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Abstract Dynamic topology, lack of a fixed infrastructure and limited energy in mobile

ad-hoc networks (MANETs) give rise to a challenging operational environment. MANET

routing protocols should consider dynamic network changes (e.g., link qualities and nodes

residual energy) in such circumstances and be able to adapt to these changes to efficiently

handle the traffic flows. In this paper, we assume an energy harvesting MANET in which

the nodes have recharging capability and thus their residual energy level is randomly

changing with time. We present a bi-objective intelligent routing protocol that aims at

reducing an expected long-run cost function composed of end-to-end delay and the path

energy cost. We formulate the routing problem as a Markov decision process which

captures both the link state dynamics due to node mobility and energy state dynamics due

to nodes rechargeable energy sources. We propose a multi-agent reinforcement learning-

based algorithm to approximate the optimal routing policy in the absence of a priori

knowledge of the system statistics. The proposed algorithm is built using the principles of

model-based RL. More specifically, we model each node’s cost function by deriving an

expression for the expected value of end-to-end costs. Also the transition probabilities are

estimated online using a tabular maximum likelihood method. Simulation results show that

our model-based scheme outperforms its model-free counterpart and operates closely to

standard value-iteration which assumes perfect statistics.
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1 Introduction

Mobile-ad-hoc-networks (MANETs) are self-configuring networks of mobile nodes which

communicate by wireless links. Since the network topology continuously varies due to node

mobility, the main challenge in MANET management is to allow each node to correctly

route the packets to the other nodes. Beside node mobility, the routing algorithms must face

other challenges, such as energy limitations of the nodes. Recent technological advance-

ments have enabled energy harvesting capabilities for wireless nodes as a means to mitigate

energy scarcity through recharging of a renewable energy source [1, 2]. However, to fully

exploit the benefits of this technology, one needs to make special design considerations. In

fact, in an energy harvesting MANET, the amount of energy consumed and/or harvested by

a node is randomly changing with time. Also, by nature, node mobility renders the link

conditions stochastic and time-varying as well. Hence, a principled way to optimize

MANET routing is to model routing as a stochastic optimization problem with long-run

system-wide objectives (e.g., expected end-to-end delay, energy consumption, etc.).

Within this perspective, many works have modeled the MANET routing problem as a

Markov decision problem (MDP) [3–9]. An MDP-based model directly reflects the

stochastic evolution of the system state and also makes its possible to come up with

analytical guarantees on different long-run objectives. However, in general, the formulated

MDP cannot be solved in exact offline fashion given that a prior knowledge of the link and

energy level dynamics is typically not available at design time. The alternative is to resort

to reinforcement learning schemes to approximate the optimal routing policy online, i.e.,

during system run time. Empowering the MANET with reinforcement learning (RL)

allows the nodes to autonomously perceive the network condition, learn its dynamics from

local observations, and to adapt their routing decisions accordingly [10].

In what follows, we review the related work in MANET routing which draws on

reinforcement learning paradigms for system optimization. In one taxonomy, we can

distinguish between two major trends in RL-based MANET routing: the algorithms built

on the popular Q-routing scheme [11] and those based on multi-agent reinforcement

learning (MARL).

Many studies in RL-based MANET routing have built and improved upon the pioneer

Q-routing algorithm [3, 4, 7, 8], which is among the very first RL-based routing algorithms

for computer networks. Q-routing draws on the well-known Q-learning scheme of the RL

literature. In Q-routing, each node makes its routing decisions based on its local infor-

mation. Each destination constitutes a system state and the actions are a nodes choice

among its neighbors to be the next forwarder of the message. The reward (or cost) is

defined to reflect different routing objectives such as delay, throughput, channel utilization,

etc. For example, in [8], relays are chosen in such a way that average end-to-end delay is

minimized in the long-run. The authors in [3] have extended the basic Q-routing scheme to

come up with energy-efficient routing. Routing decisions in [3] are shaped in a way that

paths with the least energy consumption and the most remaining energy will prevail in the

long run. The system state is composed of two components: one indicating the total energy

consumption along the path, and the other reflecting the least energy level among the nodes

on the path. A node’s action is its choice among the available paths and its cost is

determined by the energy consumed on the chosen path. In [7] and [9], a Q-routing-based
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algorithm has been proposed which features a dynamic discount factor parameter. The main

objective is to reduce the number of route discovery attempts due to link failures. To this

end, each node selects the next forwarder based on a combination of metrics concerning link

stability, bandwidth utilization, and residual energy. These metrics are all incorporated into

the discount factor parameter. Much in the same way as basic Q-routing, in [11], each

destination represents a system state and actions are the selections of next-hop relays. A

node is rewarded only if its packet reaches successfully to the destination. A common

drawback with algorithms based on Q-routing is their greedy basis for local optimization of

routing objectives, which does not necessarily lead to globally optimal network perfor-

mance. In particular, the nodes in a wireless network communicate through a shared

medium and thus mutually affect each others’ performance. Another shortcoming is that the

existing Q-routing-based algorithms learn in a purely model-free fashion. In model-free RL,

the nodes rely on repeated interactions with the system to gradually build their experience

from the acquired sample costs and observed states. Hence, it may take a huge number of

iterations for a model-free algorithm to converge to an optimal policy. In contrast, a model-

based scheme relies on a model of expected costs along with online estimation of transition

probabilities to decrease the number of samples required for algorithm convergence. As a

result, a model-based algorithm can achieve convergence much faster.

