
1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3110720, IEEE Sensors
Journal

IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 1

XXXX-XXXX © XXXX IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Abstract—In IEEE 802.15.4 standard for low-power low-
range wireless communications, only one channel is
employed for transmission which can result in increased
energy consumption, high network delay and poor packet
delivery ratio (PDR). In the subsequent IEEE 802.15.4-2015
standard, a Time-slotted Channel Hopping (TSCH)
mechanism has been developed which allows for a periodic
yet fixed frequency hopping pattern over 16 different
channels. Unfortunately, however, most of these channels are
susceptible to high-power coexisting Wi-Fi signal
interference and to possibly some other ISM-band
transmissions. This interference manifests itself in the form
of the presence/absence of other devices with either or both
static and dynamic channel selection policies. In order to isolate channels with undesirable conditions, blacklisting
mechanisms are defined to adapt the channel hopping process. However, the existing solutions which form blacklists
unrealistically assume that the statistical model of the external interference remains fixed, and do not vary over time.
In this paper, we realistically assume that the impact of external interferes on 802.15.4 may generally follow a non-
stationary pattern, and accordingly formulate the adaptive channel hopping problem as a Dynamic Multi-Armed
Bernoulli Bandit (Dynamic MABB) process from the machine learning theory. We then propose an online learning
algorithm with track-ability properties for computing an adaptive hopping policy. Simulations confirm that when the
statistics of the external interference has a switching regime, the proposed solution outperforms the previous schemes
in terms of both energy efficiency as well as two important KPIs for TSCH-based networks, i.e., PDR and latency.

Index Terms— IEEE 802.15.4, TSCH, Channel Hopping, Blacklisting, Dynamic MABB Problem.

I. INTRODUCTION

N recent years, the concept of the Internet of Things (IoT) has

been evolving rapidly, making it increasingly possible to

connect any device to the Internet (as well as to each other) [1].

One basic requirement in the IoT connectivity landscape is to

ensure that nodes are reliably connected to the Internet [2].

Given this key demand, IoT-based settings are expected to

satisfy the required specifications mandated by the standards

such as IEEE 802.15.4 [3] (which imposes a set of protocols for

the provision of two-way multi-hop interconnections between

devices with limited power), and LoRa [4] (which mainly

defines Medium Access Control (MAC) layer and message

formats for single-hop device-to-BS long distance

communications).

IEEE 802.15.4 is a popular standard that specifies the

physical and MAC layer for low-power low data rate

communications [5]. However, it is a single-channel standard

in which communications can be heavily affected by

interference and fading, and thus incur high delay and a low

packet delivery ratio [6]. IEEE 802.15.4-2015 [12] was later

introduced as an improved version to IEEE 802.15.4e,

(Corresponding author: Vesal Hakami.)
N. T. Javan and M. Sabaei are with the Computer Engineering

Department, Amirkabir University of Technology (Tehran Polytechnic),
Tehran 15875-4413, Iran (e-mail: nastooh@aut.ac.ir; sabaei@aut.ac.ir).

presenting a new time-slotted channel hopping (TSCH)

operating mode to ensure higher reliability by using several

channels [7]. In TSCH, at the time of sending a packet over a

channel, if the desired channel is affected by destructive factors

such as interference, it is possible to resend it on a different

channel at another time-slot (possibly in another slot-frame

cycle). More specifically, TSCH employs a deterministic

periodic hopping pattern on 16 different channels [8]. A

drawback with default TSCH operation is that most of its

channels are susceptible to interfering transmissions from the

2.4GHz ISM band technologies such as IEEE 802.11 (Wi-Fi)

and Bluetooth [9].

Also, in TSCH networks not only can the interference from

the uncoordinated neighboring Wi-Fi (or Bluetooth) networks

be problematic, multipath fading can also pose problems, e.g.

reduced network reliability [10]. It should be noted however

that the occupancy of the different frequency channels by the

surrounding radio signals is not evenly balanced. Some ISM

sub-bands are less occupied or jammed than others, and this

diversity should be adaptively exploited to intelligently hop

over channels and make a better use of the spectrum.

V. Hakami is with the Center of Excellence in Future Networks,
School of Computer Engineering, Iran University of Science and
Technology, Tehran 16846-13114, Iran (e-mail: vhakami@iust.ac.ir).

