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Distributed Power Control for Delay Optimization in
Energy Harvesting Cooperative Relay Networks

Vesal Hakami and Mehdi Dehghan, Member, IEEE

Abstract—We consider cooperative communications with energy
harvesting (EH) relays and develop a distributed power control
mechanism for the relaying terminals. Unlike prior work, which
mainly deals with single-relay systems with saturated traffic flow,
we address the case of bursty data arrival at the source cooper-
atively forwarded by multiple half-duplex EH relays. We aim at
optimizing the long-run average delay of the source packets under
the energy neutrality constraint on the power consumption of each
relay. While EH relay systems have been predominantly optimized
using either offline or online methodologies, we take on a more
realistic learning-theoretic approach. Hence, our scheme can be
deployed for real-time operation without assuming acausal infor-
mation on channel realizations, data/energy arrivals as required by
offline optimization, or relying on precise statistics of the system
processes, as is the case with online optimization. We formulate the
problem as a partially observable identical payoff stochastic game
(PO-IPSG) with factored controllers in which the power control
policy of each relay is adaptive to its channel and energy states as
well as to the state of the source buffer. We equip each relay with a
reinforcement learning procedure and prove that the parallel exe-
cution of this procedure is convergent to (at least) a locally optimal
solution of the formulated PO-IPSG. The proposed algorithm oper-
ates without explicit message exchanges between the relays, while
inducing only little source-relay signaling overhead. By simulation,
we contrast the delay performance of the proposed method against
existing heuristics for throughput maximization. It is shown that
compared with these heuristics, the systematic approach adopted in
this paper has a smaller suboptimality gap once evaluated against
a centralized optimal policy armed with perfect statistics.

Index Terms—Bursty traffic, cooperative relaying, energy
harvesting (EH), power control, reinforcement learning, stochastic
game, wireless communication.

I. INTRODUCTION

COOPERATIVE relaying is a promising paradigm that re-
sults in broader coverage and in combating the wireless

channel impairments. Relay-assisted transmission mitigates the
need to use a high power at the transmitter, leading to prolonged
battery life and lower level of interference [1]. Relays in wire-
less networks can be classified as decode-and-forward (DaF)
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relays, which decode and possibly re-encode the information
before forwarding it, and amplify-and-forward (AaF) relays,
which forward an amplified version of the signal without hard
decoding. AaF relays compared with other types, which require
signal detection, are less complicated, have lower implementa-
tion cost, and are thus widely utilizable [4]. While cooperative
relaying results in higher network capacity, in forwarding to the
destination a representation of the signal it has received from the
source, a relay consumes its own energy. Since replacing batter-
ies for such devices is either impracticable or costly in several
scenarios, recent advances in energy harvesting (EH) devices
[5] have paved the way for self-sustainable relays [6] that power
themselves from theoretically unlimited energy sources that are
present in their surrounding environment (e.g., in the form of
solar, vibration, thermoelectricity, etc.). However, the harvested
energy rates are typically quite low, with sporadic arrivals in
random limited amounts, and it is thus desirable to accumulate
the harvested energy by storing it in a buffer such as a recharge-
able battery for subsequent usage. In practice, the energy buffer
is restricted in size, and thus EH relays may face power outage
whenever the energy consumption rate is higher than the har-
vesting rate. Hence, there is a need for novel power-use policies
that exploit available information on the energy, channel, and
data arrival processes to efficiently utilize the harvested power
for meeting application-specific demands.

A. Literature Review

Exploiting both EH and cooperative communications has re-
ceived a considerable interest recently [7]–[20]. The use of EH
relays in cooperative communication was first introduced in [8],
wherein a comprehensive performance analysis was conducted
for relay selection and transmission power setting in an AaF
network in terms of symbol error probability by using a prob-
abilistic energy model. However, the results in [8] are mostly
of analytical interest rather than proposing a practical optimiza-
tion scheme. More recently, several studies have come up with
transmission control strategies (e.g., power allocation, relay se-
lection, etc.) to optimize different network utility functions in
EH relay systems [7], [9]–[11], [13]–[15], [17]–[20], [35]. These
schemes can be categorized based on two main distinguishing
features.

1) Optimization method (offline/online/learning-theoretic):
In offline optimization, it is assumed that all future re-
alizations of data/energy arrivals as well as the channel
variations are known acausally before the system starts.
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In general, offline optimization problems are modeled as
a mathematical program and the solution obtained can
be considered as an upper bound on the performance of
the actually stochastic system. In contrast, online opti-
mization is much more realistic in that only statistical
knowledge but causal information on the realizations of
the system states is assumed. A systematic way to ap-
proach online optimization is to formulate the problem
as a stochastic dynamic program (DP) [21], and optimize
the expected value of the long-run system performance.
Nonetheless, in many practical scenarios, either the char-
acteristics of the channel variations and energy/data ar-
rival processes change over time, or it is not possible to
have reliable statistical information about these processes
before node deployments. For example, in a sensor field
with solar EH nodes distributed over a forest, each node’s
solar EH profile will depend on its location and is subject
to change based on the time of the day or the day of the
week. To adapt the transmission scheme in real time, one
should resort to learning-theoretic schemes, as they are ca-
pable of converging to optimal transmission policy over
time in the absence of prior knowledge on the statistics of
the processes governing the communication system.

2) Traffic type assumption (saturated/bursty): Under satu-
rated traffic assumption, there are infinite data backlogs at
the source, and the optimization objective is to improve
the physical layer performance (e.g., throughput, outage
probability or symbol error rate), by only accounting for
channel and energy state processes. When traffic is bursty,
however, there is a need for a buffer where packets can be
queued. The “emptying” rate of the buffer then becomes
the “service” rate. A physical-layer model that only cap-
tures the variation of the channel and energy completely
disregards this issue, and it can result in arbitrary long
average waiting time of the packets at the source buffer.
When the end-to-end delay is of interest, we need to track
the source queue size that develops under bursty traffic
generation, and the allocation of power at relays should
control the service rate to achieve delay optimization at
the source data link layer.

The majority of the studies on EH relay systems lie within the
offline optimization framework, and assume nonbursty source
traffic type [7], [9], [10], [13]–[15], [18]–[20]. In [10], the prob-
lem of optimal power control for throughput maximization in
an SRD network (one source-destination pair and one relay) is
formulated as a nonlinear program in an offline setting. Both
source and relay are harvesting entities, and the relay operates
in half-duplex mode using AaF protocol. A similar setup is con-
sidered in [7], but only for the case that both source and relay
nodes have their own data to transmit to the destination, and the
optimization objective is to maximize the total throughput. Also,
in [9], the transmit power is jointly optimized with relay selec-
tion to handle the case of multiple relays. In [13], source and
relay power allocation is optimized for a Source Relay Destina-
tion (SRD) system with a full-duplex relay using DaF protocol.
Half-duplex DaF relaying is considered in [14], wherein it is
assumed that only the source node can harvest energy. The case
in which both source and relay are EH nodes is handled in [15]

and [18], whereas [20] considers two parallel EH relays (the so-
called diamond relay channel [22]). It is also worth noting that
technically, the multirelay case can be deemed equivalent to the
orthogonal frequency division multiplexing (OFDM) relay with
individual power constraint in each subcarrier. Accordingly, the
studies in [38] and [39] have proposed optimization schemes for
data and energy cooperation in relay-enhanced OFDM systems.