In MARL-based routing algorithms, on the other hand, each node cooperatively

exchanges its individual observations with its neighbors to achieve global optimization

besides local learning [12]. A MARL-based MANET routing algorithm, namely SAMPLE,

is proposed in [6]. The SAMPLE’s objective is global throughput maximization which is

achieved through exchanging positive and negative feedbacks across the network. The

system state in [6] consists of three components: the first component indicates that a packet

is in a buffer waiting to be forwarded, the second component indicates the successful

transmission to a neighbor node, and the third component indicates the successful reception

from the neighbor node. Each action is also comprised of three components: the trans-

mission of a packet to a neighbor, the delivery of a packet to a higher layer entity in

protocol stack, and the broadcast of a neighbor discovery packet. The transition model in

[6] corresponds to link reception probabilities. In order to build the state transition model,

the number of different system events is sampled within a small time window into the past.

The rate of these events is used to estimate the probability of state transitions. The pro-

posed MDP model in SAMPLE is also utilized in SNQL routing protocol of [5]. Both

SAMPLE and SNQL, however, target at throughput maximization as system-wide

objective and do not account for delay and energy.

1.1 Contributions

In all foregoing works in RL-based MANET routing, a single objective is the target of

system optimization. Also, the existing schemes are oblivious to energy harvesting capa-

bilities of wireless nodes. With these two as motivation, in this paper, we propose a new

RL-based MANET routing algorithm which features the following novelties:

• Unlike previous schemes, our MDP-based formulation for MANET routing problem

accounts for both end-to-end delay and energy consumption. As mentioned earlier, the

nodes in MANETs are faced with energy scarcity and a delay-centric formulation

makes it vulnerable to reduced network longevity. This is because constantly relying on

small delay paths eventually uses up the energy sources of the nodes on these paths and

can even lead to network partitioning. In our proposed formulation, we explicitly
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capture the stochastic dynamics induced by node mobility on link qualities, and derive

a cost model for single-hop delay based on instantaneous link quality. Also, the single-

hop energy costs are calculated based on the residual energy of the neighboring nodes.

Finally, the total single-hop cost model is formed as a linear combination of delay and

energy components. A distinguishing feature of our work is that we assume nodes are

capable of harvesting energy from the environment and thus their energy levels vary

with time randomly. This gives rise to yet another source of uncertainty which should

be accounted for while making routing decisions. Accordingly, the routing policy

calculated in this paper is adaptive to the nodes’ energy states.

• We propose a model-based reinforcement learning algorithm, henceforth referred to as

MRL-routing, to approximate the optimal routing policy for the adaptive selection of

next-hop relays. The convergence speed of our algorithm is much higher in comparison

with its model-free counterpart and can also lead to more efficient routing policies. Our

model-based scheme draws on the proposed model for the expected costs and involves

an online estimation of transition probabilities using a tabular maximum likelihood

scheme. With the cost and transition functions at hand, a node is relieved of direct

interaction with the environment to acquire sample costs and next state values for each

single update. Instead, nodes can effectively make use of the feedback from a single

interaction to carry out multiple updates in each time step. This way, our model-based

updating scheme is particularly suited for MANETs which exhibit frequent changes

and high dynamics.

• The proposed MRL-routing is an instance of multi-agent reinforcement learning

process. Hence, each node, besides local learning, cooperatively exchanges its

observations with its neighbors so that the overall process leads to network-wide

optimization.

• We conduct a series of simulation experiments to investigate the efficiency and the

convergence properties of the proposed method. Performance evaluation is done in

terms of energy-delay trade-offs in various scenarios. MRL-routing is compared with

standard offline and model-free online solutions and is shown to outperform the latter

while also working without the informational assumptions of the former.

The rest of the paper is organized as follows: in Sect. 2, we discuss the system model

together with our basic assumptions. In Sect. 3, we present our MDP-based formulation for

the MANET routing problem. In Sect. 4, we introduce our MRL-routing algorithm for

MANETs. Simulation results are presented in Sect. 5. We conclude the paper in Sect. 6.

2 System Model

In this section, we describe the system model and our assumptions for the MANET routing

problem.

