∞

α(n)

γ (n)
,
β(n)

α(n)
→ 0 as n → ∞. (A1)

Also, for ∀s ∈ S and ∀a ∈ A, let φn(s) and υn(s, a) be two
asynchronous counters: φn(s) := ∑n

i=1 I{si=s} and υn(s, a) :=∑n
i=1 I{(si,ai)=(s,a)}. We organize the CNRQ’s workflow into

nine steps, as listed in Table III.
1) In step 0, each agent initializes the empirical frequency

of joint play π0
s (.), LM λ0

k , Q-table Q̂0
k,(s,.), and state-

dependent regret matrix R0
k,〈.,.〉,s. It then samples its

action a0
k from a uniform distribution.

2) In step 1, according to the observed joint opponents’
play an

−k, agent k updates the empirical distribution
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πn
s (.) on the fastest timescale. It would be convenient

to express πn
s (.) in closed-form as below

πn
s (a) =

∑
η≤n

γ
(
φη−1(s)

)
⎡
⎣

n−1∏
ζ=η

(
1 − γ

(
φζ (s)

))
⎤
⎦eaη .

(29)

3) In step 2, agent k calculates its instantaneous Lagrangian
�k(λ

n
k, sn, an

−k) for its played action an
k , and observes the

next state of the system sn+1.
4) Steps 3 and 4 update the Q-table Q̂n

k using Q-learning
on the moderate timescale. This step unfolds as follows:
agent k first computes its Lagrangian value function
Lλk

k,sn+1 for the next state sn+1 based on the empiri-

cal frequency of play πn+1 and current estimate Q̂n
k .

It then updates its Q-table using both its instantaneous
Lagrangian �k and its long-term Lagrangian Lλk

k .
5) In step 5, LM λn

k is updated based on the perceived cost
ck(sn, an) and using stochastic (sub-)gradient descent on
the slowest timescale.

6) Step 6 is devoted to the state-dependent regret matrix
update. The regret matrix Rn

k,〈i,j〉,s is conditional on k’s
current play an

k = i, and is calculated as the Q-value
differential between i and every alternative action j.
Similarly to step 1, this update equation runs on the
fastest timescale. To make more explicit the dependency
of Rn

k on both Q̂n
k and πn, one may use (29) to rewrite

Rn
k,〈i,j〉,s for ∀i, j ∈ Ak as follows:

Rn
k,〈i,j〉,s =

∑

η≤n:aη
k =i

γ
(
φη−1(s)

)
.

⎡
⎣

n−1∏
ζ=η

(
1 − γ

(
φζ (s)

))
⎤
⎦

×
(

Q̂η

k,
(

s,j,an−k

) − Q̂η

k,
(

s,i,an−k

)
)

=
∑

a∈A:ak=i

πn
s (a).

(
Q̂n

k,
(

s,j,an−k

) − Q̂n

k,
(

s,i,an−k

)
)

.

(30)

7) Step 7 uses the updated regret-values to compute the
action transition probabilities Tn+1

k,s (an+1
k = j|an

k = i)
from the current action i to every alternative action j.
Tn+1

k is proportional to the positive part of the regret
measure; i.e., max(Rn+1

k,s , 0). However, to ensure the
smoothness of these transitions, we use a function ϒ(.)

as a smooth version of max(., 0), defined as: ϒ(x)
def={

x, x > 0
0, x < 0

for any δ > 0 and x /∈ δ−neighborhood(0).

8) Finally, in step 8, the action for the next stage (n+1) is
sampled from pn+1

k,sn+1 which is an ε-soft version of the

regret-based strategy p̂n+1
k,sn+1 with ε being the exploration

factor. p̂n+1
k is an invariant measure for the stochastic

transition matrix Tn+1
k . Therefore, pn+1

k can be viewed
as the invariant measure for the ε-trembled version of
Tn+1

k denoted by T̃n+1
k , and can be obtained by solving

the following balance equations for ∀s ∈ S,∀a ∈ Ak:

pn+1
k,s (a)

∑
á∈Ak−{a}

T̃n+1
k,〈a,á〉,s =

∑
á∈Ak−{a}

pn+1
k,s

(
á
)
.T̃n+1

k,〈á,a〉,s
(31)

and

T̃n+1
k,〈i,j〉,s := (1 − ε)

ϒ
(

Rn+1
k,〈i,j〉,s

)

μ
+ ε

|Ak| , ∀i, j ∈ Ak.