Some studies [9], [10], [19] propose online throughput max-
imization for the case of saturated source traffic. In [19], for
instance, a stochastic DP formulation is given for optimal on-
line power allocation in the case of DaF relaying. In [10], the
online power allocation problem is formulated as a Markov deci-
sion process (MDP) [23] and a computationally simple scheme
is provided for the special case in which power control at the
nodes is limited to on-off switching. Again, within the context
of saturated source traffic type, there has also been a recent
study that utilizes a solar-data-driven stochastic EH model in
an MDP-based design and obtains the optimal DaF relay power
control policy to minimize the long-term average symbol error
rate [35]. Under a bursty on-off Markovian traffic assumption,
the study in [11] addresses online relay scheduling for EH wire-
less sensor networks. The problem is formulated as a partially
observable MDP [24] in which the source node has to choose
between direct or cooperative transmission modes depending
on its own available energy, the states of its EH and event gen-
eration processes, and by using only partial knowledge of the
relay’s state.

Finally, in [17], a multisource, single relay cooperative net-
work is considered whereby the traffic at the source nodes is
assumed to be bursty and the forwarding protocol used by the
relay is DaF. The transmit power of all nodes is assumed to be
contributed by both the conventional ac utility power and the
renewable energy. A distributed learning algorithm is proposed
to minimize the sum of the average delay of the data flows by
dynamic power, rate, and link selection control.

B. Motivation, Contributions, and Outline

Most prior art in optimizing the performance of EH relay
systems belong to the realm of offline optimization, and pri-
marily deal with the didactic single relay scenario [7], [10],
[11], [13]–[15], [18], [19]. Also, the existing online schemes re-
quire explicit knowledge of the statistics of the system processes
[9]–[11], [19] and do not address the case of bursty traffic in
general, wherein the optimization of the queuing delay is neces-
sary. Unlike [17], in this paper, we consider an EH cooperative
relay system consisting of multiple AaF relays that are powered
solely by an EH storage with limited capacity. The source node,
on the other hand, has a continuous power supply and maintains
a data buffer for the bursty traffic flow toward the destination.

We aim at proposing a learning-theoretic scheme to con-
trol the relays’ power consumption for optimizing the long-run
average delay experienced by the source packets. Ideally, the
learning mechanism should be able to dynamically control the
transmit power at the relays in adaptation to the source buffer
state information (SBSI) as well as the global channel state
information (CSI) and energy state information (ESI) of the re-
lays. This calls for a principled design based on a centralized
stochastic DP formulation. However, such scheme is already
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doomed by the curse of dimensionality due to the huge space
of global CSI, global ESI, as well as the exponential growth
of the number of joint action combinations with the number of
relays involved. Moreover, to gain access to the global state of
the system, a centralized controller would induce heavy signal-
ing overhead. Hence, it is way more practical to empower the
relays with decentralized autonomy to make their own decisions
based on immediate local feedbacks and partial observability of
the system state [i.e., local CSI (LCSI) and local ESI (LESI)].
These decisions are not trivial since each relay faces the uncer-
tainty of the system state (channel, buffer, energy) and of the
other relays’ actions and observations. To tackle these compli-
cations, we come up with a decentralized low overhead solution
by making the following contributions.

1) We rigorously formulate the delay-optimal multirelay
power control problem as a partially observable identi-
cal payoff stochastic game (PO-IPSG) [25] that considers
the aforementioned properties of the EH relay system.
PO-IPSG is a stochastic process that is collectively con-
trolled by a group of independent agents who lack a central
view of the global system state. Nevertheless, these agents
have a shared objective; i.e., they are all interested in op-
timizing the utility of the team as a whole. The process is
decentralized because none of the agents can control the
whole process, and neither of the agents has a full view
of the global state. This readily corresponds to our setting
in that we also assume all relays in the network collec-
tively aim at minimizing the average number of packets
waiting in the source buffer. Also, by making each re-
lay’s power control policy adaptive to a partial view of the
system consisting of SBSI, its LCSI, and LESI, the for-
mulated PO-IPSG can systematically tradeoff long-term
energy-efficiency and delay performance.

2) Given our PO-IPSG formulation, we propose a distributed
learning-theoretic power control (DLTPC) algorithm that
can be used by the relays to learn their power control play
strategies in the absence of statistical knowledge regard-
ing the dynamics of channel, traffic, and energy processes.
We construct DLTPC by building on and extending the
classical results for gradient-based optimization of MDPs
[27], [28] and PO-IPSGs [25]. We show that our algorithm
harmonizes the relays’ policies so that their collective be-
havior is provably convergent to (at least) a locally optimal
solution of PO-IPSG. As it turns out, DLTPC is a particu-
larly lightweight algorithm, and its updates on the control
policy induce only little source-relay signaling overhead
with no explicit message exchange between the relays.

3) By simulation, we show the suboptimality gap be-
tween DLTPC and an MDP-based optimal policy that is
armed with perfect statistics. It is evidenced that DLTPC
has a smaller performance margin with the centralized
controller compared to existing suboptimal throughput-
maximizers for EH AaF multirelay systems (e.g., [9]).

The rest of the paper is organized as follows. In Section II,
we present the system model along with the general charac-
teristics of the channel, traffic, and EH processes we assume
in this paper. In Section III, we give our PO-IPSG-based
formulation of the multirelay delay optimization problem. In

Fig. 1. Two-hop energy-harvesting cooperative relaying network.

Section IV, the DLTPC algorithm is proposed for conver-
gence to a locally optimal solution of the formulated PO-IPSG.
Section V is dedicated to the comparative evaluation of the
DLTPC algorithm. The paper ends with a concluding epilogue.

II. SYSTEM MODEL

In this section, we describe the two-hop relay communication
system, as well as the channel, traffic, and EH models. As a
notational convention, the time index appears as a subscript,
while a relay’s index is always a superscript. Bold symbols are
used for nonscalars (i.e., vectors or sets) at the social level,
collecting quantities across all relays. A symbol associated with
an individual relay (be it a scalar, a vector, or a set) is never in
bold.

A. Energy-Harvesting Relay Communication System

The system under consideration is a two-hop relay network
with one source node s, K energy-harvesting relay terminals

(each denoted by Rk , k ∈ 𝒦
Δ= {1, . . . , K}) and one destination

node d, as illustrated in Fig. 1. It is assumed that the source
node’s signal cannot reach the destination directly due to its
limited transmission radius, and instead relies on the relays’
assistance to transmit to d. We assume that all relays operate
in half-duplex mode. A two-phase AaF protocol is used for
s -to- d packet delivery; more specifically, each time slot n
is split into two subslots, each with duration τ/2. In the first
subslot, the source broadcasts its own data with full transmission
power as to relay nodes. In the second subslot, according to the
power control policy (defined in Section III-A and calculated by
Algorithm 1), each relay decides whether to remain silent or to
amplify the signal it has received from the source and forwards
it to d. It is further assumed that the second hop transmissions by
the relays are over orthogonal channels (e.g., using frequency
division multiple access).

B. Channel and Physical Layer Model

We consider a frequency nonselective block fading model,
where cs,k ∈ 𝒞

s,k denotes the channel fading gain from node
s to relay Rk . We use 𝒞

s,k to refer to the local source-to-
relay channel state information space; similarly, ck,d ∈ 𝒞

k,d is
used to denote the channel gain on the Rk - d link, and 𝒞

k,d

represents the local relay-to-destination CSI space. We define
the LCSI space for the kt relay as 𝒞

k = 𝒞
s,k × 𝒞

k,d , where
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ck
n = 〈cs,k

n , ck,d
n 〉 ∈ 𝒞

k is referred to as relay Rk ’s LCSI at the
n th time slot. Also, we use = ×K

k=1𝒞
k to denote the space of

the global CSI, collecting the channel gains across all the relays
Rk , k ∈ 𝒦.