Adaptive Channel Hopping for IEEE 802.15.4 TSCH-
Based Networks: A Dynamic Bernoulli Bandit Approach

Nastooh Taheri Javan, Senior Member, IEEE, Masoud Sabaei, and Vesal Hakami

I

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 06,2021 at 21:05:00 UTC from IEEE Xplore. Restrictions apply.

1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3110720, IEEE Sensors
Journal

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX

Obviously, to provide for such adaptability, one needs to go

beyond default TSCH (which offers a fixed hopping pattern).

Adaptive channel hopping in TSCH-based networks can be

realized through blacklisting mechanisms [11]. Blacklisting is

a technique to omit channels with undesirable conditions from

the hopping list. As the statistics of absence/presence of

interference sources are neither usually pre-determined nor are

their behavior constant, a spatiotemporal prediction is not

possible, and instead, blacklisting policies should be computed

on-the-fly using model-free learning procedures.

Recently, several blacklisting schemes have been introduced

for enabling adaptive TSCH channel hopping. We present an

exhaustive review of the related work in Section II.C. However,

one common assumption in the existing blacklisting schemes is

that the probabilistic model of external interference is stationary

in the sense that the statistical properties of the external

interference is time-invariant [15-17]. This assumption rarely

holds in practice as real-life communications often involve

underlying processes that are dynamically evolving [18]. In

fact, the presence/absence of external users associated with

other wireless technologies do not necessarily exhibit a nice

stationary statistical property; also, each non-802.15.4 protocol

indeed uses its own rules for channel selection, user

partitioning, etc., and all this leads to a hectic use of the

spectrum that cannot be expressed in terms of a time-invariant

probabilistic model, and has to be learnt and tracked

dynamically.

In a departure from the previous works, in this paper, we

explore a more realistic approach and generalize the idea of

adaptive channel hopping to non-stationary settings. Prior work

has mainly utilized a so-called stochastic “multi-armed bandit”

(MAB) model [19] to frame the adaptive channel hopping

problem (e.g., [20], [21]). MAB is a formalism from the

machine learning theory and can be used as a systematic way

for a decision-maker to choose among multiple options with

uncertain rewards. In particular, the classical MAB describes a

setting in which a gambler has to operate a slot machine with

multiple arms (levers). The gambler has to decide which arm to

play, how many times to play each arm and in which order to

play them, and whether to continue with the current arm or try

a different arm. In MAB, each arm provides a random reward

from an unknown probability distribution specific to that arm.

The objective of the gambler is to maximize the sum of rewards

earned through a sequence of arm pulls. In modeling the

adaptive channel hopping problem as a MAB, the available

physical channels can be considered as arms and average PDR

as the optimization objective.

In this paper, we formulate the adaptive channel hoping

problem in TSCH-networks as a Dynamic Multi-Armed

Bernoulli Bandit (Dynamic MABB) process [22] which is one

of the many non-stationary variants [23] of the classical MAB

specifically tailored for MABs with Bernoulli

rewards/penalties. In the context of our problem, the sequence

of rewards/penalties gained from each arm (channel) indeed

forms a Bernoulli process (corresponding to

successful/unsuccessful packet transmissions) with an

unknown distribution. Also, given the time-varying nature of

the external interference, the underlying Bernoulli process

would be non-stationary, thereby making Dynamic MABB a

very much expressive framework for our case.

In MAB, an online learning algorithm needs to be deployed

to tackle with a crucial tradeoff at each trial which is between

exploitation of the arm that has the highest estimated payoff and

exploration to get more information about the payoffs of the

other arms. In stochastic MAB, some popular learning

algorithms include 휀-Greedy [24], Upper Confidence Bound

(UCB) [25], and Thompson Sampling (TS) [26]. However, such

algorithms cannot be justifiably employed for Dynamic MABB

as they use sample means to estimate the expected reward of

each arm. In stationary MABs, given that the sequence of

rewards is i.i.d., forming sample means is sensible from a

theoretical perspective, and one could invoke various

asymptotic results (e.g., law of large numbers, central limit

theorem, etc.) as justification. However, when the underlying

distribution changes significantly with time, sample mean-

based estimation is not theoretically valid, and can also result

in performance bottleneck from a practical viewpoint [27].