(32)

IV. CONVERGENCE ANALYSIS

CNRQ-learning is essentially a three-timescale asyn-
chronous stochastic recursive inclusion. To establish
CNRQ’s convergence, we exploit the recent results by
Perkins and Leslie [27] which facilitate the asymptotic
analysis in cases such as ours where the update patterns
involved are both asynchronous and set-valued. The proof
framework we use is called asynchronous stochastic approxi-
mation with differential inclusions. The results given in [27]
already account for two-timescale setups as well. Also,
since in general, the ideas underlying the multi-timescale
arguments carry over when the number of timescales is
more than two [34], using the two-timescale analysis in [27],
we first analyze the coupled recursions of no-regret- and
Q-learning by freezing λn

k ≈ λk; in fact, CNRQ’s iterates
can be interpreted as a primal-dual scheme, with (Q̂n

k,π
n)

getting updated by primal iterations and λn
k by dual iterations.

Now, in view of β(n) = o(α(n)), the dual minimization
is carried out at a slower timescale so that it sees the
primal maximization as equilibrated while the latter sees
the former as quasi-static. The analysis of the pair (Q̂n

k,π
n)

can be conducted by invoking the results of [27, Sec. 4].
Once the almost sure convergence of the primal iterates

is established, we have d(πn, Cλ
ce) → 0, Q̂n

k − Q
λk

k

n↑∞−→0,
and thus Lλk

k (Q̂n
k,π

n) → Gk(λk). Then, using results from
constrained reinforcement learning (see [35]), we can prove
that the dual iterates λn

k also converge to λ∗
k . We organize

our convergence analysis into three parts: first, we extract the
mean-field and noise components associated with the primal
iterates (Q̂n

k,π
n) in Section IV-A. Next, in Section IV-B,

we verify the conditions which should be satisfied by these
components so that the results in [27] become applicable
to our case. Finally, in Section IV-C, we come up with
differential inclusion arguments to establish the convergence
of CNRQ along the lines of [27, Sec. 4].

A. Identifying the Mean-Field and Noise Components

According to Table III, the estimates {πn}n∈N and {Q̂n
k}n∈N

are given iteratively by the coupled process

Q̂n+1
k,(s,a)−Q̂n

k,(s,a) = α
(
υn(s, a)

) · I{(s,a)=(sn,an)}

×
[

F(s,a)

(
Q̂n

k,π
n
)

+ Vn+1
k,(s,a)

]
(33)

πn+1
s − πn

s ∈γ
(
φn(s)

) · I{s=sn} ·
[
Gs

(
Q̂n

k,π
n
)

+ Un+1
k,s

]
(34)
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and

F(s,a)

(
Q̂n

k,π
n
)

= Hλk
(s,a)

(
Q̂n

k,π
n
)

− Q̂n
k,(s,a) (35)

Gs

(
Q̂n

k,π
n
)

= �s

(
Q̂n

k,π
n
)

− πn
s . (36)

The mapping Hλk
(s,a)(., .) in (35) is defined for general

Q̂k ∈ c|S×A| and π ∈ �λ as

Hλk
(s,a)

(
Q̂k,π

)
= (1−ρ) · E[�k(λk, s, a)]

+ ρ
∑
ś∈S

PsaśLλk
k,ś

(
Q̂k,π

)
. (37)

�s in (36) is a correspondence evaluated at some
(

Q̂k,π
)

as

�s

(
Q̂k,π

)
�q

{
pk,s × �(A−k)

∣∣pk,s satisfies (31)
}
. (38)

See that in view of (32) and (30), �s depends on both
Q̂k and π .