Assumption 1: The global CSI cn = 〈ck
n 〉k∈𝒦 ∈ is quasi-

static in each time slot. Furthermore, the process {cn}n∈N is
i.i.d. between slots with distribution P{c}. It is assumed that
P{c} is unknown and that each relay Rk is aware of only its
local CSI ck

n at time n, which can be estimated using channel
reciprocity, assuming a time-division duplexing system. �

Let x represent the broadcast information symbol with unit
energy from node s. The signal received by Rk is given by

ys,k
n =

√
ascs,k

n x + η

where η is the additive white Gaussian noise. Without loss of
generality, we assume that the noise power is the same over
all links, denoted by σ2. In phase 2, relay Rk amplifies ys,k

n ,
and forwards it to node d with the chosen power ak

n ∈ 𝒜
k . The

received signal yk,d
n at d is as follows:

yk,d
n =

√
ak

nck,d
n xk,d

n + η

where xk,d is the signal sent from Rk to d, normalized to have

unit energy; i.e., xk,d
n = y s , k

n

|y s , k
n | .

Given the power profile an = 〈ak
n 〉k∈𝒦, the end-to-end AaF

cooperative service rate is as [34]

rs,𝒦,d
n = γLW log2

(
1 +

∑
k∈𝒦 Γs,𝒦,d

n

Υ

)
(1)

where W is the bandwidth for transmission, γL denotes a band-
width factor that is set to 1 for energy-constrained settings, Υ is
a constant denoting the capacity gap, and

Γs,𝒦,d
n =

ak
nascs,k

n ck,d
n

σ2
(
ascs,k

n + ak
nck,d

n + σ2
) (2)

is the relayed signal-to-noise ratio (SNR) for source node s,
which is helped by relay node Rk .

C. Traffic Model and Source Buffer Dynamics

There is one buffer at the source for the storage of packets.
Let l be the size of each packet and An be the random new
packet arrival at the nth slot.

Assumption 2: The arrival process {An}n∈N is i.i.d. with
distribution P{A} and mean λ = E[A]. Also, packet arrivals
occur at the end of each time slot. It is further assumed that the
specific form of P{A} is unknown a priori. �

We use bn ∈ ℬ to denote the SBSI, which is the number of
packets in the source buffer at the beginning of the n th time
slot. NB denotes the maximum buffer size. When the buffer is
full (bn = NB ), new arrivals will be dropped. Finally, the buffer
dynamics follow Lindley’s equation:

bn+1 = min

((
bn − τrs,𝒦,d

n

2l

)+

+ An,NB

)
(3)

where (.)+ stands for max(., 0).

D. EH and Relay Energy Storage Dynamics

The EH process at each relay is modeled as a packet arrival
process (e.g., see [37]) such that each energy packet is an integer
multiple of a fundamental energy unit. The relay Rk is capable
of harvesting a random number Hk

n of energy packets from the
environment at each time slot. The relay stores its harvested en-
ergy in its battery or a super-capacitor [26] with a finite capacity
denoted by Nk

E (energy packets), and all the energy harvested
when the battery is full is lost. Also, the leakage within the
battery or super-capacitor and the inefficiency in storing har-
vested energy are assumed to be negligible. Let ek

n ∈ ℰ
k be the

amount of renewable energy in relay Rk ’s energy storage at the
beginning of the n th time slot. We refer to ek

n as local energy
state information (LESI). Also, we use = ×K

k=1ℰ
k to denote

the space of the global ESI, collecting all possible LESI com-
binations across all the relays. Similarly, en = 〈ek

n 〉k∈𝒦 ∈ ℰ

is referred to as the system’s global ESI at the n th time
slot.

Assumption 3: The arrival process {Hk
n }n∈N ∀k ∈ 𝒦 is

i.i.d. with respect to n, and has distribution P{Hk} and mean
μk = E[Hk ]. We assume that the new energy arrivals are ob-
served after the control actions are performed at each slot. It is
assumed that P{Hk} and E[Hk ] are unknown and each relay
Rk is only aware of its LESI ek

n at each time slot. �
Let ak

n denote the chosen power level by relay Rk at time n.
The LESI dynamics for each relay Rk is as follows:

ek
n+1 = min

(
ek
n − ak

n

τ

2
+ Hk

n ,Nk
E

)
(4)

where ak
n must satisfy the following energy availability con-

straint:

ak
n

τ

2
≤ ek

n ∀k ∈ 𝒦. (5)

Finally, it is implicitly assumed that ak
n = 0 means that relay

Rk remains inactive in time n.

III. PROBLEM FORMULATION

In this section, we formulate a decentralized power control
policy for the relays to cooperatively optimize the average de-
lay incurred by the source packets. In our system model, the
dynamics of the source buffer depends, in part, on the packet
arrival intensity λ, but it also depends on the cooperative ser-
vice rate rs,𝒦,d it receives from the relays, which is affected
by their channel states as well as their EH profile. Accord-
ingly, we define the power control policy at each relay to be
adaptive to SBSI, as well as its LCSI and LESI. In particular,
adaptation to LCSI is needed to opportunistically exploit the
channel dynamics and gain more value for the power invested.
SBSI-adaptability is needed to make the policy delay-aware un-
der the conditions of unsaturated traffic and finite-length buffer
at the source. Finally, given that the relays rely on EH for
their operation, their control policies are subject to instanta-
neous energy availability constraints. An LESI-adaptive policy
avoids inadvertent consumption of the harvested energy, and
increases the odds that on urgent occasions a larger number
of relays are available for rendering their service (i.e., higher
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diversity order), and they have more feasible power options at
their disposal.

Our formulation is founded on the assumption that the relays
would be working toward a common goal, i.e., the optimiza-
tion of the incurred delay by the source packets. Altogether,
our setup comes down to the coupled interaction of a number
of agents with identical interest in a Markovian environment
based on partial knowledge of the system state information and
without explicit awareness of the action choices of the other
agents. A systematic way to formulate this problem is to cast
the system as a PO-IPSG [25]. We denote the PO-IPSG as
a quintuple 𝒢 = 〈𝒦, , ,T, r〉. = ℬ× × ℰ is the global
system state space, where each sn ∈ denotes the global sys-
tem state at the nth time slot, i.e., sn = 〈bn , cn ,en 〉 consists
of the SBSI, global CSI, and global ESI; likewise, we use
𝒮

k = ℬ× 𝒞
k × ℰ

k to represent the space of partially observed
system states from the viewpoint of relay Rk , k ∈ 𝒦. Simi-
larly, sk

n = 〈bn , ck
n , ek

n 〉 denotes the k th relay’s observed state
at the nth time slot. (e) = × K

k=1𝒜
k (ek )∀e ∈ is the battery

state-dependent joint action space, i.e., different combinations
of feasible power levels that can be chosen by the relays [see
(5)]. The mapping T : × × → [0, 1] denotes the global
state transition probabilities, and is discussed in more detail in
Section III-B. Finally, r : × × → R is the instantaneous
reward function that is defined to be identical across all relays.
More specifically, we define r as a function of the number of
vacant places in the source buffer; i.e.,

r (sn ,an , sn+1) = ν (NB − bn+1) (6)

where ν is a positive constant. The dynamics of the game 𝒢

proceeds as follows: at each time slot n, each relay Rk observes
its local state sk

n and selects an action ak
n according to its power

control policy uk (to be specified in Section III-A). A composite
action profile an = 〈ak

n 〉k∈𝒦 from the joint action space is
executed, the system probabilistically transitions to the next
state sn+1 according to the law T(sn+1|sn ,an ), and all relays
receive the identical reward r(sn ,an , sn+1). The system-wide
objective is to maximize the value of the game, i.e., the long-run
average of the received rewards.