Armed with this understanding, in this paper, we consider

deploying a different learning algorithm (the so-called AFF-

OTS from [22]) which uses an estimator with track-ability

properties and is inspired from the adaptive filtering theory

[27]. The key idea behind adaptive estimation is to track a time

evolving data stream by gradually reducing the weight on older

data as new data arrives. There are many learning procedures

proposed for arm selection in non-stationary MAB settings

(e.g., [28, 29 and 30]), but the recent AFF-OTS procedure

proposed in [22] is particularly suited for implementation in an

IoT setting as it is a lightweight algorithm, requires very little

tuning effort, is quite robust to tuning parameters and unlike

prior work in Dynamic MABB, its initialization does not

require knowledge about the model structure in advance.

Another notable point is that channel hopping in a TSCH-

based network takes influence from the underlying scheduling

mechanism. Nonetheless, the standard only provides a

framework, without actually mandating a specific scheduling

mechanism for time and frequency slot allocation [31]. As such,

several interesting scheduling algorithms have been proposed

to fill the void (e.g., [31], [54], [55]). In the default single-offset

scheduling, however, only one channel is offered to each link

in every time-slot [32]. This is while an adaptive channel

hopping scheme needs to be built on a multi-offset schedule in

which several offsets can be offered to each node at each time-

slot. Realizing this and using graph-theoretical algorithms, we

use a multi-offset version of our scheduling scheme in [31] that

allows each node to select the most suitable offset based on the

proposed learning procedure.

In sum, our contributions are as follows:

 We formulate the problem of adaptive channel hopping on

top of a multi-offset TSCH schedule using the dynamic

(non-stationary) MAB formalism [33] with the goal of

maximizing the average PDR. Our formulation is more

realistic compared to prior work in that it accounts for the

possible non-stationarity of the external interference.

Based on recent results in MAB theory [22], we deploy a

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 06,2021 at 21:05:00 UTC from IEEE Xplore. Restrictions apply.

1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3110720, IEEE Sensors
Journal

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX

learning algorithm for computing the channel selection

policy. Our algorithm is suitable for TSCH-based networks

susceptible to non-stationary external interference as it has

the capability of tracking the time-varying statistical model

of the interference. Also, since our algorithm works based

on a number of low cost recursive update formula, it is

particularly lightweight with few parameters to adjust,

making it suitable for IoT settings.

 Through simulations, we experimentally evaluate our

proposed scheme against default TSCH [7] as well as some

prior work which assumes stationary interference [21].

Also, a small physical setup is implemented to showcase

the memory footprint of the proposed algorithm.

The rest of the paper is organized as follows: in Section II,

background and motivation of the paper are described and some

relevant studies on adaptive frequency channel hopping for

TSCH networks are reviewed. In Section III, our system model

including the assumptions is described. In Section IV, the

problem is formulated on the basis of Dynamic MABB

framework and in Section V the proposed adaptive channel

hopping mechanism is presented. In Section VI, our simulation

results are presented and the proposed scheme is evaluated

against some baseline schemes. In Section VII, we explain a

physical setup for evaluating the memory footprint of the

proposed algorithm. Finally, Section VIII concludes the paper

with highlights of its main results.

II. BACKGROUND

In this section, we first give a brief overview of default TSCH

channel hopping, and then discuss the rationale behind adaptive

hopping. We also discuss a number of related studies, highlight

the research gap and motivate our idea in this paper. For ease of

reference, important acronyms are summarized in Table I.

A. Default channel hopping in TSCH

In order to combat internal interference in TSCH-based

networks, the nodes use a simple, blind and periodic pattern for

frequency hopping in which all the channels are uniformly

selected. At each time-slot, a node maps the channel offset into

a physical frequency according to the following equation:

Frequency = MAP [(ASN + Ch_Off) mod nCh] (1)

where ASN is the network’s absolute sequence number of the

time-slot, nCh is the number of available channels, Ch_Off is

the current scheduled channel offset, and MAP is a bijective

function mapping an integer between 0 and nCh-1 into the

frequency channel. The standard provides a two-dimensional

scheduling scheme in which each cell corresponds to a pair of

time-slot and channel offset. A TSCH schedule allocates a set

of cells to each radio link. It is clear that by employing this blind

channel hopping, all the channels are uniformly picked up

irrespective of their quality.

