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Abstract We propose a decentralized stochastic control

solution for the broadcast message dissemination problem

in wireless ad-hoc networks with slow fading channels. We

formulate the control problem as a dynamic robust game

which is well-justified by two key observations: first, the

shared nature of the wireless medium which inevitably

cross-couples the nodes’ forwarding decisions, thus bind-

ing them together as strategic players; second, the

stochastic dynamics associated with the link qualities

which renders the transmission costs noisy, thus motivating

a robust formulation. Given the non-stationarity induced by

the fading process, an online solution for the formulated

game would then require an adaptive procedure capable of

both convergence to and tracking strategic equilibria as the

environment changes. To this end, we deploy the strategic

and non-stationary learning algorithm of regret-tracking,

the temporally-adaptive variant of the celebrated regret-

matching algorithm, to guarantee the emergence and active

tracking of the correlated equilibria in the dynamic robust

forwarding game. We also make provision for exploiting

the channel state information, when available, to enhance

the convergence speed of the learning algorithm by con-

ducting an accurate (transmission) cost estimation. This

cost estimate can basically serve as a model which spares

the algorithm from extra action exploration, thus rendering

the learning process more sample-efficient. Simulation re-

sults reveal that our proposed solution excels in terms of

both the number of transmissions and load distribution

while also maintaining near perfect delivery ratio, espe-

cially in dense crowded environments.

Keywords Slow fading � Broadcasting � Wireless ad-hoc

networks � Regret tracking � Dynamic robust games

1 Introduction

Network-wide broadcast is a fundamental primitive in

wireless ad hoc networks (WANETs) as well as an en-

abling mechanism for the route discovery phase of almost

all on-demand routing protocols (e.g., AODV [1]). It has

been shown that naive broadcast solutions such as basic

flooding will give rise to the notorious broadcast storm

problem [2] as a result of which the network’s normal

operation will be paralyzed with a huge volume of redun-

dant messages in transit. This observation has spawned a

large wave of publications on efficient forwarding whose

origins almost date back to the advent of the ad hoc net-

works themselves [3–5]. The bulk of the literature in this

area still consists of methods which work under the as-

sumption that the links are perfectly reliable at all times.

Within this mindset and assuming centralized knowledge

of the topology, broadcasting can essentially be formulated

as a classical constrained optimization problem with the

objective of minimizing the number of transmissions while

at the same time guaranteeing 100 % delivery ratio [6].

Under the link reliability assumption, there also exist many

graph-theoretic approaches for constructing efficient com-

munication substrates over which broadcast messages can

be thoroughly disseminated. Spanning tree and connected
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dominating set constructs have been at the forefront in this

direction for which many approximation algorithmic

techniques have been proposed to work around the issue of

computational complexity [7–10]. Prior art is also rife with

a wide variety of distributed sub-optimal heuristic algo-

rithms which draw on one (or two) hop topological

knowledge for making on-the fly forwarding decisions [11–

13]. Finally, when managing many-to-all broadcasts, i.e.,

when multiple sources tend to broadcast messages in the

network, a recent trend has been to use network coding

[14–17]. Instead of relaying received packets separately,

network coding enables nodes to combine several packets

and send out fewer combined/coded packets.

However, forwarding control in a real networking con-

text may largely deviate from ideal abstract models given

the influence of noise, fading and interference on wireless

links which can give rise to unmanageable outbursts of re-

transmissions. Research on supporting broadcast in the

presence of unreliable links has mainly revolved around

devising efficient acknowledgement (ACK) schemes [18]

or alternatively, introducing redundancy into the set of

forwarders [19]. There have also been a few attempts

which incorporate the expected costs associated with fixed

error probabilities of the outgoing links into the broadcast

substrate construction [6, 20]. Though applicable to the

lossy link model scenarios, the existing methods are either

centralized [21] or lack a principled basis to explicitly

factor the stochastic dynamics associated with variable link

qualities into the problem formulation. In essence, to cap-

ture the realistic effect posed by channel dynamics on

message propagation gives rise to a decentralized

stochastic control problem which has not been me-

thodically investigated before.

In a departure from the prior art, this paper addresses

broadcasting in multi-hop wireless networks with a real-

istic physical layer. We explicitly account for the variable

quality of the links by assuming fading channels with

slowly evolving SNR values. Hence, one can assume that

the typical stochastic dynamics dealt with in this paper

manifest themselves as a result of distance-related at-

tenuation or scattering due to obstacles and terrain condi-

tions, and evolve over moderately long time scale

compared to the baseband signal variations and are asso-

ciated with low Doppler spread [22].

Under slow fading, the cost incurred by a forwarding

node is associated with the number of (re)transmissions it

takes to deliver a given message to its neighbors. As the

link reliability is changing dynamically, the forwarding

costs are generally random and depend on instantaneous

channel conditions. Hence, an integral facet of the broad-

cast control solution would be to explicitly provide for

robustness against such uncertainty. On the other hand,

over the course of a broadcast, the wireless medium is

shared via many potential forwarders with possibly over-

lapping neighbor sets that incur different transmission costs

for their forwarding attempts. An uncoordinated broadcast

effort may not only trigger superfluous forwarding but it

can also fail to proactively utilize links with high quality

and avoid those in poor conditions. Therefore, forwarding

control in a WANET gives rise to an inherently strategic

setting, given the spatial dependency between a node and

its neighbors and the resultant cross-impact of their deci-

sions on their mutual performance.

With these understandings, in this paper, we address the

channel-adaptive broadcast coordination problem in

WANETs by making the following contributions:

• We come up with a game-theoretic-formulation of the

forwarding control problem using the framework of

dynamic robust games [23]. Dynamic robust games

formalize repeated interactions of a set of strategic

players in uncertain (noisy) environments. The robust

game specification features a state variable which is of

random nature and evolves over the stages of the play.

Hence, by incorporating the wireless channel states into

the game definition, we can explicitly cater for the

noisy transmission costs incurred by the forwarding

nodes. Furthermore, dynamic robust games are of

incomplete information, and thus impose minimal

informational assumptions on the part of the players.

This would prove a desirable property as it directly

translates into minimal control message overhead for

distributed node coordination. In effect, we demon-

strate that only one-hop ACK messages will suffice to

build and maintain the nodes’ forwarding strategies.

• In our forwarding game, at every broadcast interval,

each node’s decision is a choice between whether or not

to forward the current message in transit. Given the

coupling between the nodes’ forwarding decisions, a

real-time coordination mechanism is needed to form a

global consensus (equilibrium) across the network.

Furthermore, the nodes’ collective forwarding behavior

should be agile in tracking this consensus as the

forwarding utilities change due to slow fading. To this

end, we deploy the game-theoretic learning algorithm

of regret-tracking [24, 25], the temporally-adaptive

variant of the celebrated regret-matching algorithm [26,

27], to guarantee the emergence and active tracking of

correlated equilibria (CE) [28] between the forwarding

strategies of the network participants.