A. Factored Control Policy

We assume that the system is controlled by stationary poli-
cies. The stationarity of a policy implies that it depends on the
history of the game only through the current state. Moreover, we
parameterize the policy space by a set of continuous parameters
Θ ∈ R𝒟 of some dimension𝒟. In particular, as we are interested
in decentralized optimization with partial state observability by
the relays, we restrict ourselves to the space of factored joint
controllers Θ , where each Θ ∈ Θ is a probabilistic map-
ping of the form Θ : × → [0, 1] and it holds that Θ =∏K

k=1 uθk
. Basically, Θ is defined to be the concatenation of

individual relay policy parameters, i.e., Θ = 〈θ1, . . . , θK 〉, and
uθk

: 𝒮k ×𝒜
k → [0, 1] is relay Rk ’s individual power control

policy. θk is taken to be a 𝒟
k Δ= |𝒮k ×𝒜

k |-dimensional vector
of the form θk = 〈θk

s,a〉s∈𝒮k ,a∈𝒜k ; i.e., the joint policy space is

of dimension 𝒟 =
∑K

k=1 𝒟
k .

Remark 1: The factorization of action choice allows for par-
allel computation of the control policy by the relays as stated
in Theorem 2 (Section IV). It also helps overcome the curse of
dimensionality associated with the huge size of the joint state-
action space × ; however, as argued in [25], a side-effect is
that only a subset of policies from the full space of joint policies
(corresponding to, e.g., a central nonfactored controller) can
be represented. Hence, we can at the best yield the best set of
policies from within the restricted space Θ . �

A common way to express parametric policies in the literature
(e.g., see [27]) is to assume a Gibbs-like distribution for the
shape of uθk

(.); more precisely, the probability of choosing
power level a ∈ 𝒜

k (e) by relay Rk in state s = 〈b, c, e〉 ∈ 𝒮
k

is expressed as follows:

uθk

(a|s) =
exp (θs,a)

∑
′
a∈𝒜k (e)

exp
(
θ

s,
′
a

) (7)

Note that the denominator in (7) is ensured to be nonzero by
always having a = 0 as the feasible choice.

B. State Transition Laws

Assume a joint parametric control policy Θ ∈ Θ is given.
The probabilistic dynamics of the system state can be charac-
terized in terms of Θ and the mapping T, which denotes the
controlled transition probabilities; more specifically, we have

P
{

sn+1| sn , Θ (an |sn )
}

= T(sn+1|sn ,an ) Θ (an |sn )
(8)

where (recalling Assumption 1 on i.i.d. channels), we have

T(sn+1|sn ,an )
= P {cn+1} .T(bn+1|sn ,an ) T (en+1|en ,an ) (9)

and the source buffer state transition is as follows:

T (bn+1|sn ,an ) =⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P

{
An = bn+1 −

(
bn − τ rs ,𝒦, d

n

2l

)+
}

, bn+1 < NB

∞∑

A=NB −
⎛
⎝bn −

τrs,𝒦,d
n

2l

⎞
⎠

+
P {An = A} , bn+1 = NB .

(10)
For the probabilistic transition of the global ESI, we have

T(en+1|en ,an ) =
𝒦∏

k=1

Tk
(
ek
n+1|ek

n , ak
n

)
.

where

Tk
(
ek
n+1|ek

n , ak
n

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P
{

Ek
n = en+1

k −
(
ek
n − τ ak

n

2

)}
, ek

n+1 < Nk
E

∞∑

E=N k
E −

(
ek
n − τak

n

2

)
.

P
{
Ek

n = E
}

, ek
n+1 = Nk

E

(11)
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C. System-Wide Objective

As is common in infinite-horizon stochastic DP problems
[21], we may seek policies that choose actions to optimize either
the expected total discounted reward or the expected average-
reward per step criterion. In this study, we opt for the time-
averaged metric due to the following reasons.

1) The average reward criterion puts more emphasis on the
long-run performance of the system and does not discount
its future behavior; without prior knowledge, each byte of
a file or voice packet is of equal significance and it is
hardly justified to discount later packets as inherently less
important.

2) Moreover, even if a formulation based on discounted-
reward maximization is employed to trade off the delay
experienced by recent and later packets, the discount fac-
tor needs to be chosen heuristically, which affects the
performance of the derived power control policy.

3) Finally, we set the goal in PO-IPSG 𝒢 to be the maximiza-
tion of the long-run average number of empty slots in the
source buffer. As we clarify in the sequel (see Remark 3),
this time-averaged metric in our problem is naturally re-
lated to the mean waiting time in the source buffer, and
correlates well with an objective judgment of the system
performance.

Now that we have stated our rationale for choosing a time-
averaged criterion, in Remark 2, we impose a mild assumption
on the set of admissible policies to ensure that the time-average
criterion is well-defined:

Remark 2: Similar to other literature in MDP [12], [28], we
restrict our consideration to unichain policies in this paper. The
stationary policy Θ is said to be unichain if the controlled
Markov chain {sn}n∈N under Θ is ergodic [33]. In this case,
{sn}n∈N has a unique steady state probability distribution π,
where for all s ∈ 𝒮, π(s) = lim

n→∞ P (sn = s) [28]. Now, we may

define the optimization objective as follows:

max
Θ

ℛ̄
( Θ) Δ= lim

N →∞
1
N

N −1∑
n=0

E
Θ {rn} = Eπ {ν (NB − b)}

(12)
where the Eπ denotes expectation w.r.t. the underlying proba-
bility π. �

Remark 3: We have from the extended Little’s law (c.f., [30,
Lemma 1]) that the long-run average delay �̄�( Θ ) of the source
packets under the (unichain) policy Θ verifies the following
inequality:

�̄�
( Θ) ≤ lim

N →∞
1
N

N −1∑
n=0

E
Θ {bn}

(1 − Pdrop) λ

where E
Θ

is the expectation under stationary policy Θ and
Pdrop is the packet drop rate due to source buffer overflow. Here,
we argue that since in practice we target reasonable (e.g., 0.1%)
drop rates, it holds that Pdrop 
 1, and therefore the following
is a good approximation for the average delay:

�̄�
( Θ) ≈ lim

N →∞
1
N

N −1∑
n=0

E
Θ {bn}
λ

.

Furthermore, this approximation is asymptotically tight as
the data buffer size increases. Therefore, for sufficiently large
buffer size and low load regime, maximizing ℛ̄( Θ ) is a valid
alternative to minimizing the average delay. �

Definition 1 (Local Optimal of PO-IPSG 𝒢): A profile of
power control policies Θ ∗

= uθ∗
1 , . . . , uθ∗

K ∈ 𝒰
Θ is the local

optimal of the game 𝒢 if it satisfies the following condition:

∇Θ ℛ̄
( Θ∗)

= 	0.

Theorem 1: The gradient in Definition 1 can be computed as
follows:

∇Θ ℛ̄
( Θ)

= lim
N →∞

1
N

N −1∑
n=0

∇ΘP
{

sn+1| sn , Θ (an |sn )
}

P {sn+1| sn , Θ (an |sn )} Q (sn ,an )

(13)

where the function Q(., .) is the so-called differential reward
function defined as follows:

Q (x,y)

= lim
N →∞

E
Θ

{
N −1∑
n=0

(
rn − ℛ̄

( Θ)) |s0 = x,a0 = y

}
.