To specify the stochastic components {Vn
k }n∈N

, {Un
k }n∈N

,
let H = {((s, a), s); s ∈ S, a ∈ A} with H

n ∈ H
being the updated component across H at iteration n; also,
let zn = (Q̂n

k,π
n). Define Fn as the σ -algebra contain-

ing all the information up until the end of the nth itera-

tion; i.e., for ∀m ≤ n, s ∈ S, (s, a) ∈ S × A, Fn
def=

σ({Hm}m, {zm}m, {υm(s, a)}(s,a),m, {φm(s)}s,m); Then, {Vn
k }n∈N

and {Un
k }n∈N

are, by construction, Fn-adapted martingale
difference processes defined on R

|S×A| and R
|S| resp. as

follows:

Vn+1
k,(s,a) = (1 − ρ) · �k

(
λn

k, s, a
) + ρ · Lλk

k,sn+1

− Hλk
(s,a)

(
Q̂n

k,π
n
)

(39)

Un+1
k,s ∈ ean−�s

(
Q̂n

k,π
n
)
. (40)

B. Verifying Technical Assumptions

In this section, we verify the conditions required by [27]
on the mean-field and noise components of the (Q̂n

k,π
n) iter-

ates. We do this by presenting a sequence of lemmas (1–4)
corresponding resp. to [27, Assumptions (B1), (B3)–(B5)].
Assumption (B2) in [27] is already satisfied by our
Assumption (A1) on step-sizes in Section III-B3. Please refer
to Appendix A in the supplementary materials of this paper
for proofs of Lemmas 1–4.

Lemma 1: For compact sets, C ⊂ R
|S×A|, D ⊂ R

|S|,
Q̂n

k ∈ C, πn ∈ D for all k and n.
Lemma 2: The following hold:
1) G(., .): c|S×A| × �λ → �λ is a Marchaud map [36];

that is: a) the graph and domain of G are nonempty and
closed; b) the values G(Q̂k,π) are convex; and c) the
growth of G is linear.

2) F(., .): c|S×A|×�λ → c|S×A| is upper semi-continuous,
and for all π ∈ �λ, F(.,π) : c|S×A| → c|S×A| is a
Marchaud map.

Lemma 3: Consider Hn,Hn+1 ∈ H, then:

1) P(Hn+1 = Hn+1 | Fn) = Q(Hn,Hn+1)(z)
def= P(Hn+1 =

Hn+1 | Hn = Hn, zn = z);

2) for all z ∈ c|S×A| × �λ, the transition probabili-
ties Q(Hn,Hn+1)(z) form aperiodic, irreducible Markov
chains over H and for all s ∈ S and (s, a) ∈ S×A there
exists H, H́ ∈H, such that s ∈ H and (s, a) ∈ H́;

3) the map z �−→ Q(Hn,Hn+1)(z) is Lipschitz continuous.
In effect, Lemma 3 verifies that asymptotically every state

of the game � will be visited a minimum proportion of time,
say τ > 0. Also, the ε-trembled action transition probabilities
in (32) ensures that every joint action will be selected with
a nonzero probability; hence, every state-action pair is used a
minimum proportion of time, say τ́ > 0.

Lemma 4: Given any norm ‖.‖ on R
|S×A| and on R

|S|,
there exists constants A, B, C, and D such that

E

[(
Vn

k,(s,a)

)2
∣∣∣∣Fn

]
< A + B

∥∥∥Q̂n
k,(s,a)

∥∥∥
2

and

E

[(
Un

k,s

)2
∣∣∣∣Fn

]
< C + D

∥∥πn
s

∥∥2 ∀s, a.