• Our solution, henceforth referred to as ‘‘regret-tracking

broadcast’’ (RTB), is particularly suited for scenarios

where no prior knowledge of the fading process and

network topology is available. More specifically, in

learning-theoretic parlance, RTB works in the pure

bandit feedback setting [29] in which only the noisy
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numerical value of the utility for the actually imple-

mented forwarding decision is perceived at each

decision period. However, when channel state infor-

mation (CSI) exists, an important aspect in our design

is to present a model-based variant of RTB which can

exploit CSI for obtaining an accurate estimate of the

forwarding costs. This cost estimate essentially makes

the nodes’ utility functions partly known, and as shown

empirically through experiments, the learning process

can be expedited using this semi-bandit feedback.

• Experimental and comparative results demonstrate

RTB’s superior performance in terms of both the

number of transmissions and load distribution while

also maintaining near perfect delivery ratio in the

presence of time-varying link qualities.

The rest of the paper is organized as follows: Sect. 2

reviews the prior art in game-theoretic and learning-based

forwarding for WANETs. In Sect. 3, we present our game-

theoretic formulation of the channel-adaptive broadcast

coordination problem. In Sect. 4, we first provide a brief

background on the regret-based machinery for strategic

learning, and will subsequently motivate our regret-track-

ing-based solution of the formulated game. This section

continues with outlining the basic form of the RTB algo-

rithm which is then followed by the exposition of its

model-free and model-based variants in two accompanying

subsections. Section 5 is dedicated to the comparative

numerical evaluation of the RTB algorithm. The paper

ends with a concluding epilogue.

2 Game-theoretic and learning-based forwarding:

a review of the prior art

In this section, we review related work on forwarding in

WANETs. Forwarding (both unicast and broadcast) has

been approached with a variety of techniques and tool-

boxes in the literature. We deliberately avoid giving an

exhaustive overview of the many well-known and long-

established solution techniques for broadcasting. Such re-

views are routinely included in nearly every paper that

addresses this problem (e.g., see [6]). With this in mind, we

primarily devote this section to the review of game-

theoretic and learning-based forwarding schemes. We be-

lieve this makes our review less stereotypical and more

specialized for an interested reader.

Major prior art game-theoretic and (or) learning-based

forwarding schemes belong to the realm of unicast trans-

missions. The main rationale for resorting to game-

theoretic or socioeconomic models in devising unicast

forwarding solutions is to induce cooperative behavior in

scenarios where nodes (or device holders) are not operating

under the control of the same authority, and may thus ex-

hibit selfish behavior to save their limited resources. In

fact, this is the direct ramification of granting autonomy to

network nodes for the merits of decentralization or self-

configuration. In such autonomic settings, the prevalent

trend in incentivizing cooperation has been to deploy

reputation- or credential-based schemes [30], or alterna-

tively to pre-configure the forwarding task based on some

static or offline computational mechanism design [31]. For

instance, the study in [32] reviews a number of repeated-

game-theoretic strategies (e.g., ‘‘tit-for-tat’’ or ‘‘grim-trig-

ger’’) which organize for the network’s forwarding op-

eration to proceed on the basis of a pre-conceived Nash

equilibrium (NE). The more recent trend in this direction is

the study of cooperation development in ad-hoc networks

by leveraging on ideas from evolutionary game theory

(EGT) [33]. An interesting case is reported in [34] where

the authors conduct an EGT-based analysis to determine

the impact of the network size as well as the types of

participating nodes on the development of cooperation.

Also, the authors in [35] adopt asymmetric multi-commu-

nity EGT to formulate competition among nodes in sparse

VANETs. Our game-theoretic formulation, however, tar-

gets broadcast transmission scenarios. Accordingly, the

application of games (or more specifically, dynamic

games) in this paper is mainly of control-theoretic interest,

i.e., to use games as an efficient toolbox for exerting de-

centralized control [36] and coordination over the network

rather than as a means of cooperation stimulation.

In the context of broadcast-type forwarding, a number of

studies (e.g., [37–40]) exploit some classical game settings

such as Diekman’s ‘‘volunteer’s dilemma’’ [41] or Arthur’s

‘‘Santa Fe bar problem (SFBP)’’ [42] to strike coordination

between the nodes’ rebroadcasting decisions. The ‘‘volun-

teer’s dilemma’’ models a situation in public economics

where each player faces the decision of either making a

small sacrifice from which all will benefit, or freeriding.

The ‘‘forwarding dilemma game (FDG)’’ in [37] is an

adoption of Diekman’s voluntary contribution problem to

the game of forwarding or not forwarding a flooding packet

in MANETs. The game analysis in [37] is offline, and the

nodes set their forwarding probability according to a pa-

rameterized symmetric mixed NE of the game. The NE’s

parameters, however, are assumed to be either a priori-

known or be derived from simulation experiments, which

limits its practicability. Similar FDG-like systems have

been introduced in [38] and [39] for VANETs and wireless

sensor networks (WSNs), respectively. The SFBP, on the

other hand, typifies scenarios where a congested resource, a

bar in the seminal article [42], is shared by a set of agents,

i.e., the bar customers. The customers enjoy their night at

the bar only if it is not overcrowded. The authors in [40]

propose an SFBP-based forwarding model for WSNs in
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which the nodes should make their forwarding decisions

based on both the congestion level of their channels (i.e.,

the number of concurrent accesses on the channel) and

their remaining energy; however, they skip derivation of

the game equilibrium, and propose instead a heuristic al-

gorithm where the nodes adjust the parameters of their own

utility functions depending on their current energy level

and a simple threshold-based estimation of the channel

congestion.

The two more closely related studies to our work are [6,

43]. In [43], a normal-form game with known utilities has

been used to model the problem in which the nodes will set

their forwarding probability according to their part in the

mixed NE of the game. However, given the anti-coordi-

nation nature of the game conceived in [43], the authors

could have guaranteed a higher social welfare by solving

the game for a (private) CE instead, while still preserving

the fairness property of the mixed NE. Also, one-shot

games are hardly a realistic model to capture the important

aspects of the problems in dynamic settings (such as ad-hoc

networks) with random and time-varying system pa-

rameters. The work in [6] presents a distributed scheme for

constructing a broadcast tree over unreliable links using the

notion of exact potential games [44]. The game is played

by the descendants of the internal nodes and is of a cost

sharing type; i.e., the cost of an edge is shared evenly by all

players whose paths contain that edge, effectively directing

the construction towards a spanning tree with minimum

number of internal nodes who also suffer the least for their

forwarding endeavor. Given the potential structure of the

game in [6] and using one-hop topological knowledge, the

iterative best response algorithm has been used for con-

vergence to an NE. The broadcast tree construction in [6]

depends on a precise probabilistic model of the wireless

connections and the local topology of the network. In a

practical setting, however, these probabilistic models have

to be ‘‘learned’’ and ‘‘maintained.’’ Moreover, the for-

warders set in [6] is not maintained in response to varia-

tions in link qualities and hence it cannot opportunistically

exploit the spatial and temporal diversity of the wireless

channels across the network.