(14)

Proof: The proof follows immediately from the derivation
in [28, Section 3.2]. �

Note that (13) can be written in a more convenient form by
realizing that

∇ΘP
{

sn+1| sn , Θ (an |sn )
}

P {sn+1| sn , Θ (an |sn )}
= ∇Θ ln

[
P

{
sn+1| sn , Θ (an |vn )

}]

= ∇Θ ln
[ Θ (an |sn )

]
. (15)

It is worth noting that a function such as ∇Θ ln[ Θ (an |sn )],
which is the gradient of a log-likelihood, is also known as a
score function in classical statistics [31]. Finally,

∇Θ ℛ̄
( Θ)

= lim
N →∞

1
N

N −1∑
n=0

∇Θ ln
[ Θ (an |sn )

]
Q (sn ,an ) (16)

In what follows, we present a distributed learning-theoretic
procedure to steer the relays’ behavior toward a delay-optimal
power control policy uΘ∗

in the sense of Definition 1.

IV. A MULTIAGENT REINFORCEMENT LEARNING SOLUTION

In our PO-IPSG formulation, it is desired that the relays make
coordinated decisions despite their independence of one another
and despite their lack of omniscience (i.e., each single relay is
unaware of the other relays’ local states, and the policies they are
pursuing). To harmonize the relays’ behavior, in this section, we
present a DLTPC algorithm to be executed in parallel by each
relay involved.
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In fully observable IPSGs, value function-based learning
methods (e.g., [32]) have been proposed for discounted reward
problems, which are convergent to the optimal Nash equilib-
rium. As for our PO-IPSG problem, however, we resort to pol-
icy search methods, which have been shown to be a reasonable
alternative to value-based methods for partially observable en-
vironments [36]. In particular, we follow the lead of Peshkin et
al. [25], which introduce a general method for using gradient
ascent in multiagent policy spaces to guarantee convergence to
local optima (i.e., gradient zero operating points) of the game.
Through a sketchy analysis, it has been shown in [25] that: when
the search space is restricted to factored social policies𝒰Θ , joint
gradient ascent performed by a central controller (with access
to observation histories of the whole system) is equivalent to
parallel gradient ascent performed by individual agents (with
access only to their own partial view of the system history). Key
to the argument in [25] is to show that:

1) the parallel algorithm samples gradients ∇Θ ℛ̄ from the
correct distribution, and

2) the update increments used in gradient ascent are the same
in the parallel algorithm as in the joint one.

Moreover, to satisfy these two conditions, an underlying re-
quirement is that the agents perform synchronized updates on
the estimates of their own components of the global gradient
vector. Although the study in [25] is conducted in the context of
discounted reward PO-IPSGs, but as we show in this paper, their
line of argument can be extended to average-reward settings as
well. However, the discussion in [25] is more of an outline lack-
ing most details on the machinery of gradient estimation. We
thus turn to standard techniques for estimation of the gradi-
ent of the average-reward in MDP literature [27], [28]. These
algorithms typically exploit the regenerative structure of the
system’s underlying Markov process to obtain unbiased gradient
estimates based on the observations made between regeneration
times (i.e., between visits to a certain recurrent state). Applied to
our PO-IPSG formulation, corresponding to every global regen-
erative cycle, we may define a local cycle for each relay during
which it collects local observations to form an estimate of its
own component of the global gradient vector. We show that at the
expense of a very low signaling overhead, it can be arranged for
the relays to agree on the termination of global regenerative cy-
cles, thus satisfying the underlying requirement of synchronized
updates in [25]. We then rigorously apply the line of argument
in [25] to show that conditions I and II will be satisfied by our
derivation (see Theorem 2 in Section IV). Based on this result,
in Section IV-B, we discuss the update rules to be executed
iteratively by each relay, and present DLTPC’s pseudocode.

A. Decentralized Computation of the Performance Gradient

Assume that the relay communication system is controlled
via some factored joint parametric control policy Θ ∈ 𝒰

Θ

(c.f., Section III-A). The global system history is realized as an
infinite-length trajectory of the form

h∞ = [s0,a0, r0, s1, . . . , sn−1,an−1, rn−1, sn , . . .]

∈ ℋ∞
Δ= (𝒮×𝒜× R)∞.

Now, fix some e∗ ∈ ℰ
k ∀k and let e∗ ∈ ℰ be the global ESI,

where ek
n = e∗∀k; likewise, fix some b∗ ∈ ℬ. Finally, let 𝒮∗ Δ=

{〈b∗, c,e∗〉, ∀c ∈ 𝒞}. With {sn}n∈N being ergodic, elements

of 𝒮∗ recur infinitely often within any realization of the global

system history. Let tm be the time of the m-th visit to 𝒮
∗. We

refer to the following portion of history:

h∗
m =

[
stm

, atm
, rtm

, stm +1, . . . , stm + 1−1,

atm + 1−1, rtm + 1−1, stm + 1

]

as the mth global renewal cycle (m ≥ 1). Under Assumption 1
for CSI and by regenerative property (e.g., see [29]), these pieces
of system trajectory are i.i.d. We denote by 
(h∗

m ) the length
of h∗

m that is equal to Δtm = tm+1 − tm . It is also convenient
to introduce local versions of a renewal cycle observed through
the prism of each relay Rk . In fact, corresponding to the m-th
global renewal cycle h∗

m , the relay Rk ’s local renewal cycle is
realized as follows:

h∗,k
m =

[
sk
tm

, ak
tm

, rtm
, sk

tm +1, . . . , s
k
tm + 1−1,

ak
tm + 1−1, rtm + 1−1, s

k
tm + 1

]

where by definition of tm , it holds that for all k ∈ 𝒦:

sk
tm

, sk
tm + 1

∈ 𝒮
∗
k

Δ= {〈b∗, ck , e∗〉 ∀ck ∈ 𝒞
k}; i.e., h∗,k

m is of the
same length as h∗

m . Now, more generally, define ℋ
∗ to be the

space of all global renewal cycles; accordingly, ℋ∗,k is used to
refer to the space of all local renewal cycles for relay Rk . For
h∗ ∈ ℋ

∗, it holds that

P (h∗|Θ) =

(h∗)−1∏

n=0

τ
(
s[n+1,h∗]|s[n,h∗],a[n,h∗]

)

× Θ (
a[n,h∗]|s[n,h∗]

)
(17)

where the notation x[n,h∗] is used to refer to the compo-
nent of x realized at time 0 ≤ n ≤ 
(h∗) within h∗. Now, by
renewal-reward theorem (e.g., see [29]), the performance gra-
dient ∇Θ ℛ̄( Θ ) defined in (16) can be calculated as follows,
(18) shown at the bottom of the page,
i.e., the expected total quantity earned during one cycle, normal-
ized by the expected cycle duration. Similarly, the differential

∇Θ ℛ̄
(

Θ
)

=
E

Θ
{∑
(h∗)−1

n=0 ∇Θ ln
[

Θ
(
a[n,h∗]|s[n,h∗]

)]
Q

(
s[n,h∗],a[n,h∗]

)}

E Θ {
 (h∗)}
(18)



HAKAMI AND DEHGHAN: DISTRIBUTED POWER CONTROL FOR DELAY OPTIMIZATION IN ENERGY HARVESTING COOPERATIVE RELAY 4749

reward for 0 ≤ n < 
(h∗) can be written as follows:

Q (x,y) =

E
Θ

{

(h∗)−1∑

j=n

(
r[j,h∗] − ℛ̄

(
Θ
)) |s[n,h∗] = x,a[n,h∗] = y

}
.