B. Adaptive Channel Hopping

In real environments, signal attenuations (e.g., due to

multipath fading and co-existing transmissions) increase the

rate of packet transmission failure, thereby leading to a high

number of retransmission attempts and energy wastage [9]. In

contrast to the neutral round-robin hopping pattern of the

default TSCH, an adaptive hopping algorithm constantly tries

to detect and avoid undesirable channels with low packet

delivery ratio, effectively increasing the energy efficiency.

Adaptive frequency channel hopping schemes can be

classified as being either model-based or model-free. Model-

based schemes are built on the assumption that a statistical

model of the channel dynamics is known at design time (i.e.,

prior to actual network deployment and operation). The model-

free schemes, on the other hand, are typically based on machine

learning algorithms in which a network node starts from a

basically zero knowledge of the network dynamics, and adapts

itself intelligently with environmental changes to learn the

channel qualities dynamically [34]. In particular, in these

methods, each network node acts as a learning agent which

gradually estimates channel conditions based on the history of

its experience with the channels in the past, and becomes more

inclined towards channels with higher estimated success rate in

its future transmissions. In general, model-free schemes are

particularly interesting in most practical scenarios in which the

model of the channel variations change over time, or it is not

possible to obtain reliable statistical information about the

process before node deployments. In the sequel, we review the

related work on adaptive channel hopping in IEEE 802.15.4.
TABLE I

USED MAIN ACRONYMS

TSCH Time-Slotted Channel Hopping

MAB Multi-Armed Bandits

MABB Multi-Armed Bernoulli Bandits

LoRa Long Range

LoRaWAN Long Range Wide Area Network

ASN Absolute Sequence Number

AFF Adaptive Forgetting Factor

PDR Packet Delivery Ratio

ACK Acknowledgement Message

TS Thompson Sampling

C. Related Work

The A-TSCH algorithm in [15] is among the pioneer work in

adaptive channel hopping which provides enhanced reliability

on the basis of the TSCH technique of IEEE 802.15.4-2015

standard. A-TSCH hops selectively among a subset of channels

considered “reliable”, unlike TSCH which indiscriminately

uses all 16 channels in the 2.4 GHz band. However, the

evaluation of the channel quality in [15] is based on a costly

spectrum sensing technique which requires detecting the

ambient energy level to gauge the intensity of channel

utilization. This process exerts a massive load on the system

which eventually causes higher energy consumption and delay.

Alternatively, the ETSCH algorithm in [16] applies a non-

intrusive channel quality estimation by energy detection during

idle periods of time-slots. Then, the hopping sequence is

propagated in the network including channels with high quality

as whitelist. ETSCH is most efficient when the time-slot

duration is sufficient to compensate clock drifts, while leaving

enough time for energy detection. Handling multi-hop

topologies remains a challenging issue and dedicated time-slots

for energy detection may be required. In [36], the authors have

presented an improved version of ETSCH with a Distributed

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 06,2021 at 21:05:00 UTC from IEEE Xplore. Restrictions apply.

1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3110720, IEEE Sensors
Journal

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX

Channel Sensing mechanism (ETSCH+DCS) which finds

channels with suitable conditions for packet transmission. A

hybrid technique is employed for channel quality estimation

which combines a central method with a distributed method.

The central method uses Non-Intrusive Channel-quality

Estimation (NICE) to compute energy consumption at the

coordinator node, while the distributed channel estimation

determines the sources of interference throughout the entire

network. However, much overhead is still imposed on the end-

nodes to identify interference sources hidden from the

coordinator. Also, ETSCH+DCS assumes that the coordinator

can directly communicate with all network nodes, which is not

realistic in most industrial deployments.

In [20], a transmitter-side channel selection scheme is

formulated as an independent process using packet transmission

status (packet acknowledgement status) and Clear Channel

Assessment (CCA) failures on that channel. The channel list is

sent to the coordinator by augmenting it to the information

element of the TSCH packet, and the coordinator broadcasts the

newly updated list of channels. However, some implementation

details are missing; for example, how the list of “good

channels” is chosen. Further, it is required that the receiving

node remain aware of the transmitted packet rate, which is not

a realistic assumption in some event-driven sensing scenarios.