Unlike [6], in this paper, we present a structure-less

broadcasting scheme which is based on a dynamic robust

game played by the forwarding nodes, themselves. Dy-

namic robust games are just the right specification for

scenarios where it is needed to capture the uncertainty

associated with both the random activity of the nodes and

the variability of the state of the system. We also introduce

cognition to the nodes’ forwarding decisions to enable

proactive adaptation even when the game is of incomplete

information and the environment dynamics (i.e., the

channel fading process) is unknown; our solution is based

on an adaptive regret-based procedure [24–27] and works

within the confines of bounded rationality, a practical as-

sumption consistent with the limited capabilities of the

wireless nodes.

3 Broadcasting in slow fading WANETs:

a game-theoretic formulation

In this section, we formalize the broadcast coordination

problem by proposing a game-theoretic formulation which

readily captures the coupling between the nodes’ forwarding

decisions. In particular, each node’s decision is simply as-

sumed to be a choice between forward or do not forward a

message at a given time. Also, the individual gain obtained

by each node in the game is defined to be its local coverage

ratio. Given the overlap between the transmission ranges,

each node’s gain is affected not only by its own decision but

also by the decision of other potential forwarders. A node’s

forwarding cost, on the other hand, is taken to be the ex-

pected total number of transmission attempts until successful

delivery to its one-hop neighbors. Under slow fading, the

forwarding cost depends on the node’s channel states which

evolve randomly with time. Hence, the nodes’ forwarding

utilities should be defined in a (channel) state-dependent

manner. This rules out static games as a suitable formalism

in our setting, since these games are defined for a single-shot

play and do not account for the evolution of players’ utilities

over time. To capture the uncertainty associated with the

channel states, we use a dynamic robust game specification

[c.f., [23], chapters 4 and 7]. Dynamic robust game is a

generic term to refer to game-theoretic formulations which

capture multi-stage interactions of a set of agents in uncer-

tain (noisy) environments. Basically, the players’ utilities in

a robust game specification are also functions of some state

variables which are of random nature and evolve over the

stages of the play independently of the players’ actions. This

readily corresponds to our case in that the forwarding game

is also modulated by current channel states whose evolution

is governed solely by the slow fading process. More for-

mally, the dynamic robust game for the forwarding control

problem is a quadruple G ¼ N ; ðAiÞi2N ;S; ðuið:ÞÞi2N
� �

,

where N is the set of players, Ai denotes the set of actions

available to player i, S represents the set of states of the

game, and ui(.) is player i’s utility function. In what follows,

we give a detailed description of the components of the

game G in the form of Sects. 3.1–3.4. Then, in Sect. 3.5, we

give a formal definition of the forwarding game’s objective.

3.1 Set of players in the forwarding game

Without loss of generality, we assume that the broadcast

flow emanates from a single source node which peri-

odically sends out critical broadcast messages to be
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diffused across the network. The dissemination process

should be carried out in a reliable fashion so that if any

forwarding attempt fails, re-transmissions are in order.

Over the course of a single network-wide message dis-

semination, every local ensemble of nodes that are cur-

rently in hold of a fresh copy of a broadcast messageMseq

with sequence number seq form a set of strategic players

provided that their immediate neighbor sets intersect (see

Fig. 1). The fact that a node i’s payoff is only affected by a

subset of other nodes makes our scenario an instance of a

graphical game [45], a notion which is also well-suited to

wireless ad hoc settings. With a slight abuse of notation,

the symbol N ¼ f1; 2; . . .; jN jg denotes a representative

set of such players. It is noteworthy that a node i in the

forwarding game does not need to be explicitly aware of its

fellow players; instead, it suffices to only infer its actually

realized payoff at each stage.

3.2 Forwarding actions and strategies

The action space Ai ¼ f0; 1g for every node i simply

consists of two choices: to either 0drop0 ¼def
0 the current

message Mseq or 0forward0 ¼def
1 it to a neighboring node

with a possibly limited number of retries. The game pro-

ceeds with imperfect monitoring, i.e., a node does not need

to observe the actions taken by the other potential for-

warders. Let A ¼ �jN ji¼1Ai be the joint action space of all

nodes in N . We denote by p 2 DðAÞ a joint probability

distribution over A.

3.3 Forwarding game states

We use si
n(j) to denote the channel quality state of the link

connecting the i-th node to its immediate neighbor j at the

n-th stage of the game. In general, the evolution of fading

channels can be modeled as a finite state Markov chain

(FSMC) (e.g., see [46]). In this model, the SNR range is

discretized into K distinct regions and then mapped into a

finite-state space: Si(j) = {s1, s2,…, sK}, Vi [ N , Vj [ Ni

with Ni being the immediate neighbor set of the i-th node.

More precisely, suppose a set C of K ? 1 SNR thresholds:

C ¼ fC1 ¼ 0;C2; . . .;CKþ1 ¼ 1g. Assume si
n(j) = c,

where c is the instantaneous SNR associated with the link

ij. If c satisfies Ck B c\ Ckþ1, the ij channel is said to be

in state sk. In FSMC model for slow fading, we assume that

c evolves slowly with time; i.e., at time n ? 1, it is highly

likely that c stays within the same region as it was at time

n, but there is also a slight chance that it transitions to other

regions. When a node probes the channel, the steady-state

probability of being in the k-th state is given by:

vk ¼
ZCkþ1

Ck

gðcÞdc; k ¼ 1; 2; . . .;K: ð1Þ

where, g(c) is the probability density function (PDF) of c.

Also, let Si ¼ ½SiðjÞ�j2Ni
, then, we use S ¼ �jN ji¼1Si to denote

the channel state composition over all the nodes. The

learning scheme discussed in the next section accommo-

dates for two variants of the forwarding game: the zero-

knowledge scenario where CSI sn
i ¼ ½sn

i ðjÞ�j2Ni
is unavail-

able to the nodes and the case that CSI can be exploited to

speed up the learning process. However, in both variants,

the law of transitions between states is assumed unknown.

3.4 Individual node utilities

The instantaneous utility ui
n of a node i at stage n of the

forwarding game is a random variable comprised of a re-

ward and a cost component. When i chooses to forward a

message, the accrued reward depends on whether or not the

maximum number of trials is capped in the actual protocol

implementation; two reliability regimes can be envisaged:

semi-reliable or reliable forwarding. The semi-reliability

regime limits the number of re-transmissions to a given

maximum in case extremely high error rates are being

experienced like, for example, when a packet is hit by a

deep fade. When CSI is available, a primitive scheme to

implement semi-reliability is to approximate the number c*

of trials needed to deliver the packet with a desired mini-

mum probability d 2 (0, 1). Technically, the number c* is

the d-quantile of the random variable indicating the number

of trials needed by a node to successfully transmit a

Fig. 1 Nodes i, i
0

and i
00

are currently in hold of the broadcast

messageMseq and may choose to forward or not. Node i has j and k

as common neighbors with i
0

and has l in common with i
00
. The links

ij, ik, il, i
0
j, i

0
k and i

00
l may differ in terms of their instantaneous signal

quality
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message over its outgoing links. With F being the prob-

ability distribution of the number of trials, c* is given by:

c� ¼ F�1 dð Þ ¼ min c 2 N : FðcÞ� df g.
The reliable regime, on the other hand, is based on the

assumption that when a node decides to take part in the

forwarding operation, it keeps re-transmitting until either

the message Mseq is successfully delivered to all its next-

hop neighbors or the next messageMseqþ1 is received by i,

marking the extinction ofMseq. There is, however, a price

to pay for such persistence which we capture by ci
n, de-

noting the actual number of re-transmissions caused by

physical layer errors.