C. Differential Inclusion Arguments

In this section, we proceed to characterize the limit-
ing behavior of CNRQ using differential inclusion argu-
ments from [27]. Methodologically, the arguments in [27]
are based on the well-established ordinary differential
equation (ODE) approach [33] which treats the stochas-
tic approximation (22) as a noisy discretization of an
autonomous ODE with F(x) as its mean-field. More specif-
ically, under appropriate conditions on the step-sizes, mean-
field and noise components of (22), it follows that the
continuous-time linear interpolation of xn asymptotically
tracks the stable fixed points of the dynamical system
ẋ = F(x). Hence, the limit sets of (22) will coincide with the
set of stable fixed points of its associated ODE, and one can
study instead the stability of the deterministic system ẋ = F(x)
to establish the convergence of the random sequence {xn}n∈N.
The results in [27] extend the ODE method to the case of
asynchronous stochastic approximation with set-valued mean-
fields. Within this perspective, our next lemma (Lemma 5)
characterizes the limiting behavior of the fast stochastic recur-
sion in (34). Before stating the lemma, we briefly hint on the
main theoretical result in [27] which considerably facilitates
our analysis in this paper. Our overview here is merely to con-
vey the key idea in [27], and an avid reader is encouraged to
consult [27] for more thorough exposition.

In case we were dealing with a synchronous updating pat-
tern in CNRQ, standard arguments (see [33]) would suggest
that we may analyze the convergence behavior of the discrete-
time iterates {πn}n∈N by studying the limit sets of an associ-
ated ordinary differential inclusion (ODI) with correspondence
G(., .) as its mean field

dπ t

dt
∈ G

(
Q̂k,π

t
)

where {Q̂n
k}n∈N

iterates on the slow timescale are freezed at Q̂k

by standard multi-timescale results [34]. However, unlike syn-
chronous stochastic approximation where the steps sizes α(n)

are deterministic, CNRQ features random and time-varying
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step sizes of the form γ (φn(s)) · I{s=sn}. The conventional way
to deal with such asynchronicity does not readily extend to
set-valued mean fields; also, even if G(., .) were single-valued,
the standard procedure would be to study the limit sets of a
nonautonomous ODE of the form [33]

dπ t

dt
= M(t) · G

(
Q̂k,π

t
)

(41)

where M(.) is a matrix-valued measurable process such that
M(t) for each t is a diagonal matrix with non-negative diagonal
entries, reflecting the relative instantaneous rates with which
the different components of π get updated. The existing the-
ory does not explicitly define the scaling matrix M(.) and it
is further assumed that in the limit all the components of π

are updated in an equally spaced manner and some “specific”
minimum proportion of the iterations. To work around the
difficulties in studying (41), the approach in [27] shows that
under the conditions stated in Lemmas 1–4, the diagonal ele-
ments of M(t) lie almost surely in the closed set [τ, 1], for
some τ > 0. It then combines the set [τ, 1] with the mean field
G(., .) to form a set-valued mean-field. More specifically, let
�τ

|S| be the |S| × |S| diagonal matrix of the form: �τ
|S| :=

{diag(ξ1, . . . , ξ|S|); ξs ∈ [τ, 1],∀s ∈ S}. It is shown in [27]
that the limit set of the asynchronous iterates {πn}n∈N can be
characterized by the asymptotic analysis of the ODI below

dπ t

dt
∈ �τ

|S| · G
(

Q̂k,π
t
)
.

This procedure pays off in two ways: 1) the analysis can
be done by studying an “autonomous” rather than a “non-
autonomous” system and 2) it extends the previous theory
to also capture the behavior of asynchronous updates with
“set-valued” mean fields. Moreover, as argued in [27], it only
suffices to verify that τ is positive; i.e., to ensure that all the
components of the iterates get updated some minimum propor-
tion of time. The key advantage lies in that the exact value of
τ does not need to be known, as the analysis will be conducted
for every τ > 0. Now, recall from Lemma 3 that every s ∈ S in
CNRQ is, in fact, selected some minimum proportion of time,
τ > 0. Armed with this understanding, we are now prepared to
state Lemma 5 which corresponds to [27, Assumption (B6)].
Define the correspondence �ce(.) : c|S×A| �→ �λ such that
for all Q̂k ∈ c|S×A|, one has π ∈ �λ is in �ce(Q̂k) if and
only if it satisfies Definition 1 for CE policies. �ce(.) is an
upper semi-continuous set-valued map (see [18, Lemma 16]),
such that for all Q̂k ∈ c|S×A|, �ce(Q̂k) is compact, convex,
and nonempty (see [18, Lemma 16]).