• General setting: We assume that all nodes are homogeneous (e.g., in terms of

transmission power and battery capacity). Network nodes that reside within the

effective transmission range of a node will be recognized as its neighbors. According to

[13], we assume a radio channel is characterized by three components: path loss

exponent (n), multi path fading (X2) and shadowing (rs). Hence, the effective

transmission range of each node is calculated as follows:
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Re ¼ f ðn; rs; xÞ ¼
�2:33rs � 10 log10 Efx2g þ g

10n
ð1Þ

where Re is the maximum value of the transmission range R for which the received

signal strength is greater than or equal to the received signal threshold with a very high

probability. In other words, the received signal can be used if it is at least equal to the

threshold. g is a constant (see [13] for more details).

• Energy Harvesting model: Nodes are capable of recharging, and the amount of

harvested energy follows a random pattern according to the environment the nodes are

operating in. It is assumed that the harvested power is stored in an energy buffer (see

Fig. 1). In Fig. 1, Ct
i represents the amount of energy consumed by node i at time t. Et

i

represents the nodes’ energy level at time t and its amount of charge at time t is denoted

by hti. Indeed, we view the energy charging in each node as a packet arrival process,

and each energy packet is assumed to be an integer multiple of a basic energy

unit (EU). Also, we assume that the energy packet arrival process fHt
igt� 0 is an i.i.d

stochastic process with general distribution PrfHig and mean �Hi ¼ E½Hi�. Also fHigi
process is independent with respect to node index i.

• Mobility model: We consider a reference point group mobility (RPGM) model for

nodes’ movements [14]. The RPGM model captures the random movement of a group

of nodes together with the motion of each individual node within the group. For each

group, a logical center is assumed and group movements can be described in terms of

the path traveled by the logical center for the group. The group displacement is

determined via a group motion vector, denoted by GM
��!

in Fig. 2 [15]. Hence, the

movement of the group center according to GM
��!

completely describes the direction and

the speed of the group motion. As for individual node movements, each node is

assumed to be associated with a reference point (RP in Fig. 2), whose movements

depend on the group movement. Each node’s RP at time t þ 1 is updated according to

GM
��!

; however, a node can also randomly roam around its RP. Such individual motions

are characterized via a random motion vector RM
�!

(see Fig. 2). Overall, the updated

position for each node is determined by summing the group motion vector GM
��!

and the

individual nodes’ random motion vector RM
�!

. The length of RM
�!

is assumed to be

uniformly distributed within a specified radius centered at RPðt þ 1Þ and its direction is

uniformly distributed between 0� and 360�. The motion pattern described by RPGM is

Fig. 1 Energy harvesting model
in node i
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common in some important applications of MANTEs in real world. For example, in

many military applications, mobile agents (e.g., soldiers, tanks, drones, etc.) follow a

group mobility model. The mobility of a rescue team in disaster relief scenarios or that

of cyclists in a BikeNet [16] are other instances of RPGM.

• Information assumptions: We assume that the nodes are equipped with GPS modules

and are aware of their current position. Nodes also locally and periodically exchange

hello messages with each other, which contain their current position and energy level

information.

3 Problem Formulation

As argued earlier in the Introduction, a successful routing policy in an energy harvesting

MANET should account for the stochastic dynamics associated with the node mobility and

renewable energy sources. In this section, we first describe our MDP formulation for the

routing problem in Sect. 3.1, and then we define the long-term system-wide objective we

seek to optimize in Sect. 3.2.

3.1 Routing as a Markov Decision Problem

The infinite horizon MDP in node i is defined by the tuple \Si;Ai;Ci; T i [ in discrete

time t ¼ 0; 1; 2; . . .. The symbol Si represents the set of possible states in node i, and Ai is a

set of actions that node i can perform. Ci : Si � Ai ! R represents the immediate cost

function of node i, which is a mapping from the Cartesian product of its action and state

spaces to real numbers. T i : Si � Ai � Si ! ½0; 1� denotes the state transition probabilities

from si 2 Si to �si 2 Si for performing action ai 2 Ai. In the following, we describe each

component in further detail:

• state: Let N(i) be the set of neighbors nodes of node i. in other terms, N(i) denotes the

set of nodes located within node i’s effective transmission range Ri
e. State si 2 Si in

node i is composed of two parts: (a) the distance dij to 8j 2 NðiÞ and (b) energy level eij
of 8j 2 NðiÞ.

Fig. 2 RPGM model
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(a) Distance to neighbor nodes ðdij; j 2 NðiÞÞ: The Euclidean distance between two

nodes i and j 2 NðiÞ is calculated at any time as follows:

distij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xti � xtj

� �2

þ yti � ytj

� �2
r

ð2Þ

To discretize the distance, the effective transmission range of node i;Ri
e is

divided into k intervals of length e meters (Fig. 3); i.e.,

k ¼ dR
i
e

e
e ð3Þ

Based on this division, each distance state dtij between node i and its neighbor

j is an integer within Dij ¼ f1; . . .; kg that can be calculated based on e and the

real distance distij as follows:

dtij ¼ d
distij

e
e , distij 2 dtij � 1

� �

e; dtije
h i

ð4Þ

More specifically, dtij represents the interval that the distance between nodes

i and j 2 NðiÞ resides in this interval at time t. Note that for each node i; e is a
unit of distance and the number of states k depends on Ri