Also, let �N
n

i

�� �� be the cardinality of the set of i’s covered

neighbors for an
i ¼ 1; rn

i ¼
�Nn

ij j
Nij j denotes the reward i accrues

for taking part in the forwarding operation at stage n. In

case a node chooses to drop Mseq, it incurs no cost, yet it

might still accrue a non-zero reward �rn
i ¼

��N
n

i

�� ��
Nij j given that a

subset
��N

n

i � Ni of its next-hop neighbors may receiveMseq

through other forwarders. A non-forwarding node i would

be able to count the members of
��N

n

i by simply overhearing

(i.e., idle listening) the Acks its next-hop neighbors send

out for receiving Mseq.

Now that the reward and cost components of the utility

are specified, the Eq. in (2) is considered to be the instan-

taneous utility a node i actually perceives at each stage of

the reliable forwarding game. The coefficient a in (2) is a

constant scaling parameter between the two parts of the

utility. Ideally, a should be chosen according to node density

to give a reasonable trade-off between delivery ratio and the

forwarding cost. As can be noted, the definition of the local

performance measure at each node is in line with the global

objective of minimizing the number of transmissions while

guaranteeing near perfect delivery ratio.

un
i ¼

rn
i � a � cn

i ; an
i ¼ 1

�rn
i ; otherwise

�
ð2Þ

3.5 System-wide objective

To achieve global coordination of the nodes’ forwarding

decisions, we seek correlated equilibria (CE) [28] of the

forwarding game as the system-wide solution concept.

Structurally, the set of CE of a game is a convex polytope

of joint action probability distributions which possess an

equilibrium (quiescence) property; i.e., a CE represents

competitively optimal behavior between the nodes, in

which the action of each node is an optimal response to the

actions of other potential forwarders. Compared to Nash

equilibrium (NE), the notion of CE directly considers the

ability of the nodes to correlate their actions. This

correlation can lead to higher performance than if each

node was required to act in isolation as is the case in NE.

Moreover, the convexity of the set of CE arguably allows

for better fairness between the nodes [47], which is also

evidenced by our simulation experiments. However, in our

dynamic robust game formulation, the channel states and

the nodes’ forwarding utilities evolve according to the slow

fading process. Hence, the set of CE of the forwarding

game should also be defined in a state-dependent manner.

Let s 2 S be a global channel state. We denote by ps 2
D Að Þ a probability distribution over the joint action space

A for state s. The state-dependent set of CE of G, denoted

by CðsÞ, is defined as (3) below [24, 25]:

C sð Þ ¼def
ps :

X

a�i2A�i

ps a; a�ið Þ � ui b; a�i; sið Þ½
(

�ui a; a�i; sið Þ� 	 0; 8a; b 2 Ai; i 2 N
)

;

ð3Þ

in words, if a joint forwarding action a; a�ið Þ is drawn from

a CE distribution ps 2 C sð Þ (presumably by a trusted third

party), and each node, i 2 N is told separately its own

component a, then it has no incentive to choose a different

forwarding action b, because, assuming that all other nodes

i0 2 Nnfig also obey, the suggested action a is the best in

expectation [48]. Therefore, reaching CE can be viewed as

formation of a suboptimal consensus amongst the nodes’

forwarding strategies.

To compute C sð Þ in the forwarding game G, a few re-

marks are in order: Basically, at each stage n of the game

G, a node i 2 N would simply choose a forwarding action

an
i and receive a numerical noisy value un

i of its utility at

that stage. Hence, a player’s information at each stage

consists of her past own-actions and perceived own-u-

tilities. A private history hi
n of length n for node i is a

collection: hn
i ¼ a0

i ; u
0
i ; a

1
i ; u

1
i ; . . .; an�1

i ; un�1
i

� �
2 Hn

i := ðAi

�RÞn. In such setting, each node i selects its actions au-

tonomously according to a strategy ri which is a map

rnþ1
i :

S

n

Hn
i ! D Aið Þ. In other words, G is a game of in-

complete information and imperfect monitoring. Given this

minimal amount of information available to the players, the

state-dependent CE C sð Þ of G cannot possibly be charac-

terized through introspection and rationalistic (pre-play)

analysis. Instead, the solution is inevitably online in the

sense that the rational behavior should arise naturally via

live repeated interactions during which the nodes indirectly

acquire a coordination signal through their realized pay-

offs. In other terms, the nodes iteratively craft their

strategies ri and update them by using their gradually built

private history of the game. In the next section, we resort to

recent results from the strategic learning literature [24, 25]

to shape the nodes’ forwarding strategies in real time so
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that their collective behavior tracks the system-wide solu-

tion concept C snð Þ as it evolves under slow fading.

4 Cognitive forwarding control through regret tracking

In this section, we deploy an adaptive heuristic, viz. ‘‘regret

tracking broadcast (RTB)’’ which is built on the ‘‘regret

tracking’’ procedure proposed in [24, 25] in order to learn

the expected payoffs simultaneously with the CE strategies

of the dynamic robust game defined in Sect. 3.5. Before

presenting RTB’s pseudo-code, we first introduce its re-

gret-based learning engine for shaping the nodes’ for-

warding strategies rið Þi2N , and will subsequently motivate

our regret-tracking-based design. In Sect. 4.2, we discuss

two variants of RTB: one that works without the knowl-

edge of CSI, and the other variant that exploits the avail-

ability of CSI to enhance the learning process. Finally, in

Sect. 4.3, we discuss RTB’s properties in terms of con-

vergence and computational complexity.

4.1 Regret-tracking broadcast (RTB)

Consider again the binary-valued strategy space of the

nodes in our forwarding game (i.e., Ai ¼ f0; 1g). The dy-

namics of a game under a regret-matching procedure [26,

27] generally proceeds as follows (See Fig. 2 for a

schematic illustration): At stage n, each player i 2 N
perceives its utility ui

n gained from implementing its for-

warding decision ai
n = a. It then computes two quantities:

• First, an estimation Ûn 1� að Þ of the average potential

utility it could have obtained had it chosen the

alternative action (1 - a) instead of a in all past plays

of a throughout the entire history of the game; the

reason for this estimation is that the direct calculation

of u an
i ; a

n
�i; sn

i

� �
is not possible in our case given that

node i only perceives its instantaneous utility at each

stage in the form of a numerical value. A general

technique for obtaining the estimate Ûn is through the

notion of proxy regrets, first introduced in [27].