An approach for blacklist formation in TSCH-based

networks is presented in [39]. In this method, each pair of nodes

communicating with each other have their own blacklist. In

particular, the nodes at each connection contact each other by

exchanging control packets and agree on a blacklist. These

control packets are sent at certain time-slots and use the ratio of

received packets as a criterion to build the blacklist. However,

non-blacklisted channels are selected at random without caring

for scheduling constraints, which could cause interference

between communication links.

In MABO-TSCH algorithm of [21], every pair of nodes

locally blacklists physical channels. In order to reach an

agreement between the transmitter and the receiver on the same

blacklist, the list is interchanged via ACK packets to avoid

network overhead. Using a MAB-based formalism, each

physical channel is considered as an arm and the nodes estimate

their PDR. Simulation results show that MABO-TSCH results

in 23% more throughput compared to the basic frequency

hopping technique, and that MAB is able to choose the best

channels in 75% of cases. This method is particularly suited for

networks with low neighborhood cardinality because

negotiation for blacklist creation would involve too many

connections between the neighbors.

In [17], every node holds a list of channels with unfavorable

condition as well as channels that affect the connection

negatively but are not yet placed permanently in blacklist. Once

a channel is added to the temporary list, this information must

be distributed in the entire network so that all the nodes hold the

same blacklist for channel hopping. Also, when a channel is

temporarily blacklisted, it will be ultimately blacklisted after a

certain time. Some studies have conducted exhaustive

experiments to showcase the importance of adaptive channel

hopping as well as to evaluate the efficacy of the existing

strategies. For example, in [37], an experiment has been

conducted to evaluate the efficiency of a TSCH network in an

airplane cabin affected by external disturbances generated by a

Wi-Fi network. The investigation assumes there are 16 channels

available and measures a packet error rate of approximately

35%. It is also concluded that throughput decrease whenever a

smaller number of channels are used. In [35], the authors have

extensively experimented with some reinforcement learning

strategies for adaptive channel hopping. In the simulation

process, PDR is employed to assess and compare the methods.

External interference is simulated through placing two wireless

connections in one location as well as multipath fading caused

by reception of different replicas of a signal from diverse paths.

D. Motivation

IEEE 802.15.4 uses the license-free 2.4 GHz band which is

also exploited in other standards and protocols such as Wi-Fi;

therefore, an efficient scheme is needed to combat the

interference caused by co-existing entities. The default channel

hopping in TSCH is not suitable for reducing the effect of

interference because it is based on a circulatory simple formula

that lacks the intelligence to enable proper selection of desirable

frequency channels for hopping. Recently, some adaptive

channel hopping methods have been published which attempt

to learn the channels’ conditions and create a blacklist of

undesirable channels. To the best of our knowledge, previous

studies in adaptive channel hopping for TSCH-based networks

have all assumed a stationary statistical model for the external

interference. However, in real world environments, it is

reasonable to assume that the external interference, such as that

caused by Wi-Fi or Bluetooth, often displays non-stationary

behavior since the interfering sources often appear/disappear in

a time-varying way and they also typically use the channels

based on a dynamic policy that is not constant over time.

The non-stationarity of external interference has recently

been addressed in designing new MAC mechanisms in

LoRaWAN-based IoT settings [40 and 41]. For example, in

[41], the authors have proposed two learning-based methods,

(i.e., UCB and Thomson Sampling) for spectrum access in non-

stationary IOT environments. However, these learning

procedures have so many algorithmic parameters which should

be tuned across a large number of IoT devices for proper

execution. Also, LoRaWAN systems have some key

differences with the case of IEEE 802.15.4 standard addressed

in this paper: they operate in a different ISM frequency band

(863-870 MHz in Europe and 902-928 MHz in US) which is

not susceptible to 2.4 GHz Wi-Fi interference. This is while Wi-

Fi constitutes the main source of interference for IEEE

802.15.4. Also, LoRaWAN is used for long-range single-hop

node-to-gateway IoT communications, while IEEE 802.15.4

TSCH is typically used for multi-hop short range

communications.

In this study, to handle non-stationary external interference

in TSCH networks, we use the Dynamic MABB theory [23],

and propose a lightweight algorithm to be applied iteratively by

the IoT nodes to determine their hopping pattern dynamically.

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 06,2021 at 21:05:00 UTC from IEEE Xplore. Restrictions apply.