e. Finally, node i’s set of

distance states to all j 2 NðiÞ is denoted by Di ¼ fDijgj2NðiÞ.
(b) neighbor nodes residual energy ðeij; j 2 NðiÞÞ: the energy of node j 2 NðiÞ is

calculated at any time t þ 1 as follows:

etþ1ij ¼ min etij � Ct
j

h iþ
þ htj;Emax

� �

ð5Þ

In (5), Ct
j is the amount of consumed energy by node j at time t, and htj is the

random harvested energy by node j at time t (c.f., Sect. 2). Symbol ½��þ in (5)

represents a shorthand notation for max(., 0), Also Emax is the maximum energy

capacity of each node j. We quantize the energy level of each node into three

states: low, medium and high; more formally,

Fig. 3 Effective transmission
range for node i
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etij 2 Eij ¼ f
0
low0 � L;0 medium0 � M;0 high0 � Hg ð6Þ

The set of energy states of node i’s neighbors is indicated by Ei ¼ fEijgj2NðiÞ.
According to these definitions, the complete state in each mobile node i is as

follows:

sti ¼ dtij; e
t
ij

� �

j2NðiÞ
2 Si ¼ Di � Ei ð7Þ

• Action: the action that each node i performs at time t is denoted by (ati), which

represents node i’s choice of next-hop relay from one of its neighbors (e.g., node j) as

next hop node. In other words:

ati 2 Ai ¼ NðiÞ ð8Þ

• Immediate cost function model: In RL, each agent interacts with its environment via

feedbacks. More specifically, by taking an action, the agent receives a numerical value

of its immediate cost from the environment. In model-free RL, an agent is not informed

of its cost unless it actually performs an action in the environment. In model-based RL,

on the other hand, the agent has access to a model of its cost function. This model

relieves the agent from obtaining sample costs directly from the environment; instead,

it can utilize the cost model to compute the expected cost associated with all potential

actions. Using this model, fewer samples of the environment cost function are needed

for the convergence of the learning process, and thus the sample complexity of the

learning algorithm will decrease. Our proposed MRL-routing algorithm in Sect. 4.2 is

an instance of model-based RL. Accordingly, here, we describe the derivation of a cost

model for the nodes. Given that our goal is to reduce both the average end-to-end delay

and energy consumption, the proposed cost model is also composed of two parts: end-

to-end transmission delay and path energy cost. As already mentioned, the proposed

routing algorithm is based on MARL. This means that in order to achieve global

optimization, the cost function of the nodes should be defined in an end-to-end fashion.

In what follows, we consider a given node i, and first derive a formula for computing

the single-hop transmission delay of node i. Next, we show how a node can calculate its

complete immediate path-wise cost by receiving succinct feedbacks from its

successors. In fact, given that both energy and delay are aggregate measures (delay

is an additive metric and the energy cost can be considered as a concave metric), we

may compute the path-wise cost of node i by backing up low-cost aggregate quantities

(sums for delays and mins for energy) in the reverse path from the destination node

back to node i.

(a) Single-hop transmission delay cost function model: The transmission delay of a

packet on a link is determined according to link quality. Link quality (e.g. in

terms of SNR) varies in a MANET due to nodes’ mobility which causes random

changes in distance between nodes. Naturally, the smaller the distance between

two nodes, the higher would be the perceived SNR, and vice versa. Here, we

propose a function to calculate the single-hop delay based on distance state dtij of

node i from a neighboring node j. To this end, we first compute the link SNR in

terms of distance, and then determine the link error probability. Finally we

derive the transmission delay formula given the packet length and effective bit
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rate. According to [13], the received power (in dB) at the reference distance of 1

meter ~P is calculated as follows:

~P ¼ PTX � �L0 � 10 log10 Efx2g ð9Þ

In this equation, PTX is the transmission power in transmitter, �L0 is average path

loss at reference distance of 1 meter and EfX2g captures the average of multi

path fading (in dB). Given the received power at reference distance of 1 meter,

each node i can calculate the received power at node j at time t as follows:

PðdtijÞ ¼ ~P� 10n log10 dtij:e
� �

� rs; ð10Þ

where n and rs denote the path loss exponent and shadowing, respectively. With

the received power at hand, the signal to noise ratio (SNR) can be calculated for

each link as follows:

SNRðdtijÞ ¼
PðdtijÞ
N0

ð11Þ

where N0 represents the channel noise. According to [18], we can calculate the

error rate Plij at time t for link ij in terms of SNR as follow:

PlijðdtijÞ ¼
1

1þ ef SNR dt
ijð Þ�dð Þ ð12Þ

where f and d are constants and are related to coding and modulation charac-

teristics of a packet with a specific length. Now, given the link error rate, the

transmission delay of the link ij can be calculated as a function of the distance

state dtij as follows:

delaytijðdtijÞ ¼
L

Bij � 1� Plij dtij

� �� � ð13Þ

where L is the packet length. and Bij is the maximum transmission rate of link ij

(in bit/s) at time t.