However, as we discuss in Sect. 4.2.2., there is a

possibility for obtaining better quality estimates in our

case.

• Second, the average of the perceived ui
g utilities it has

actually accrued over the stages it has chosen to play a;

i.e., over the course of {g B n:ai
g = a}. We denote the

value of this average at stage n by Un(a) which is

calculated as follows:

Un að Þ :=
1

n

X

g	 n:ag
i
¼a

u
g
i : ð4Þ

Fig. 2 Schematic of the regret-

based machinery for strategic

learning in a binary-valued

strategy space. The dark-filled

block (i.e., estimation of the

average potential utility)

constitutes the subject of

Sect. 4.2
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Let [.]? denote maxf:; 0g. The difference Qn
i a; 1� að Þ ¼

Ûn 1� að Þ � Un að Þ
� �þ

is technically called the regret for

not having played (1 - a) instead of a over the course of the

stages g B n:ai
g = a. In other words, Qi

n(a, 1 - a) simply

denotes the increase, if any, in the average payoff that would

result if all past plays of action a were to be replaced by

action (1 - a), and everything else remained unaltered [26,

27]. The player i then switches to action (1 - a) with a

probability prob(1 - a) proportional to Qi
n(a, 1 - a) and

sticks with a by 1 - prob(1 - a). The game moves on to

stage n ? 1 and the process repeats.

It has been shown in [26, 27] that if all players follow the

update rule prescribed by the aforementioned regret-based

procedure, their joint empirical frequency of play asymp-

totically converges to the set of correlated equilibria of the

game. However, as described in Sect. 3.5, the equilibrium

set C in our forwarding game is state-dependent and time-

varying. Therefore, the mere notion of convergence does not

suffice. It is further required that this set be tracked in time

as the channel states change due to slow fading. We now

elaborate on the key change that has to be made in updating

a node’s regret-based forwarding strategy to account for the

slow fading effect. Our discussion here is based on the

theoretical results in [24, 25]. We only go through the in-

tuition behind the main idea in tracking C snð Þ and refer the

reader to [24, 25] for technical exposition. In the standard

regret-based scheme we just described, the decisions of each

player are based on the uniform average history of all past

observed utilities [note the factor 1
n

in Eq. (4)]. Such uniform

treatment of the obtained utilities is not desirable in our

setting since the fading process causes the channel states and

thus the transmission success probabilities evolve over time.

As a result, the utilities gained by a forwarding node is

essentially noisy and their expected values may vary every

once in a while. Hence, the nodes should keep a perpetual

state of readiness for temporal variations in their expected

utilities. This observation directs us to use a temporally

adaptive variant of the regret matching procedure, the so-

called regret tracking algorithm [24, 25]. In regret-tracking,

the average utility is computed in a discounted manner to

value more recent utilities higher than more distant utilities.

In particular, a constant discount factor e is used to introduce

exponential forgetting of the past and to permit tracking of a

slowly time-varying environment. With this change, the

calculation of the average discounted actual utility gained

from implementing a given action a throughout the stages

{g B n:ai
g = a} follows Eq. (5):

Un að Þ :=
X

g	 n:ag
i
¼a

e 1� eð Þn�g
u

g
i ; 0\e
 1 ð5Þ

Using regret-tracking updates, the nodes learn and

maintain their part in a correlated equilibrium of the

forwarding game; however, unlike the almost-sure con-

vergence of the classical regret matching, here, conver-

gence to the set of correlated equilibria takes place in a

weaker sense. We reiterate this result more formally in

Sect. 4.3 and refer the reader to [24–27] for extensive

discussion.

Now that a complete picture of each node’s learning

engine is described, we may present the complete pseudo-

code of our regret-tracking-based broadcast management

algorithm (RTB). Of particular note is that since in RTB a

node does not need to explicitly monitor the others’ ac-

tions, no particular synchronization mechanism is required

between the participants. This relieves the algorithm from

the exchange of signaling messages given that it only

suffices to have an observation of the individual utilities

per learning iteration. We are thus able to present RTB in

an asynchronous event-driven style (See Algorithm 1 for

pseudo-code and Table 1 for symbols and definitions).

• In the beginning, each node i 2 N has a random initial

action a0
i 2 f0; 1g, a zero regret value Qi

0 = 0, empty

covered set �NðiÞ ¼ /, and zero (re)transmission count

c = 0.

• Upon reception of a fresh copy of a broadcast message

Mseq with sequence number seq, each node i 2 N first

fires an event indicating the expiration of its previously

handled message Mseq�1 (line 1). Processing the

Mseq�1 _EXPIRED event provides the opportunity to

update the parameters of the learning engine. The

numerical value of i’s payoff ui
n for Mseq�1 is

computed in line 13 using Eq. (2). Line 14 calculates

Table 1 Notations used in regret tracking broadcast (RTB) algorithm

Symbol Definition

Mseq Fresh copy of the seq-th broadcast message delivered to

node i

Ni Node i’s neighbor set

�Ni Node i’s covered set [ �NðiÞ � NðiÞ]
rn

i Node i’s forwarding strategy at stage n

ai
n Node i’s selected action at stage n

c Number of (re)transmissions made by node i at stage n

a A constant scaling factor

ui
n Instantaneous utility node i actually receives at stage n

Un(a) Actual (weighted) average utility for playing action a

Ûn 1� að Þ Estimated (weighted) average utility for playing a’s

alternate action

e Constant discount factor, 0 \ e 
 1

d Exploration factor

l Normalization constant (update inertia), l[ Qi
n(a, 1 -

a)

Qi
n(a, b) Node i’s regret for not having played b instead of a
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the estimate Ûn 1� að Þ, the specifics of which is the

subject of discussion in Sect. 4.2. Lines 15–17 are

essentially the standard update routine for regret-based

learning (see Fig. 2). In line 17, taking the minimum

with 1
Aij j guarantees that the assigned probabilities form

a valid probability measure over Ai ¼ f0; 1g. The

second term forms a uniform distribution on Ai (with

probability d) and can be interpreted as the ‘‘explo-

ration’’. Exploration is necessary in cases such as ours

where nodes continuously learn their utility functions

and ensures both actions being played with a non-zero

chance [27]. Lines 4–8 correspond to the case when the

node has chosen to forward Mseq. It basically keeps

sendingMseq until either all j 2 Ni are covered (by i or

others) or the next message is received by i. The number

of transmissions made by i is tracked by the counter c,

which is a random variable whose realization depends

on the channel states at time n. The firing of the

event ACK_MESSAGE_RECEIVED_OR-_OVERHEARD

notifies i that Mseq has been received by some j 2 Ni

either through i or other forwarders. It allows i to

compute its local delivery ratio
�Nij j
Nij j which is also a

random variable whose realization depends on i’s

decision as well as the decisions of its fellow players’.