Lemma 5: For all Q̂k ∈ c|S×A|:
1) the differential inclusion

π̇ t
s = dπ t

s

dt
∈ �τ .Gs

(
Q̂k,π

t
s

)
, for all s ∈ S (42)

is globally attracted by �ce(Q̂k);
2) F(Q̂k,�

ce(Q̂k)) is a convex map.
Proof: Following [19] and [20], the correspondence �ce(Q̂k)

coincides with the set of no-regret policies:{
π ∈ �λ : Rk,〈a,á〉,s

(
Q̂k,π

)
≤ 0,∀k ∈ K, s ∈ S, a, á ∈ Ak

}

(43)

where for general Q̂k ∈ c|S×A| and π ∈ �λ, Rk,〈a,á〉,s
is defined as (for ∀k ∈ K,∀s ∈ S,∀a, á ∈ Ak)

Rk,〈a,á〉,s
(

Q̂k,π
)

def=
∑

a∈A:ak=a

π s(a).
[
Q̂k,(s,á,a−k) − Q̂k,(s,a,a−k)

]
. (44)

Equation (43) implies that the solutions to (42) steer the
state-dependent regret matrix Rk,s toward the closed negative
orthant R

|Ak×Ak|− , denoted for short by �. The analysis will
be more direct if we consider the equivalent dynamics in the
regret space; i.e., to show that for the solutions to (45) below

Ṙt
k,s = dRt

k,s

dt
∈ �τ .

[
Rk,s

(
Q̂k, �s

(
Q̂k,π

t
))

− Rt
k,s

]
(45)

we have that

Rt
k,〈a,á〉,s → � as t → ∞, ∀k ∈ K,∀s ∈ S,∀a, á ∈ Ak.

Following [27, Theorem 5.2], we now produce a Lyapunov
function for (45) to show that � (resp. �ce) is a global attractor
for (45) [resp. (25)]. Define

L(Rk) = 1

2

∑
s∈S,a,á∈Ak

[
ϒ
(

Rk,〈a,á〉,s
)]2

.

Clearly, L ≥ 0, L(�|S|) = 0, and ∇L(Rk) = ϒ(Rk). To
show that L is a Lyapunov function for the ODI (45), we
need to verify for any fixed ωs ∈ �τ and any π́ ∈ �s(Q̂k,π

t)

≺ ∇L(Rk), Ṙt
k �

=
∑
s∈S

≺ ϒ
(
Rk,s

)
, ωs ·

[
Rk,s

(
Q̂k, π́

)
− Rk,s

]
� < 0

for ∀Rk,s ∈ R
|Ak×Ak|\� (46)

where ≺ ., . � denotes the Frobenius inner product. It can
be shown (see Lemma B.1 in the supplementary materials of
this paper) that ≺ ϒ(Rk,s),Rk,s(Q̂k, π́) � = 0 for all s ∈ S;
hence, (46) reduces to: −∑

s∈S ≺ ϒ(Rk,s), ωs.Rk,s � which is
clearly less than 0. This concludes part (a).

As for part (b), the convexity of F(Q̂k,�
ce(Q̂k)) is imme-

diate given that the function Hλk in the definition of F is an
affine function of Lλk

k , and for any fixed Q̂k ∈ c|S×A|, Lλk
k

reduces to a linear function of π ∈ �λ.
Now remember from Lemma 3 that every state-action pair

is used a minimum proportion of time, τ́ > 0. Define �τ́
|A|

to be the |A| × |A| diagonal matrix of the form: �τ́
|A| :=

{ζ1, . . . , ζ|A|; ζa ∈ [τ́ , 1],∀a ∈ A}. In light of [27, Th. 4.7],
under assumption (A1) and with Lemmas 1–5 holding, the
linear interpolation of the iterative process in (33) is an
asymptotic pseudo-trajectory to the differential inclusion

dQ̂t
k,s

dt
∈ �τ́

|A| · Fs

(
Q̂t

k,�ce

)
, ∀s ∈ S (47)

where Fs stands for the |A|-vector of the F(s,a) terms; i.e., for
any πce ∈ �ce

Fs

(
Q̂t

k,π
ce
)

= Hλk
s

(
Q̂t

k,π
ce
)

− Q̂t
k,s, for all s ∈ S
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and Hλk
s (Q̂t

k,π
ce) is the |A|-vector of Hλk

(s,a)(Q̂
t
k,π

ce) terms,
defined in (37).