(b) Immediate end-to-end cost function model: We may now proceed to show how

each node can calculate its immediate end-to-end cost in terms of the feedback it

receives from its next-hop. In other words, when node i selects a neighbor node

j as relay (i.e., ati ¼ j), it receives Ft
j ¼ ðFt

j;delay;F
t
j;energyÞ as feedback from node

j. This feedback consists of two components: I) the delay feedback Ft
j;delay which

expresses the cumulative delay of transmitting a packet from node j to

destination, and II) the energy feedback Ft
j;energy which expresses the minimum

energy level among the nodes on the partial route j,D (excluding j’s energy

level itself). By receiving this feedback, node i computes its end-to-end

immediate cost function Ciðsti; atiÞ as:

Ciðsti; atiÞ ¼ a: Ft
j;delay þ delaytijðdtijÞ

� �

þ b:k:P min Ft
j;energy; e

t
ij

� �� �

; ð14Þ

The cost Ciðsti; atiÞ is, in fact, a weighted sum, where a and b are weight factors

that should be determined according to the importance of energy and delay

factors in the intended application. Also, k is a normalization constant. Finally,
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the function Pð�Þ in 14 is defined as a logistic function of the given energy

level [17]; e.g., PðxÞ ¼ /

1�e
�x
q
; in which / is a scaling parameter; higher values

for / amplifies the impact of the residual energy on cost. q is a preferred

coefficient; higher values for q results in a lower growth rate for Pð�Þ, and thus

gives rise to a smoother cost function with less impulsive behavior. This way, the

energy level of nodes will have an inverse relation with cost value. In other

terms, the cost incurred by node i will increase as the energy status of some

node(s) along the path i,D becomes more critical. In fact, defining the energy

cost function in this way, results in a more balanced distribution of network

traffic across all nodes, as well as in increasing the minimum lifetime of nodes in

the network. Node i then forms and sends its own feedback to the previous hop

as follows:

Ft
i;delay ¼ Ft

j;delay þ delaytijðdtijÞ; ð15Þ

Ft
i;energy ¼ min Ft

j;energy; e
t
ij

� �

: ð16Þ

• State transition probabilities: The state transition probabilities in node i’s MDP is

denoted by T i which represents the transition from state (dtij; e
t
ij) at time t to state

(dtþ1ij ; etþ1ij ) at time t?1. In general, calculating the exact value of state transition

probabilities is often impossible in real networks due to the lack of prior knowledge

about the system stochastic parameters. In our proposed model-based reinforcement

learning method in Sect. 4.2, each node approximates its transition probabilities in an

online manner using a tabular maximum likelihood method.

3.2 Optimization Objective

In our proposed formulation, we aim to compute a routing policy pi: Si ! Ai using which

each node takes a routing decision ai at each state si in such a way that it leads to

minimizing its average discounted cost in the long-run. Such a routing policy at the source

node chooses a route with the lowest average discounted end-to-end delay and total end-to-

end energy cost. More formally, each node computes its optimal relay selection policy p	i
as follows:

p	i 2 argminpi
�CpiðsiÞ � Epi

X

1

t¼0
ctCi s

t
i; a

t
i

� 	

js0i ¼ si

" #

; 8si 2 Si ð17Þ

In (17), 0\c\1 is a discount factor that decays the impact of the cost over successive

decision periods. In other words by applying c, the importance of short-term costs increases

with respect to the long-term costs. The smaller the discount factor, the sooner a node

prefers to minimize its average routing cost.

4 Computing the Optimal Routing Policy

In this section, we compute the optimal routing policy p	i . To this end, we first discuss the

pros and cons of standard value iteration and conventional model-free reinforcement
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learning in Sect. 4.1. Standard value iteration requires a priori knowledge of the network

statistics (transition probabilities T i and average cost function Cið�Þ) for calculating p	i .
Having this knowledge, this method can converge to the optimal value of the average

discounted cost over a few iterations. However, in practice, such accurate knowledge is not

always available. In the absence of such knowledge, model-free reinforcement learning

methods such as Q-learning can converge to the optimal value of the average discounted

cost through frequent interactions with the environment and sampling from the transition

and immediate cost functions. However, this convergence can be very slow due to the need

for a large number of samples. In Sect. 4.2, we introduce our MRL-routing algorithm

which, similarly to Q-learning, is also independent of prior statistical knowledge. How-

ever, MRL-routing is a model-based RL procedure; i.e., we utilize the proposed cost

function in (16) as a model of the expected cost, and also approximate the transition

probabilities T i using a tabular maximum likelihood method. Hence, unlike Q-learning,

MRL-routing will have low sample complexity and short convergence time.