(19)

Replacing Q with its estimate Q̂(s[n,h∗],a[n,h∗])
Δ=∑
(h∗)−1

j=n (r[j,h∗] − ℛ̄( Θ )) in (18), we have

−−→
∇ℛ̄

Θ
Δ= E

Θ
[
 (h∗)]∇Θ ℛ̄

( Θ)
=

∑
h∗∈ℋ∗

P (h∗|Θ)

×
{


(h∗)−1∑
n=0

∇Θ ln
[ Θ (

a[n,h∗]|s[n,h∗]
)]

× Q̂
(
s[n,h∗],a[n,h∗]

)}
(20)

where given that E
Θ

[
(h∗)] is a positive number,
E

Θ
[
(h∗)]∇Θ ℛ̄( Θ ) can be viewed as the expected gradi-

ent direction, and the zeroes of
−−→
∇ℛ̄

Θ are the same as those of
∇Θ ℛ̄( Θ ).

Theorem 2 in the sequel establishes that the calculation of

the direction of the performance gradient
−−→
∇ℛ̄

Θ can be done in
a decentralized manner across the relays; i.e., each relay can

independently calculate its individual gradient direction
−−→
∇ℛ̄

θk

based on local information contained within its local renewal
cycles h∗,k ∈ ℋ

∗,k , and yet the ensemble of individual gradient

directions recover the whole vector
−−→
∇ℛ̄

Θ .

Theorem 2: Assume Θ ∈ 𝒰
Θ . The gradient direction

−−→
∇ℛ̄

Θ
can be expressed as the vector

−−→
∇ℛ̄

Θ = 〈
−−→
∇ℛ̄

θ1 , . . . ,
−−→
∇ℛ̄

θK 〉

in which each component
−−→
∇ℛ̄

θk , k ∈ 𝒦 is calculated as follows:

−−→
∇ℛ̄

θk

Δ= E
Θ

[
 (h∗)]∇θk ℛ̄
( Θ)

=
∑

h∗, k ∈ℋ∗, k
P

(
h∗,k |Θ)

×
{ 
(h∗, k )−1∑

n=0

∇θk ln
[
uθk (

a[n,h∗, k ]|s[n,h∗, k ]
)]

× Q̂
(
s[n,h∗, k ], a[n,h∗, k ]

)}
(21)

and

Q̂
(
s[n,h∗, k ], a[n,h∗, k ]

) Δ=

(h∗, k )−1∑

j=n

(
r[j,h∗, k ] − ℛ̄

( Θ))
. (22)

Proof: See the Appendix. �
In essence, Theorem 2 states that if at each renewal cycle, all

relays Rk , k ∈ 𝒦 update their policy parameters θk along the
gradient direction sampled from their distribution P (h∗,k |Θ)

in parallel, the parameter vector Θ gets updated along the gra-
dient direction sampled from P (h∗ = 〈h∗,1, .., h∗,K 〉|Θ); i.e.,
the distributed algorithm is sampling from the correct distribu-

tion. Also, due to factorization, the update increments
−−→
∇ℛ̄

θk to
be used in relay Rk ’s gradient ascent are independent of the
parameters in other relays’ policies. Hence, the policy learning
and control can be distributed among relays without requir-
ing that they be informed of each others’ states and choices of
actions.

B. Distributed Learning-Theoretic Power Control (DLTPC)

In this section, we present DLTPC (Algorithm 1), which
can lead the relays’ collective behavior to a locally optimal
delay performance. DLTPC relies on sample estimates of
the performance gradient obtained during the actual system
runtime to perform gradient-ascent in policy space. Hence,
our algorithm does not need the explicit knowledge of the
CSI, SBSI, and ESI statistics, and is an instance of model-free
learning. This is as opposed to doing exact gradient-ascent,
which requires the explicit knowledge of the transition laws T
to analytically compute the gradient direction. In DLTPC, each
relay updates its policy parameter θk

m at the end of each rene-
wal cycle, i.e., between visits to 𝒮

∗ (see (27) in Algorithm 1).
To understand (27), note that according to (21) and (22), we
can use

Fk
m

Δ=
tm + 1−1∑
n=tm

∂ ln
[
uθk (

ak
n |sk

n

)]

∂θk

∣∣∣∣∣∣
θk =θk

m

×
tm + 1−1∑

j=n

(
rj − ℛ̄

( Θ))
(23)

as the mth cycle estimate of
−−→
∇ℛ̄

θk , which is obtained by each
relay Rk from the sample renewal cycle h∗,k

m . To allow for
more efficient recursive implementation of the summation (23)
in Algorithm 1, we rewrite Fk

m as follows:

Fk
m =

tm + 1−1∑
n=tm

(
rn − ℛ̄

( Θ))

×
n∑

j=tm

∂ ln
[
uθk (

ak
n |sk

n

)]

∂θk

∣∣∣∣∣∣
θk =θk

m

(24)

which makes it possible to incrementally construct Fk
m using

transient quantities zk
n and gk

n before reaching the end of
each cycle. Accordingly, (27) in the pseudocode is basically
the standard rule for stochastic gradient-ascent in which the
parameter αm ∈ R+ denotes a learning rate. Also, similarly to
[27], ℛ̄( Θ ) in (24) is replaced via its estimate ℛ̂m , which is
also updated at each renewal cycle via the recursion

ℛ̂m+1 := ℛ̂m + αm

tm + 1−1∑
n=tm

(
rn − ℛ̂m

)
. (25)
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Equation (25) is a stochastic approximation of the average
reward ℛ̄( Θ ), and is consistent with the observation that for
the mth cycle, it holds

ℛ̄Θm

(
≈ ℛ̂m

)
=

E
Θ

{∑tm + 1−1
n=tm

rn

}

E Θ {Δtm} . (26)

Theorem 3: Choose αm such that the sequence {αm} be di-

minishing (i.e., αm
m↑∞→ 0), un-summable (i.e.,

∑
m αm = ∞)

but square summable (i.e.,
∑

m α2
m < ∞). Also, consider the

sequence of parameters {Θm} generated by Algorithm 1. Then,
{ℛ̂m} converges (with probability 1), and the profile of power
control policies {uΘm } converges to the local optimal of PO-

IPSG 𝒢, i.e., ∇Θ ℛ̄(uΘm )
m↑∞→ 0 (w.p.1).

Proof: With this setup, DLTPC’s update equations in (27)
and (28) are exactly along the lines of the single-agent iterates
in [27, (15) and (16)]; hence, the convergence of the gradient
components (with respect to θk ∀k) of the performance measure
ℛ̄(uΘm ) to zero can be established via the same arguments
made in ([27], Proposition 3). Combine this with Theorem 2 to
conclude. �

C. Discussion and Directions for Future Research

In this section, we give a few remarks about the underly-
ing assumptions in this paper, and discuss how relaxing these
assumptions can serve as a basis for future research.

The first issue has to do with our assumption on altruis-
tic participation of the relays in forwarding the source signal.
In fact, a relay’s willingness to cooperate is taken for granted
and our game-theoretic formulation is only a means to perform
decentralized coordination and control and not a means of co-
operation stimulation. A potential future direction thus includes
extensions to systems with self-interested relaying terminals,
where acquiring service from the relays requires an incentive
mechanism.