The next lemma establishes the convergence of the {Q̂n
k}n∈N

iterates on the moderate time-scale.
Lemma 6: Qλk

k,s [defined in (11)] is the unique global attrac-
tor of the differential inclusion (47).

Proof: Clearly, Hλk(Qλk
k ,π)= Qλk

k . Also, for any fixed
π ∈ �λ, Hλk

s (Q̂k,π) is a contraction mapping with respect

to sup norm ‖.‖∞ (see [24]); i.e., ∀Q̂k,
´̂Qk ∈ c|S×A|

∥∥∥∥Hλk
s

(
Q̂k,π

)
− Hλk

s

( ´̂Qk,π

)∥∥∥∥∞
≤ ρ ·

∥∥∥∥Q̂k,s − ´̂Qk,s

∥∥∥∥∞
which means that Qλk

k,s is its unique fixed point. Now, for any
fixed ω ∈ �τ́

|A|, we have

ω ·
(

Hλk
s

(
Q̂k,π

)
− Q̂k,s

)
= Hλk,ω

s

(
Q̂k,π

)
− Q̂k,s

where Hλk,ω
s (·) def= (I − ω) · Q̂k,s + ω · Hλk

s (Q̂k,π). Since
ω’s diagonal elements are bounded by 1, it holds that:

∀Q̂k,
´̂Qk ∈ c|S×A|

∥∥∥∥Hλk,ω
s

(
Q̂k,π

)
− Hλk,ω

s

( ´̂Qk,π

)∥∥∥∥∞
≤ ρ ·

∥∥∥∥Q̂k,s − ´̂Qk,s

∥∥∥∥∞

where ρ
def= 1 − ζ ∗(1 − ρ) ∈ (0, 1), and ζ ∗ = maxi ζi. Thus,

Hλk,ω
s (Q̂k,π) is also a contraction mapping, and Qλk

k,s is its

unique fixed point; i.e., Hλk,ω(Qλk
k ,π) = Qλk

k . From this, it
follows that {Q̂n

k}n∈N
converge to true values Qλk

k for any policy
π ∈ �λ, and in particular for CE policies in �ce.

Theorem 2: The coupled process (Q̂n
k,π

n)

from (33) and (34) converges to the limit (Qλk
k ,�ce(Qλk

k ))

where πce ∈ �ce(Qλk
k ) is a stationary CE policy for

the stochastic game �λ with λk-parameterized individual
Lagrangian utilities and Qλk

k is the associated Lagrangian
state-action value function.

Proof: Immediate by Lemma 6 and [27, Corollary 4.8].
Theorem 3: As n → ∞, for all k ∈ K, λn

k → λ∗
k and

(Q̂n
k,π

n, λn
k) → (Q

λ∗
k

k ,�ce(Q
λ∗

k
k ), λ∗

k).
Proof: Please see Appendix C in supplementary

materials.

V. NUMERICAL RESULTS

In this section, we follow up on the example scenarios from
Section II-C, and give numerical results on CNRQ-learning
algorithm. We conduct experiments for a two-tier network
with four femto-cells and a single macro-cell. We investigate
CNRQ’s convergence and also compare its social welfare with
that computed from both centralized and semi-distributed vari-
ants of the CE-Q learning algorithm both implemented with
a utilitarian equilibrium selection mechanism [22]. In order
to apply CE-Q to our constrained game example, we have
adopted the Lagrangian approach similarly to CNRQ and have
augmented CE-Q with LM iterations that run on a slower
timescale with respect to Q-value iterations. Since central-
ized CE-Q is convergent to stationary CE, this would result
in proper handling of the constraints in the game; however,

Fig. 2. (a) FUEs’ marginal frequency of transmissions (uplink). (b) Individual
FUE’s average rate utilities. (c) Average uplink social welfare.
(d) Convergence of individual FUE’s average power consumption.

semi-distributed CE-Q is susceptible to mis-coordination, and
convergence to CE is not guaranteed in general. This is also
corroborated by our experiments in the downlink scenario in
that semi-distributed CE-Q violates the constraint on MBSs
buffer length.