4.1 Conventional Methods

4.1.1 Standard Value Iteration

For calculating the optimal routing policy p	i in node i, standard value iteration can be used
as follows:

Vtþ1
i ðstiÞ ¼ min

at
i
2Ai

Ciðsti; atiÞ þ c
X

stþ1
i

T iðsti; ati; stþ1i ÞVt
i ðstþ1i Þ

8

<

:

9

=

;

ð18Þ

where Vt
i ðsÞ is the estimated long-term cost of state s 2 S at tth iteration. The sequence of

estimates fVt
i ðsÞgt for 8s 2 Si is provably convergent to V	i ðsÞ, i.e., the lowest average

long-term discounted cost of state s (e.g., see [19]). Having V	i , p	i can be calculated as

follows:

p	i ðsÞ ¼ argminai2Ai
V	i ðsÞ; 8s 2 Si ð19Þ

4.1.2 Q-Learning

The Q-learning algorithm [19] exploits realized samples of transitions and costs obtained

from actual action implementation along with stochastic averaging for learning the average

discounted cost. The Q-learning algorithm gradually learns an optimal decision policy

without knowing the transition probabilities T i and average cost function Cið�Þ. Let

Q	i ðs; aÞ denote the sum of the immediate cost resulting from performing action a in state s

together with the value of the average discounted cost associated with following the

optimal policy p	i in all future states. Accordingly, Qt
iðsti; atiÞ; 8sti 2 Si denotes the time t

estimate of Q	i ðs; aÞ. We define an asynchronous counter vtðsi; aiÞ given by (20). Also let

aðtÞ be a sequence of step-sizes satisfying the conditions in (21).

vtðsi; aiÞ :¼
X

t

s¼1
If ss

i
;as

ið Þ¼ðsi;aiÞg: ð20Þ
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aðtÞ ! 0 as t!1;
X

t

aðtÞ ¼ 1;
X

t

aðtÞ2\1: ð21Þ

The Q-learning update rule in (22) guarantees the convergence of the sequence fQt
iðs; aÞgt

to Q	i ðs; aÞ for 8s 2 Si and 8a 2 Ai [20]:

Qtþ1
i ðsi; aiÞ � Qt

iðsi; aiÞ ¼ aðvtðsi; aiÞÞ:Ifðsi;aiÞ¼ðsti ;atiÞg: costti þ c:min
ai

Qt
iðstþ1i ; aiÞ


 �

ð22Þ

where costti denotes the realized cost of performing action ati in state sti, and stþ1i is the

realized next state in node i after performing action ati.

The action selection is performed using a Greedy in the Limit with Infinite Exploration

(GLIE) policy in each iteration of Q-learning. This means that actions are selected greedily

based on Q values after convergence; however, to ensure the theoretical convergence of the

algorithm, any action should have a non-zero chance of selection so that all state-action

pairs are visited infinitely often. To ensure this, we carry out our action selection based on

Boltzmann distribution in each iteration (soft- min policy) [19]:

ptþ1i ðstþ1i ; aiÞ ¼
exp

�Qtþ1
i

stþ1
i

;aið Þ
s

� 

P

8ai2Ai
exp

�Qtþ1
i

stþ1
i

;aið Þ
s

�  ð23Þ

In (23), s is a so-called temperature parameter. High values for s result in all actions having
almost equal probabilities. While low values for s give rise to greater differences in the

selection probability of actions as their estimated Q-values become more distant. In the

limit as s! 0, soft-min action selection reduces to the greedy action selection scheme.

Once the Q-values converge, pti also converges to p	i .
The most important advantage of Q-learning is its low informational assumptions and

low computational complexity. In each time interval, the Q-learning needs to update the Q-

values of 8sti 2 Si and for each state, Qt
iðstþ1i ; aiÞ is calculated over 8ai 2 Ai. Hence, the

computational complexity is OðjAijjSijÞ.
Despite these advantages, the number of iterations required for the convergence of Q-

learning can be very high. In other words, it slowly converges to the optimal policy due to

its high sample complexity [21]. Therefore, in MANETs where node conditions are

changing in a faster rate, Q-learning can be inefficient. In the following, we represent our

MRL-routing algorithm which is based on model-based reinforcement learning. With a

slight increase in computational complexity, MRL routing is convergent with fewer iter-

ations and to better average costs of energy and delay.

4.2 Proposed Algorithm: MRL-Routing

In this section, we present MRL-routing, our model-based reinforcement learning algo-

rithm, for computing the optimal routing policy p	i . MRL-routing exploits the cost function

formula Cið�Þ in (16) as a model of the expected costs. It also approximates the transition

probabilities T i in an online fashion to more efficiently use the experience obtained from

interactions with the environment.