In case a node chooses to drop Mseq (line 10), it just

idly listens to the medium to overhear the Acks from

j 2 Ni .

Thus far, we have not specified how each node obtains

an estimate of its average potential utility. In the following

two subsection, we give two variants of RTB which differ

in their estimation of the quantity Ûn 1� að Þ.

4.2 Estimation of the average potential utility

The RTB algorithm requires that both the forwarding and

dropping decisions be somehow evaluated at each stage of

the game so as to be able to update the regret values as-

sociated with a nodes’ sequence of decisions. Depending

on the forwarding decision made at stage n, a node will

need to get hold of different types of information for de-

termining the instantaneous utility its alternate choice

would have yielded at the same stage:

• In case a node i chooses to drop the message Mseq, it

needs to calculate the forwarding cost ci
n it would have

actually incurred, had i broadcast Mseq over its

communication channels. Assuming the availability of

CSI, sn
i ¼ ½sn

i ðjÞ�j2Ni
, at the forwarding node i, a

theoretically valid estimate of the forwarding cost

would be the expected number of re-transmissions
�Cn

i ðsn
i Þ, which can be calculated using closed-form

analytical expressions for BER in a given fading

channel type. The enhanced learning with CSI-based

cost estimation is the subject of Sect. 4.2.2. However,

while we can safely assume the perfect CSI at the
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receiver end, the inaccuracy of the channel estimation

process, erroneous or obsolete feedback, and time

delays or frequency offsets between the reciprocal

channels may impede the sender from obtaining the

perfect CSI. The estimation of the average utility Ûn 1ð Þ
in Sect. 4.2.1 totally disregards the availability of the

CSI and thus is particularly suited for scenarios where

there is neither a feedback channel from the receiver to

the sender nor is there a mechanism for exploiting the

channel reciprocity such as in time-division duplexing

systems.

• Unlike the cost component, the forwarding reward ri
n

has no straightforward estimate when the message is

dropped; also, in case of forwarding Mseq, a node has

no means to correctly determine
��NðiÞ (its covered set)

given that its own transmission may result in others

immaturely backing off from the forwarding endeavor.

Hence, the reward components need to be estimated

through the technique of proxy regrets discussed in

Sect. 4.2.1.

4.2.1 Zero-knowledge learning with proxy regrets

The unavailability of the information necessary for

evaluating the alternate actions calls for a zero-knowledge

learning scheme with bandit (or opaque) feedbacks. More

specifically, a node may define a proxy regret measure [27]

by using the utilities it has perceived thus far when it ac-

tually played the alternate action (1-a) over the previous

stages of the forwarding game. The calculation of the

(proxy) regret measure Qi
n(a, 1 - a) would then require

that the average Ûn 1� að Þ be estimated as follows:

Ûn 1� að Þ ¼
X

g	 n:ag
i
¼ð1�aÞ

eð1� eÞn�g rg
i ðaÞ

rg
i ð1� aÞ u

g
i : ð6Þ

In the above equation, r
g
i denotes the play probabilities

at stage g; in effect, the proxy regret for not having played

(1 - a) instead of a measures the difference of the average

utility over the stages when (1 - a) was actually used and

the stages when a was used. The term
rg

i
ðaÞ

rg
i
ð1�aÞ normalizes the

per-stage utilities ui
g so that the length of the respective

stages would become comparable.

4.2.2 Enhanced learning with CSI-based cost estimation

The zero-knowledge case, discussed in the previous sub-

section, is oblivious to the availability of CSI, and instead,

relies on a rough estimation technique to approximate the

average utility Ûn 1ð Þ associated with a node’s alternate

decision to ‘forward’. However, when CSI does exist, there

is room for some enhancement. In effect, to obviate the

need for extra action exploration, we can exploit CSI to

derive a higher quality estimate of the costs. In order to do

so, we note that, given its current CSI, sn
i ¼ ½sn

i ðjÞ�j2Ni
, and

assuming BPSK modulation, a node i can calculate the

instantaneous BER on its links with neighboring nodes

j 2 Ni as follows [49]:

BERn
ij sn

i jð Þ ¼ sk

� �
:¼
R Ckþ1

Ck
0:2� e�1:6c � g cð Þdc
R Ckþ1

Ck
g cð Þdc

; ð7Þ

Now, assuming that the broadcast message Mseq is L

bits long, i’s transmission ofMseq to j would succeed with

probability pij
n, calculated as:

pn
ij ¼ 1� BERn

ij sn
i ðjÞ

� �� 	L

: ð8Þ

To guarantee delivery, node i will need to make Cn
i ðsn

i Þ
number of (re)transmissions until Mseq successfully

reaches all j [ Ni. Cn
i ðsn

i Þ is a random variable whose re-

alization depends on i’s channel state in period n. Using

link reception probabilities pij
n, and the derivation in [6], we

may express the expected value of Cn
i ðsn

i Þ as follows:

�Cn
i sn

i

� �
¼ 1þ

X

j2Ni

1� pn
ij

pn
ij

: ð9Þ

With �Cn
i sn

i

� �
at hand, we may rewrite (6), i.e., the esti-

mated average Ûn 1� an
i

� �
, for ai

n = 0 as:

Ûn 1; sn
i

� �

¼
X

g	 n:ag
i
¼1

e 1� eð Þn�gr
g
i 0ð Þ

rg
i 1ð Þ r

g
i

2

4

�
X

g	 n:ag
i
¼0

e 1� eð Þn�g �Cn
i ðsn

i Þ

3

5:

ð10Þ

In effect, we decompose the estimated average utility

into its reward and penalty components, and replace the

index of the cost summation to match with the stages

corresponding to ‘drop’ decisions, given that now a com-

parable stage-by-stage estimate is available for the cost

component. For ease of reference, we refer to this modified

version of RTB as Enhanced-RTB.

4.3 Convergence and computational complexity

In this section, we discuss RTB’s convergence and com-

putational complexity. Similarly to [24, 25], we denote by

zn
e 2 DðAÞ the (empirical) average collective forwarding

behavior under RTB, which can also be viewed as a di-

agnostic that monitors the forwarding performance of the

entire network. When all nodes choose their forwarding
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actions an ¼ an
i

� �
i2N using Algorithm 1, zn

e can be viewed

as an average or moving average frequency of play, and

can be represented by the following recursion for 8a 2 A:

znþ1
e að Þ ¼ 1� eð Þ:zn

e að Þ þ e:I anþ1¼af g:

In other terms, for a joint action a 2 A, zn
e að Þ ¼P

g	 n

e 1� eð Þn�g:Ifag¼ag, where I :f g is the indicator function.

It has been shown in [24, 25] that zn
e asymptotically tracks

the time-evolving set of CE C sð Þ (see Eq. (3)). In a

Markovian environment, the technical condition that

guarantees this tracking result is that the underlying Mar-

kov process transitions at infrequent intervals (e.g., if the

mean time between state changes is O 1=eð Þ [24, 25]). This

condition is satisfied in our case, since we assumed fading

evolves slower than the packet–level timescale (we ela-

borate more concretely about this in the simulation setup).