First, consider the uplink HetNet setup from Section II-C1.
The simulation parameters are listed in Table IV.
Fig. 2(a) and (b) exhibits the convergence behavior of
CNRQ in this scenario. In Fig. 2(a), we plot the marginal
empirical frequency of high power transmissions (action
au

k = 1) by FUEs for both cases of MUE’s occupancy state.
In Fig. 2(b), the progression of the average individual rate
utility achieved by all FUEs is depicted. In Fig. 2(c), we
compare CNRQ’s social welfare (measured in terms of the
sum of FUE’s rate utilities) with that obtained from both
semi-distributed and centralized versions of the CE-Q algo-
rithm. As can be seen, CNRQ outperforms semi-distributed
CE-Q, but its social welfare is upper bounded by centralized
CE-Q. We show in Fig. 2(d) the average power consumption
by FUEs. To keep the figure from being cluttered, the results
are shown only for FUEs 1 and 2. The imposed average power
constraint (0.75 mW in Table IV) is respected asymptotically
by all three algorithms.

To experiment with the downlink setup, we use the simu-
lation parameters listed in the left half of Table IV. Fig. 3(a)
shows the convergence of marginal empirical frequency of
play for action ad

k = 10 [mW] by each FBS when the system
state (i.e., MBS buffer length) is b0 = 5. In Fig. 3(b) and (c),
we compare CNRQ’s social welfare and constraint satisfaction
with the other two baselines. As evidenced, semi-distributed
CE-Q, despite achieving a slightly higher sum rate, has vio-
lated the constraint on MBS buffer length by a relatively large
margin. We also study the impact of the MBS’s Poisson traffic
arrival rate on the downlink social welfare and on the con-
straint on MBS buffer length. To this end, the traffic intensity
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TABLE IV
SIMULATION PARAMETERS

Fig. 3. (a) FBSs’ marginal frequency of transmissions (downlink). (b) Average downlink social welfare. (c) Convergence of MBS’s average buffer length.
(d) Downlink social welfare versus MBS traffic intensity (note the violation of constraint in semi-distributed CE-Q learning).

is varied from 4.5 to 8.5 pkt/ms. MBS buffer length constraint
is consistently respected by both CNRQ and centralized CE-Q.
However, as shown in Fig. 3(d), despite its high social welfare,
semi-distributed CE-Q has consistently violated the constraint
on buffer length.

VI. CONCLUSION

We presented a CNRQ algorithm for the online computa-
tion of stationary CE in constrained general-sum stochastic
games. CNRQ builds on previous ideas which involve two
control loops consisting of Q-learning (outer-loop) for estimat-
ing action value functions and no-regret-learning (inner-loop)
for estimating a CE policy. We employed the technique of
timescale separation from stochastic approximation to allow
for a single-loop concurrent execution of Q-learning (on
the slower timescale) and no-regret-learning (on the faster
timescale), which eliminates the backstage virtual plays as
required by prior art in inner-loop iterations. Moreover, by
regarding distributed CE estimation as simultaneous primal
maximization across all agents, we extended the algorithm
for constrained setups as well. Thanks to our stochastic
approximation-based expression of the learning process, the
constrained extension comes as easily as introducing a slower
third timescale to the operation of the algorithm for con-
ducting dual descent in LM space. Overall, CNRQ has been
cast as a three-timescale asynchronous stochastic approxima-
tion with set-valued update increments. Unlike prior art which
lacks a rigorous convergence analysis, we analyzed the asymp-
totic behavior of CNRQ using differential inclusion arguments.

Our analysis draws on recent extensions of the theory of
stochastic approximation to the case of asynchronous recur-
sive inclusions with set-valued mean fields. We also applied
CNRQ-learning to an exemplary case of emerging wireless
HetNet deployments.
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