Let nt
st
i
s
0
i

ðatiÞ represent the observed number of times before time step t that the action ati

is taken when the state was in sti and made a transition to s
0

i, and let ntst
i
ðatiÞ represent the
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observed number of times before time step t that the action ati is taken when the state was in

sti, i.e.,

ntst
i
ðatiÞ ¼

X

s
0
i
2Si

nt
st
i
s
0
i

ðatiÞ ð24Þ

The state transition probabilities can be approximated using the following empirical

distribution:

T̂ t
iðsti; ati; s

0

iÞ ¼
nt
st
i
s
0
i

ðatiÞ
nt
st
i
ðatiÞ

ð25Þ

It has been shown in [22] that T̂ t
i is in fact a maximum likelihood estimator of true

transition probabilities T i of a given Markov chain; also, a central limit theorem is given in

[22] which proves that T̂ t
i converges (in distribution) to true transitions T i. By estimation

of T i in (25), each node i updates its Q-value in MRL-routing as follows:

Qtþ1
i sti; a

t
i

� 	

¼ 1� atð ÞQt
i sti; a

t
i

� 	

þ atfCi s
t
i; a

t
i

� 	

þ cmin
at
i
2Ai

X

s
0
i

T̂ t
i sti; a

t
i; s

0

i

� �

Qt
iðs

0

i; a
t
iÞg ð26Þ

where 0\at\1 is a learning rate that satisfies the conditions in (21). Also, similar to Q-

learning, action selection policies is adjusted in GLIE fashion (see (23)).

Q-learning (22) can only update the Q-value of the current state-action pair ðsti; atiÞ. This
is because the resulting cost cannot be obtained unless the associated action is actually

taken in current state. In our MRL-routing, however, using the cost function model and

transition probabilities, it is possible to update Q-values for all states 8si 2 Si at each time

step. As a result, our model-based method can converge much faster. This advantage can

be useful and very important for highly dynamic MANET scenarios with rapidly changing

conditions. In terms of computational complexity, in MRL-routing, the Q-values of 8sti 2
Si need to be updated in each time step, and for each state, the term

minat
i
2Ai

P

s
0
i
T̂ t

iðsti; ati; s
0
iÞQt

iðs
0
i; a

t
iÞ in (26) is calculated over 8ati 2 Ai. Hence, the compu-

tational complexity is OðjAijjSij2Þ. As we show in next section, despite this slight increase

in computational complexity, MRL-routing has the advantage of much faster convergence

as well as near-optimal performance. The complete procedure of our proposed MRL-

routing algorithm is given in Table 1.

5 Simulation

In this section, we evaluate numerically the performance of our MRL routing algorithm.

The performance metrics of interest are average end-to-end delay and energy cost. We

compare the performance of our algorithm with the solution obtained from the standard

value-iteration algorithm for MDPs [19] and model-free reinforcement learning algorithm

of Q-learning. The value-iteration algorithm assumes prefect knowledge of the system

dynamics (link state and node energy state dynamics). Using this knowledge speeds up the

convergence to optimal policy and also results in near-optimal routing performance. In

contrast, Q-learning converges with slower rate due to the lack of knowledge of the system

dynamics, and its performance is far from optimal.
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The network environment is assumed to be a square region of 1000m� 1000m. Node

mobility is assumed to follow an RPGM model (c.f., Sect. 2). Both the movement of the

logical center for each group, and the random motion of each individual mobile node

within the group, are implemented via the Random Waypoint Mobility Model. One dif-

ference, however, is that individual mobile nodes do not use pause times while the group is

moving. Pause times are only used when the group reference point reaches a destination

and all group nodes pause for the same period of time.

The vector GM
��!

is determined by a constant speed 10 m/s and random direction at each

time. The pause time of 5 s is considered for the group motion. Each individual mobile

node roams around its reference point with a predefined average speed.

Traffic load corresponds to an interactive environment. For each source-destination pair,

data packets are assumed to be generated at the source following a Poisson process with

Table 1 MRL-routing algorithm in node i

Initialization: t 0; s0i ; F
0
ait
; Q0

i ðsti; atiÞ ¼ 0; 8sti 2 Si;8ati 2 Ai

1: //Select an action ati based on policy pti:

Randomly select the action ati according to the ½ptþ1i ðstþ1i ; aiÞ;8ati 2 Ai�
2: Transmit the packet and observe the new state s

0

i

3: //Update state transition probability:

update the number of state transition ntþ1
st
i
s
0
i

ðatiÞ ¼ nt
st
i
s
0
i

ðatiÞ þ 1, and

update state transition probability T iðsti; ati; s
0

iÞ using (25)

4: Receive Ft
ait
from next hop neighbor

5: //Evaluate immediate cost:

Calculate Ciðsti; atiÞ using (14)

6: //Update the Q-value:

For each state sti;8sti 2 Si and action ati, update Q-value Qtþ1
i ðsti; atiÞ using (26)

7: //Update the policy:

For each state sti;8sti 2 Si, update the policy ptþ1i ðstiÞ
8: //Update the feedback values:

Update Ft
i Using (16)