1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3110720, IEEE Sensors
Journal

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX

III. SYSTEM MODEL

We consider a tree-like topology consisting of half-duplex

wireless nodes similar to Fig. 1 in which each node sends data

to its upstream (parent) node. The blue lines depict useful

communication links, which extend from each child to its

corresponding parent. The orange lines represent interference

as we elaborate in the sequel. As can be seen from Fig. 1, there

is a gateway node in which the data is gathered eventually.

A. Interference Model

TSCH-based networks are susceptible to two types of

interference: internal and external. Internal interference is due

to the limitations imposed by the network topology and should

be avoided through scheduling algorithms. The orange lines in

Fig. 1 represent the internal interference. For example, a

transmission from node 3 is not only heard by node 6, but it also

affects node 7 as interference. On the other hand, external

interference is due to the simultaneous use of the frequency

band of the IEEE 802.15.4 by equipment that are based on other

standards and protocols. The main focus of the present study

will be on external interference. Our interference model is

based on collision, which means that if interference occurs,

there will be no weakening, but the useful signal will totally be

corrupted [42].

Node 1

Node 2
Node 3 Node 4

Node 5

Node 7Node 6

AP

Transmission

Link

Access

Point

Interference

Link

IoT

Node

R6A R7A

R16

R26
R36 R47

R57

Fig. 1. An IEEE 802.15.4 TSCH network with a tree-like topology.

1) Stationary external interference

In order to provide a mathematical definition for the

stochastic process of presence or absence of the external

interferer in IEEE 802.15.4 channels, we use the symbol 𝕁 =
{1. … . 𝑗. … . 𝐽} to denote the set of offsets of the frequency

channel used in the TSCH schedule, and the symbol 𝕀 =
{1. … . 𝑖. … . 𝐼} to show the set of offsets of the frequency

channels used by the interferer. We also represent the binary

random variable of occurrence or absence of interference

between an offset channel such as 𝑖 𝜖 𝕀 (of the interferer) and

some offset channel such as 𝑗 𝜖 𝕁 (of IEEE 802.15.4) by the

symbol 𝛾𝑖𝑗 𝜖 {0,1}, which has the probability mass function of

ℙ(𝛾𝑖𝑗 = 1) = 𝑝𝑖𝑗 and ℙ(𝛾𝑖𝑗 = 0) = 1 − 𝑝𝑖𝑗 , respectively.

Let the binary random variable 𝑌𝑗(𝑛) indicate the occurrence

or absence of interference in the jth offset during time-slot n,

then the following assumption can be made on the stationary

nature of the external interference:

Assumption 1 (stationary external interference): The

stochastic process {𝑌𝑗(𝑛)}𝑛𝜖ℕ is a stationary time series, when:

𝑌𝑗(𝑛) = 𝛾𝑗, ∀𝑛𝜖ℕ , ∀𝑗𝜖𝕁 (2)

where 𝛾𝑗𝜖{0,1} is a Bernoulli random variable with the

following probability mass function:

ℙ(𝛾𝑗 = 1) = 𝑝𝑗 , (3)

ℙ(𝛾𝑗 = 0) = 1 − 𝑝𝑗 , (4)

𝑝𝑗 = ∑ 𝑝𝑖𝑗𝑖∈𝕀 . (5)

In other words, under the assumption of stationarity, the

probability of interference occurrence for each channel offset

remains constant over time.

2) Non-stationary external interference

To describe precisely the behavior of the non-stationary

interference, we use 𝛹𝑗 to denote a finite and countable set of

probabilistic regimes for the occurrence of interference on the

𝑗-th channel offset. Each probabilistic regime such as 𝜓𝑗𝜖𝛹𝑗

corresponds to a separate probability distribution such as

𝐹𝜓𝑗(.), a finite average value of 𝜇𝜓𝑗, and a finite variance

denoted by the symbol 𝛿𝜓𝑗
2 . The symbol 𝑇𝜓𝑗 represents the

random time during which regime 𝜓𝑗 governs the interference

process. Also, let 𝜓𝑗(𝑛) ϵ Ψ𝑗 represent the probabilistic regime

that holds during time-slot n. Accordingly, we use 𝐹𝜓𝑗(𝑛)(.) to

represent the probabilistic distribution corresponding to the

current regime, 𝛿𝜓𝑗(𝑛)
2 to represent the variance of this regime,

and 𝜇𝜓𝑘(𝑛) represents its mean value.