The second issue is regarding the extension of our system
model to the case in which the source node also uses a state-
dependent law to control its transmit power for minimizing the
delay at its queue. While, ideally, the source power should be
treated as yet another “degree of freedom,” we argue, however,
that such extension is nontrivial as an adaptive source would
induce nonstationary dynamics on the power adjustment proce-
dure performed by the relays. In fact, proposing a systematic
mechanism for jointly controlling the source and relays’ power
is beyond the scope of this paper since we cannot naively con-
sider the source node as another player in our PO-IPSG for-
mulation. Therefore, in Section II, we have explicitly restricted
our system model to the case in which the source is transmit-
ting with a constant power (e.g., maximum allowed power).
That being said, there exists, however, some fair justifications in
support of our simplifying assumption: the source node in our
system model does not rely on harvested energy but is instead
connected to a fixed power supply. Also, no direct communi-
cation link is assumed between the source and the destination
node. As such, it is fairly reasonable that the source can tap into
its energy supply to power its transmission with little concern

Algorithm 1: Distributed Learning-Theoretic Power
Control
Initialization: Set iteration index n := 0, renewal cycle
index m := 0, initial transient differential reward Q̂0 := 0,
initial estimate for the average reward ℛ̂0 := 0; Initialize
parameter vector θk

0 randomly and set
zk

0 := 	0, gk
0 := 	0, ∀k ∈ 𝒦;

Source s broadcasts data and its buffer state b0;
while (TRUE)

for each relay k ∈ 𝒦 do
1) Choose power ak

n : u
θk

m

k (.|sk
n );

2) Transmit data to destination d with power ak
n ;

3) Inform s only if battery level ek
n+1 has reached e∗;

4) Receive data from s along with the next buffer state
bn+1, and the cycle termination signal

σn def

{
1, en+1 = e∗ and bn+1 = b∗

0, default ;

5) Update transient quantities for gradient and
differential reward:
// Calculate immediate reward:
rn := ν(NB − bn+1);
// Update the transient differential reward estimate:
Q̂n+1 := Q̂n + (rn − ℛ̂m );
// Update the transient gradient estimate:

zk
n+1 := zk

n + ∂ ln[uθ k
(ak

n |sk
n )]

∂θk |θk =θk
m

;
gk

n+1 := gk
n + (rn − ℛ̂m )zk

n+1;
6) if (σn == 1) // The end of the m-th renewal cycle

// Update policy parameter:

θk
m+1 := θk

m + αm gk
n+1; (27)

// Update the average reward estimate:

ℛ̂m+1 := ℛ̂m + αm Q̂n+1; (28)

// Reset transient quantities:
gk

n+1 = 	0, Q̂n+1 := 0, zk
n+1 = 	0;

// Update the cycle index:
m := m + 1;
end if

end for
n := n + 1; // Update the time index.

end while

for replenishment of its energy budget. When the source node
is a nonharvesting entity, there are several works in the con-
text of EH relay systems, where the source power is assumed
fixed [8].

Finally, we need to discuss the case of buffer-aided relaying,
where the relay nodes have data queues as well. Cooperative
networks with buffer-aided relays have the advantage that their
achievable diversity is not bottlenecked by transmission order
(unlike the stream-like communication in the conventional case
where at each time slot, signal transmission starts from source
and is then relayed to the destination) [41]. However, these
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relays may also incur larger packet delays, which can be quite
diverse for different packets. Hence, from the application point
of view, the lack of a data buffer at the relays in our work can be
justified by arguing that it is to advocate a simple relay design
while also minimizing packet delay, which is desirable in certain
applications. There are also some technical complications in the
way of extending the proposed approach to the case of relays
with buffers. Reasonably enough, in buffer-aided relaying, it is
typically the case that at each slot, only one relay is selected for
either transmission or reception. This necessitates an explicit
link selection mechanism that does not fit well with the collab-
orative all-playing nature of our PO-IPSG formulation and its
identical-payoff structure. The systematic way to account for
buffer-aided relaying is again a formulation based on stochastic
DP; however, to come up with a realistic scalable solution, we
need to take on a different approach for problem decomposition.
There are some studies along this line (e.g., see [17]) that ad-
dress delay optimization in the context of buffer-aided relaying
by exploiting the structural properties inherent to the problem.
The setup considered in [17], however, only consists of a single
relay that gives the problem a nice weakly coupled structure
amenable to decomposition into sub-problems.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
DLTPC algorithm for decentralized power control in EH multi-
relay systems. We compare DLTPC’s performance with three
other power control schemes:

1) Centralized MDP with perfect statistics: We assume that
an MDP controller exists that is aware of the probability
distributions of the channel fading P{c}, traffic arrival
P{A}, as well as the energy arrival processes P{Hk} for
all relays k ∈ 𝒦. Armed with this knowledge, one can use
standard solution methods (e.g., relative value iteration
[23]) to solve for an optimal joint power control policy
u : → , which maximizes an average reward measure
defined similarly as (12). While in principle, this method
can obtain superior performance compared to DLTPC, it
suffers from both curses of dimensionality and modeling,
and therefore has no practical relevance. However, the
reward measure obtained using this procedure can serve
as an upper bound against which to compare the DLTPC’s
performance.

2) Harvesting rate (HR) assisted scheme [9]: The online-HR
scheme proposed in [9] is a centralized online (subopti-
mal) algorithm for joint relay selection and power allo-
cation in multi-relay AaF EH cooperative communication
systems. However, unlike DLTPC, online-HR assumes in-
finite backlog at the source (saturated traffic assumption),
and aims at maximizing the throughput. To make online
decisions, the approach in [9] uses the causal informa-
tion of ESI and CSI but also needs the statistics of the
harvesting and channel processes. The setup in [9] con-
siders the case wherein the source node is also an EH
entity; therefore, in our simulation, we remove this re-
striction and assume a continuous power supply for the

source to make it comparable with DLTPC. At each slot,
using the knowledge of mean HR and average channel
SNRs, online-HR first determines the transmit power of
the relays via a closed-form formula, and then a simple
(centralized) optimization is solved to determine the relay
with the maximum throughput.

3) Naive scheme [9]: This algorithm is also centralized and
online; however, it does not require the statistics of the
harvesting and channel processes. At each time slot, the
relays use their stored energies as their transmit powers.
Using these transmit powers, the equivalent SNRs for all
links are calculated. Then, the relay with the maximum
equivalent SNR among all is selected to forward the signal
to destination.

In what follows, we first compare the computational com-
plexity of DLTPC with Online-HR and Online-Naive, and then
present our numerical results in Section V-B.

A. Comparison of Computational Complexity

At each time step, the Online-HR algorithm [9] has to com-
pute the maximum system throughput achievable by every relay
and then select the relay with the best value. Hence, its com-
plexity is O(K) in each time step (i.e., linear in the number of
relays). The Online-Naive algorithm has also the complexity of
O(K) per time step as it needs to select the relay, which provides
the maximum equivalent SNR among all the relays. Both these
algorithms are centralized and need to gather global information
from the whole network for their operations. On the other hand,
DLTPC is a particularly lightweight algorithm, working with
minimal message signaling overhead between source and relays
(see steps 3 and 4 in Algorithm 1). The algorithm’s update rules
are written in terms of efficient recursive formulae, which lead
to negligible complexity. Also, if the policy function for each
relay is chosen to have the convenient form in (7), the score
function at step 5 can simply be calculated as follows:

∂ ln
[
uθk (

ak
n |sk

n

)]

∂θk

∣∣∣∣∣∣
θk =θk

m

=

⎧⎪⎪⎨
⎪⎪⎩

1 − uθk
(a|s)

∣∣∣
θk =θk

m

, a = ak
n , s = sk

n

−uθk
(a|s)

∣∣∣
θk =θk

m

, a �= ak
n , s = sk

n

0, s �= sk
n

.

Therefore, at each time step, DLTPC needs just a few standard
algebraic operations, along with one random number generation
to calculate the next action.

B. Numerical Evaluation

We consider a setup with a total of K = 8 relays. The time
slot duration is τ = 2 ms. We assume Poisson packet arrival
with mean rate λ pkt/ms, and the packet size is 1024 B. The to-
tal bandwidth is W = 2.5 MHz. The source buffer is quantized
to have ten states (i.e., NB = 9 pkts). Moreover, we assume that
all relays harvest energy according to a Poisson energy arrival
with mean rate μk = 0.25 energy pkt/ms ∀k, and the renewable
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Fig. 2. Progression of average source buffer length.