However, in the face of higher fading rapidity, since the

regret-tracking procedure underlying RTB is an instance of

an adaptive filtering algorithm [50, 51], if the underlying

random process changes too fast, then it is not possible to

keep track of the time-varying conditions. This is because

the dynamics of the underlying Markov process is not

explicitly accounted for in the algorithm.

As for RTB’s computational complexity, note that

similarly to [24, 25], it is possible to compute the regret

measure Qi
n(.,.) in a more efficient recursive form. This

avoids having to compute Qi
n from scratch in every period.

For instance, the regret update equation for RTB in the

zero-knowledge case can be expressed as:

Qn
i a; bð Þ ¼ Qn�1

i a; bð Þ

þ e
rn

i að Þ
rn

i bð Þ u
n
i an

i

� �
:I

an
i
¼bf g � un

i an
i

� �
:I

an
i
¼af g


 �þ�

�Qn�1
i a; bð Þ


:

ð11Þ

With this modification in RTB’s pseudo-code, basically,

at each iteration, each node needs to perform just a few

standard arithmetic operations and comparisons, along with

one random number generation to take the next forwarding

action ai
n?1. It is noteworthy that in this recursive form, the

parameter e can be viewed as a constant step size governing

the adaptation rate of the algorithm [24, 25].

5 Performance evaluation

In this section, we simulate the performance of the pro-

posed cognitive forwarding scheme for managing the dis-

semination of broadcast messages across slow fading

channels in a wireless ad-hoc environment. We assume

constant packet sizes of length equal to L = 512 bytes.

Each forwarding node transmits at a constant power of

0.1 Watts. Although RTB does not depend on any distri-

bution for the channel SNR c, for the purpose of modeling,

we simulate slow Rayleigh channels for each link. For a

Rayleigh mode, channel SNR c is an exponentially dis-

tributed random variable with probability density function

given by g cð Þ ¼ 1
�C
e
�c
�C , where �C ¼ E½c� is the average SNR.

We discretize the channel into eight equal probability bins,

with the boundaries specified by ð�1;�8:47dBÞ; �8:47½f
dB;�5:41dBÞ; �5:41dB;�3:28dB½ Þ; �3:28dB;�1:59dB½ Þ;
�1:59dB;�0:08dB½ Þ; �0:08dB; 1:42dB½ Þ; 1:42dB; 3:18dB½ Þ;
½3:18dB;1Þg. The fixed quantized average SNR value �ck

for each state sk; k ¼ 1; 2; . . .;K then becomes �ck ¼

vkð Þ�1 RCkþ1

Ck

cg cð Þdc, where following (1), vk ¼ e
�Ck

�C � e
�Ckþ1

�C .

Similarly to [52, 53], the transition probability matrix

Pk;�k

� 	

k;�k¼1;...8
of the FSMC is assumed to have the fol-

lowing structure:

P ¼

q r 0 0 0 � � � 0 r
r q r 0 0 � � � 0 0

0 r q r 0 � � � 0 0

..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
.

r 0 0 0 0 � � � r q

2

666664

3

777775
;

where q = 1 - 2r and r ¼ OðfdsÞ, with fd and s denoting

the Doppler frequency shift and packet duration time, re-

spectively. The product fds characterizes the fading speed

of the channel relative to the packet length. A small fds
means that the channel fading rate is small. Throughout

simulations, different instances of the matrix P are used to

generate the channel data profile with the only restriction

that fds be in the same order of magnitude as RTB’s step

size parameter e. The RTB algorithm works in the pure

bandit setting and is thus not aware of the instantaneous

CSI; however, for the sake of Enhanced-RTB, we assume

that only finite CSI is fed back, and the nodes only know c
belongs to an interval Ck;Ckþ1½ Þ instead of having the exact

value. The nodes are assumed to have modulation and

coding schemes that support a transmission rate of 1 Mbps

for all the links in the network. We assume that the nodes

operate in a collision-free environment and that they pe-

riodically exchange beacon messages to maintain their one-

hop neighbor sets. In the simulation runs, 50 nodes are

distributed uniformly over a square region with the node

density varying between 20 and 170 nodes/km2. The node

density is controlled by adjusting the simulation area while

keeping the number of nodes fixed. Table 2 lists the

simulation parameters used in our experiments.

Performance evaluation is done in terms of delivery

ratio, number of transmissions and the balance in load
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distribution. For the sake of comparison, we simulate three

other broadcasting schemes: simple flooding with retrans-

missions (e.g., RBAV in [54] or ACK-flooding in [55]),

multi-point relaying (MPR) [56, 57] with retransmissions,

and the game-based broadcast tree construction (GB-BTC)

scheme recently proposed in [6].

• MPR MPR is a broadcasting scheme based on two-hop

topological information. It is effectively implemented

in the OLSR routing protocol, which is a proactive

routing protocol ratified as a request for comments

(RFC) in the Internet Engineering Task Force (IETF)

MANET chapter [57]. Each node in the network selects

a subset of its one-hop neighbor nodes, called multi-

point relays (MPRs), as the forwarding node set to

retransmit broadcast packets. Other nodes that are not

in the MPR set can read but not re-transmit packets.

The MPR set guarantees that all two-hop neighbor

nodes of each node receive a copy of the packets and,

therefore, all nodes in a network with reliable links can

be covered without re-transmissions by every single

node. In order to apply MPR to our unreliable setting,

we incorporate an explicit ACK mechanism into the

protocol operation so that a node retransmits a packet

when it does not receive an ACK from any intended

receivers in a predefined time interval. Variants of MPR

with retransmission have been considered for instance

in [58].

• GB-BTC The GB-BTC scheme [6], also discussed

briefly in Sect. 2, uses the notion of potential games to

construct, in a distributed fashion, a spanning broadcast

tree with (approximately) minimum expected number

of transmissions for all internal nodes. Unlike RTB, the

game in [6] is a parent selection game to be played by

the successors of each internal node. A node’s utility

for joining a parent node on a link is the negative sum

of two cost components: the first component is

inversely proportional to the number of nodes selecting

that same parent, and the second cost component is

proportional to the cost of the communication link

connecting the node to that parent. However, the links’

costs in GB-BTC (i.e., the expected number of

(re)transmissions) are derived assuming fixed BERs,

i.e., oblivious to the realistic dynamics affecting the

wireless environment such as channel fading. Also, the

construction procedure in [6] is a one-time task and

there is no discussion on how to gracefully maintain the

tree structure in response to changes. In effect, the best-

response algorithm used in [6] would not converge in

non-static environments [59]. Therefore, we have

simulated the dissemination of broadcast messages in

GB-BTC by constructing its tree using link costs

corresponding to the initial CSI only.