9: t t þ 1, go back step 1

Table 2 Simulation parameters
Parameter Value

Network size ðx� yÞ 1000m� 1000m

Number of network nodes 25, 50

Simulation time 4000 iterations

Effective transmission range (Re) 239 m

Packet size 512 byte

Band with 512 kbps

Energy buffer size 50 energy packet

Energy unit (EU) 2.5 lJ
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average interval of 0.5 s. This amounts to a traffic volume of 8 kbps per source/destination

pair, assuming that data packet length is 512 bytes. The energy buffer size for each node is

taken to be 50 energy packets. Each energy packet is taken to be the size of two energy

units. Also, as discussed in Sect. 3.1, we uniformly quantize the energy buffer space into

three equal segments: denoted by L;M, and H. Furthermore, each energy unit amounts to

2.5 lJ, and we consider Poisson energy arrival with average arrival rate of 1 energy packet

per time step. Table 2. lists the parameters used in simulations.

First, we investigate the impact of the number of network nodes on average end-to-end

delay and energy costs. As can be seen, these performance metrics are directly related to

Fig. 4 Avearge end-to-end delay in a network with 50 nodes

Fig. 5 Average end-to-end delay in a network with 25 nodes

A Model-Based Reinforcement Learning Algorithm for Routing... 3133

123



the number of nodes. We conduct the experiment with 25 and 50 nodes. In each diagram,

the performance of the proposed MRL-routing algorithm is compared with Q-learning and

standard value-iteration. Figure 4 plots the average end-to-end delay for a source-desti-

nation pair in a network with 50 nodes, while Fig. 5 depicts the same for a network of 25

nodes.

In the network with 50 nodes, average end-to-end delay converges to 138.71 ms, while

in the network with 25 nodes, this value is 66.97 ms. These values indicate a direct

correlation between the number of nodes in the network and the average end-to-end delay.

Fig. 6 Average end-to-end energy cost in a network with 50 nodes

Fig. 7 Average end-to-end energy cost in a network with 25 nodes

3134 M. Maleki et al.

123



Next, we investigate the impact of the number of network nodes on the end-to-end

energy cost. Figure 6 plots the average end-to-end energy cost for a source-destination pair

in a network with 50 nodes. Figure 7 shows the results for a network with 25 nodes.

As with the case of delay, the energy diagrams indicate a direct correlation between the

number of nodes in the network and the average end-to-end energy cost. The proposed

MRL-routing algorithm converges much faster than Q-learning and its performance is

much closer to near-optimal values.

Next, we explore the impact of the weight factors a and b on the performance measures.

As mentioned earlier, these parameters can be exploited to strike different energy-delay

trade-offs. The average end-to-end delay and energy costs are measured by setting a ¼
0:75 and b ¼ 0:25 in a network with 50 nodes. The results are compared to the baseline

case in which the weight factors are set to 0.5. A higher value for a puts more weight on the

Fig. 8 Average end-to-end delay with weight factors a ¼ 0:75; b ¼ 0:25

Fig. 9 Average end-to-end energy cost with weight factors a ¼ 0:75;b ¼ 0:25
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end-to-end delay of a source-destination pair, and treats the energy cost as a lower

importance criterion.

Figure 8 depicts the average end-to-end delay for both cases of equal and unequal

weight factors. As can be observed, for a ¼ 0:75 and b ¼ 0:25, the average end-to-end

delay converges to a lower value by trading against the energy criterion. Figure 9 plots the

average end-to-end energy cost for a ¼ 0:75 and b ¼ 0:25. As expected, the algorithm

converges to a higher energy cost by trading for the delay criterion.

We repeat the same experiment, but this time favoring the energy criterion. Therefore,

we interchange a and b values, i.e., we set a ¼ 0:25 and b ¼ 0:75 As it turns out, the

Fig. 10 Average end-to-end delay with weight factors a ¼ 0:25; b ¼ 0:75

Fig. 11 Average end-to-end energy cost with weight factors a ¼ 0:25;b ¼ 0:75
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energy cost converges to a lower value; in contrast, the average delay increases accord-

ingly. Figures 10 and 11 show the average end-to-end delay and energy cost for the case

a ¼ 0:25 and b ¼ 0:75.

6 Conclusion

In this paper, we addressed the bi-objective problem of delay and energy efficient routing

in energy harvesting MANETs. We showed how a node should choose the next-hop relay

in the presence of link and energy dynamics so that in the long run, both the end-to-end

delay and network lifetime is optimized. In order to explicitly account for the stochastic

dynamics of the network environment, we modeled the routing problem as a Markov

decision process (MDP). We also proposed a model-based reinforcement learning (RL)-

based algorithm to approximate the optimal routing policy of the formulated MDP. In

particular, we have modeled each node’s cost function by deriving an expression for the

expected value of end-to-end costs. Also, the transition probabilities are estimated online,

which enables a node to perform multiple updates following a single interaction with the

system. Also, the multi-agent basis of our proposed RL method allows for global system

optimization. As evidenced by simulations, compared to a model-free solution, our pro-

posed scheme converges much faster and to better values of system objectives.
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