Fig. 3. Progression of power control policies.

energy is stored in a battery with maximum capacity Nk
E = 4

(energy pkts). The source transmission power is fixed at 5
(energy pkt/ms). Although our algorithm does not use the
knowledge of the channel model, for the purpose of ex-
periments, we simulate Rayleigh fading for each link. In
this model, the channel states cs,k and ck,d (∀k) are ex-
ponentially distributed random variables. However, as we
consider a finite number of possible states, digital quanti-
zation is used to discretize the channel states. In particu-
lar, all the channel states are quantized into six probabil-
ity bins with the boundaries specified as: {(−�, −5.41 dB),
[−5.41,−1.59 dB), [−1.59,−0.08 dB), [−0.08, 1.42 dB), [1.42,
3.18 dB), [3.18 dB, �)}. Over these bins, the stochastic evolu-
tion of channel states is i.i.d. across time and independent across
users. This discretization of channel states have been justified in
[40]. We choose 〈b∗, c,e∗〉 = 〈NB , . . . , (Nk

E )k 〉 as the recurrent
state marking the renewal cycles for DLTPC. Also, the initial

Fig. 4. Impact of input traffic intensity on delay performance.

Fig. 5. Impact of energy storage capacity on delay performance.

learning rate is taken to be α0 = 2.5 × 10−4 and is diminished
every 100 renewal cycles by a factor of 0.9.

Fig. 2 plots the progression of the average source buffer length
over time under DLTPC along with the two other suboptimal
policies. The mean data arrival rate is fixed at 2.0 pkt/ms. As can
be seen, both the online-HR and online-naive schemes converge
much more quickly, but are outperformed by DLTPC in the limit.
In Fig. 3, we plot the policy of all relays (for one particular state-
action pair) as the joint policy is driven toward the local optimal
of the PO-IPSG.

Fig. 4 illustrates the average number of occupied slots in
source buffer under various traffic intensities (λ is varied from
1 to 2 pkt/ms). As a general trend, the source buffer gets
more occupied as packet arrival rate increases. As expected,
the MDP controller has the best performance gain among the
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Fig. 6. Impact of energy HR on delay performance.

four schemes. However, compared to the other two subopti-
mal policies, our SBSI-adaptive DLTPC algorithm maintains a
smaller suboptimality gap.

Next, we investigate the impact of the relays’ HR μk and
battery capacity Nk

E on delay performance. The mean Poisson
data packet arrival rate is assumed to be 2.0 pkt/ms. In Fig. 5, we
assume that the mean Poisson energy arrival rate for all relays
is 0.25 energy pkt/ms, and plot the average number of occupied
slots in source buffer for different values of battery size Nk

E

(from 4 to 8 energy pkts). The delay performance generally
improves as battery capacity increases. However, DLTPC and
online-HR can better exploit the enlarged energy storage with
respect to the naive policy.

In Fig. 6, we fix the battery size Nk
E to 4 energy pkts, and

instead vary the mean Poisson energy arrival rate for all relays
from 0.25 to 0.45 energy pkt/ms. As expected, the source buffer
receives a higher service rate as the relays’ HR increases. In
both plots, it is observed that our DLTPC algorithm maintains a
better performance margin with respect to the centralized MDP
controller.

VI. CONCLUSION

The design of new protocols for cooperative networks with
EH nodes is a promising research direction that incorporates
cooperative benefits (diversity, capacity, etc.) with the EH con-
cept. In pure EH relay systems, the nodes run on the energy
harvested from the environment and so are limited by their gen-
eration and storage capacities. This, together with the stochastic
nature of the profile of the harvested energy, calls for the design
of novel control policies, which optimally utilize the power for
meeting the application demands. However, the majority of the
existing schemes have considered the case of single-relay SRD
systems and have focused on the optimization of the physical
layer throughput by assuming nonbursty traffic arrival at the
source. Also, the dominant methodologies for the optimization

of these systems have been either offline optimizations assuming
the availability of acausal information on the exact energy arrival
instants and amounts or online optimizations that rely on precise
statistical knowledge of the system. In this paper, we considered
an EH relaying system consisting of a bursty source with finite
data buffer size whose transmission is cooperatively assisted by
multiple EH relays. To optimize the average delay experienced
by the source packets, we proposed a learning-theoretic solution
that operates in the absence of prior knowledge of the statistics
of the channel variation, traffic arrival, and EH processes. The
proposed method is highly decentralized and induces very low
control overhead. Numerical evaluations demonstrated the su-
perior delay performance of our solution compared to existing
heuristics.

APPENDIX

PROOF OF THEOREM 2

First, note that

Q̂
(
s[n,h∗],a[n,h∗]

)
= Q̂

(
s[n,h∗, k ], a[n,h∗, k ]

)
. (29)

Now, by substituting Θ =
∏K

i=1 uθi
in (20), it holds that

E
Θ

[
 (h∗)]∇θk ℛ̄
( Θ)

=
∑

h∗∈ℋ∗
P (h∗|Θ)

{ 
(h∗, k )−1∑
n=0

∇θk

× ln

[
K∏

i=1
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a[n,h∗, i ]|s[n,h∗, i ]

)]
Q̂

(
s[n,h∗, k ], a[n,h∗, k ]

)}

(30)

=
∑

h∗∈ℋ∗
P (h∗|Θ)

{ 
(h∗, k )−1∑
n=0

[
K∑

i=1

∇θk

× ln
[
uθi (

a[n,h∗, i ]|s[n,h∗, i ]
)]

]
Q̂

(
s[n,h∗, k ], a[n,h∗, k ]

)
}

(31)

=
∑

h∗∈ℋ∗
P (h∗|Θ)

{ 
(h∗, k )−1∑
n=0

∇θk ln
[
uθk (

a[n,h∗, k ]|s[n,h∗, k ]
)]

× Q̂
(
s[n,h∗, k ], a[n,h∗, k ]

)
}

(32)

where the last equality is due to∇θk ln[uθi
(a[n,h∗, i ]|s[n,h∗, i ])] =

0 for all i �= k. Now, the entire term within the curly brackets in
(32) can be written as a function φ(.) of relay k’s local renewal
cycle h∗,k , i.e.,

φ(h∗,k ) Δ=

{

(h∗, k )−1∑

n=0

∇θk ln[uθk

(a[n,h∗, k ]|s[n,h∗, k ])]

× Q̂(s[n,h∗, k ], a[n,h∗, k ])

}
.
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Also, given that the global renewal cycle h∗ can be described
as the collection 〈h∗,1, .., h∗,K 〉 of local renewal cycles across
all relays, we have
∑

h∗∈ℋ∗
P (h∗|Θ) φ

(
h∗,k)

=
∑

〈h∗
1,..,h

∗
K 〉∈ℋ∗

P
(〈h∗,1, . . . , h∗,K 〉|Θ)

φ
(
h∗,k)

=
∑

h∗
k ∈ℋ∗

k

⎡
⎣ ∑
〈h∗, 1,...h∗, k −1,h∗, k + 1,...,h∗, K 〉

P
(〈h∗,1, .., h∗,K 〉|Θ)

⎤
⎦

× φ
(
h∗,k) =

∑

h∗, k ∈ℋ∗, k
P

(
h∗,k |Θ)

φ
(
h∗,k) . (33)

Hence, it follows that

−−→
∇ℛ̄

θk =
∑

h∗, k ∈ℋ∗, k
P

(
h∗,k |Θ)

{ 
(h∗, k )−1∑
n=0

∇θk

× ln
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(34)
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