We first investigate the dynamic behavior of RTB and

Enhanced-RTB in terms of the progression of the average

delivery ratio as well as the average number of transmis-

sions over time as the nodes learn their forwarding strate-

gies. We do the experiments for two scenarios with respect

to node density: the 20 nodes/km2 case as a representative

for low density regime, and the case with 170 nodes/km2

showcasing a high density scenario. We allow for unlim-

ited number of (re)transmissions with the lag between

subsequent broadcast messages large enough so that 100 %

delivery ratio is achievable by perfect delivery schemes

such as by flooding in a collision-free setting. This would

also be the case with MPR and GB-BTC; i.e., they also

ensure perfect delivery ratio given their perfect coverage

guarantee. Therefore, there is no need to run delivery ratio-

wise experiments on these three methods. As for RTB and

Enhanced-RTB, we plot the average overall delivery ratio

over the course of 5000 network-wide broadcasts. Over this

time, the channel conditions vary according to a fixed in-

stance of the matrix P. As shown in Fig. 3, in both algo-

rithms, the average delivery ratio asymptotically

approaches to 1. However, Enhanced-RTB is noticeably

quicker in achieving high delivery ratio, thanks to its more

accurate estimation of the forwarding costs. Also, as can be

evidenced from Fig. 3, it is the case that in both algorithms,

higher delivery ratio is achievable more rapidly when node

density is higher. Figure 4 plots the average total number

of transmissions made by the forwarding nodes in the same

simulation setup as in Fig. 3. Once again, it is the case that

although, in the long run, Enhanced-RTB incurs the same

number of transmissions as that of RTB, it stabilizes more

quickly. We have also shown GB-BTC’s average total

number of transmissions over time. The scale of our setup

is too coarse to expect to witness in action the ability (or

lack thereof) to track link qualities. This is mainly because

in a large neighborhood, the effects of variations in

Table 2 Simulation parameters

Parameter Value

Number of nodes 50

Node density 20–170 nodes/km2

Packet length 512 bytes

Fading Slow Rayleigh

Transmission power 0.1 Watts

Transmission rate T 1 Mbps

Modulation BPSK

RTB’s step size e 0.1

RTB’s scaling parameter a 0.1 for low density regime

0.3 for high density regime

Packet origination rate 10 pkts/sec
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individual links tend to mostly offset each other. Couple

this with the fact that in RTB’s early operation, the delivery

ratio is less than perfect, and therefore the average trans-

mission count is tentatively lower. However, it is evident

from the figure that in the limit, GB-BTC imposes a larger

number of transmissions. This is because the internal tree

nodes are oblivious to the fact that the quality of their links

are likely to degrade in time, while in the meantime, there

may be better candidates which stand idle instead of re-

placing those undergoing poor conditions. Hence, no

matter how the uncertainties in link qualities play out,

failure to account for these dynamics can result in lower

performance.

Next, more generally, we study the impact of node

density on the average number of transmissions made by

each of the four schemes. Each point in Fig. 5 is the av-

erage of 250 simulation runs with random topology in-

stances. We include error bars which indicate 95 %

confidence that the actual average is within the range of

depicted interval. The transmission count in all schemes

tends to decrease as node density increases. In all cases in

Fig. 5, RTB achieves perfect delivery ratio, and yet its

transmission count is lower compared to other three

schemes. Figure 6 shows the average number of trans-

missions made by each individual node in RTB and GB-

BTC. As can be seen, the distribution of load in RTB is

significantly more balanced compared to that of GB-BTC.

In fact, while GB-BTC’s forwarding structure remains

unchanged, each forwarding node in RTB consistently re-

examines the value of its contribution to the overall for-

warding endeavor, and once the quality of its links de-

grades, refrains from forwarding and instead relies more on

those who enjoy higher quality links. A byproduct of these

reconfigurations is the more even distribution of the

broadcast load across the network. As observed from

Fig. 6(b), RTB’s load balancing property is much more

apparent when node density is as high as 170 nodes/km2,

whereas GB-BTC puts the burden of forwarding on a fewer

number of internal nodes.

We extend the simulation to consider one more scenario.

We examine the performance of RTB when channel states

remain static throughout the simulation; i.e., the evolution

of SNR on each link is a stationary process with a constant

expected value corresponding to one of the 8 regions

Ck;Ckþ1½ Þ. Given the stationary nature of the link varia-

tions in this case, we run RTB with a decaying step size

1/n to achieve an almost sure convergence to the CE set of

the forwarding game. Figure 7 shows the average total

Fig. 5 The number of transmissions versus various node densities

under dynamic channel conditions

Fig. 4 The average total number of transmissions versus time in

RTB, enhanced-RTB, and GB-BTC under dynamic channel

conditions

Fig. 3 The delivery ratio versus time in RTB and enhanced-RTB

under dynamic channel conditions
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number of transmissions made by RTB and GBG-BTC in

this case. RTB starts with no prior knowledge of the

statistics of the link qualities, while GB-BTC has already

constructed its broadcast tree with the exact knowledge of

the expected SNR on each link. Although the performance

margin between RTB and GB-BTC is small, but RTB is

much slower to stabilize, especially when node density is

low. This is also the case with delivery ratio (see Fig. 8);

i.e., while GB-BTC guarantees perfect delivery from the

outset, it takes a while for RTB before starting to catch up.

Fig. 6 Broadcast flow distribution in RTB and GB-BTC under dynamic channel conditions; a node density is 20 nodes/km2, b node density is

170 nodes/km2
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Finally, as discussed in [6], with fixed expected SNRs, the

lower bound for the average total transmission count can be

obtained using a mixed integer linear program (MILP) to

construct a minimum spanning tree with perfect delivery

ratio. Figure 9 illustrates the sub-optimality gap for RTB

and GB-BTC under varying node densities.

6 Conclusions and outlook

The broadcast management problem in WANETs has been

tackled with a wide assortment of heuristic-based methods

reported in sundry publications. However, these methods

lack a principled basis to explicitly factor the stochastic

dynamics associated with variable link qualities into the

problem formulation. In a departure from the prior art, this

paper has presented a dynamic robust game formulation of

this problem to capture the realistic effect posed by channel

dynamics on message propagation. As an online solution to

the decentralized stochastic control of broadcasting in a

WANET with slow fading channels, a cognitive forward-

ing control mechanism has been proposed which is capable

of inducing and maintaining strategic coordination between

the forwarders’ decisions. More specifically, we have de-

ployed the strategic and non-stationary learning algorithm

of regret-tracking which can converge to and track the

correlated equilibria of the formulated game. An important

aspect in our design has been to present a model-based

variant of the learning algorithm which can exploit the

available CSI for deriving a theoretically valid estimate of

the transmission costs to speed up the learning process. As

evidenced from the comparative numerical results, our

proposed scheme can reduce the number of (re)transmis-

sions and achieve a more balanced flow of messages while

also maintaining near perfect delivery ratio in the presence

of time-varying link qualities. As part of our plan for future

work, we intend to extend our cognitive forwarding scheme

to the other degradation categories for fading rapidity. In

particular, we plan to come up with a stochastic game

formulation of the broadcast management problem for

WANETs with a fast fading regime of channel variations.
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