Note that we do not make any assumption about the specifics

of the regime switching process (i.e., replacement of the

probabilistic regimes over time) as the approach presented in

this paper is applicable to any general non-stationary

interference pattern. That being said, however, for the purpose

of simulation, we intentionally emphasize on a special regime

switching process which occurs according to a first-order

Markov chain (see Definition 1 below):

Definition 1 (Markovian switching non-stationarity): The

stochastic process {𝑌𝑗(𝑛)}𝑛𝜖ℕ is a non-stationary time series of

with Markovian switching nature when 𝜓𝑗 corresponds to the

state space of a discrete-time Finite-State Markov Chain

(FSMC), and the transitions between any two regimes

𝜓𝑗 , 𝜓𝑗′ 𝜖 Ψ𝑗 occurs according to a stochastic matrix such as

𝑄 = [𝑞𝑗𝑗′].

B. Framing Model and Multi-Offset Scheduling

In compliance with IEEE 802.15.4 TSCH, the network-wide

transmission schedule is represented in the form of a two-

dimensional channel-slot matrix similar to Fig. 2, which repeats

over time. A TSCH schedule determines which pair of nodes

should exchange data packets on which channel and in which

time-slot [32]. According to Eq. (1), although each link (or

sender-receiver pair) has a constant position in the schedule,

they will all eventually be assigned to different physical channel

numbers over time (due to the cyclic pattern of the slot-frames).

Most existing algorithms for constructing TSCH schedules

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 06,2021 at 21:05:00 UTC from IEEE Xplore. Restrictions apply.

1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3110720, IEEE Sensors
Journal

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX

are single-offset in the sense that if a link is scheduled in a given

time-slot, the transmission has to occur on the uniquely

specified channel corresponding to that offset. This is while an

adaptive channel hopping scheme needs to be built on a multi-

offset schedule in which several offsets can be offered to each

node at each time-slot. Realizing this, here we use a multi-offset

variant of our proposed throughput-centric scheduling scheme

in [31]. Our algorithm is centrally executed and has two phases:

in the first phase, a conflict graph is formed that captures non-

allowable simultaneous transmissions (e.g., due to single-radio

half-duplex restrictions). We use graph-theoretical algorithms

for the computation of independent sets in this conflict graph.

Let 𝑘 and �́� be the two ends of a given communication link �́� →
𝑘. The output from phase one is the allocated slot-frame time-

slots 𝒯�́�→𝑘 for each link �́� → 𝑘. In the second phase, we aim at

omitting internal interferences by accounting for hidden

terminals. In each time-slot, distinct channel offsets are

assigned to interfering links, while non-interfering links can be

grouped as a single set and be associated with the same offset.

Now, in each given time-slot, if unused offsets are still

available, they will exhaustively be allocated to the links

scheduled in that slot in such a way that the total network

throughput is maximized. This way, if a link �́� → 𝑘 is scheduled

for activation in a given time-slot, the output from phase two

determines all the legitimate channel offsets 𝒞�́�→𝑘
𝒯 from which

a single channel can be chosen by our proposed hopping

algorithm in Section V.C for actual transmission. More

specifics on the computation of 𝒯�́�→𝑘 and 𝒞�́�→𝑘
𝒯 calls for a

complete discussion of the scheduling algorithm, which

remains outside the scope of this paper. As a final note, while

the adopted scheduling algorithm is centralized, but the

proposed channel hopping scheme is orthogonal to scheduling

as long as it offers multiple offsets for each communication link

in each time slot. In fact, the only interaction of our DMABB-

CH scheme (Algorithm 1) with the underlying scheduling

algorithm is in its input stage where the running node needs to

receive the list of allocated slot-frame time-slots 𝒯�́�→𝑘 and

associated channel offsets 𝒞�́�→𝑘
𝒯 . Hence, DMABB-CH can as

easily run alongside a distributed scheduling scheme as it can

run over a centralized scheduling algorithm. As it turns out, the

newly emerging distributed TSCH scheduling algorithms (such

as ALICE in [47] and OST in [48]) work in a link-based fashion

in the sense that they allocate cells to each directional link (a

pair of nodes and traffic direction), and use multiple channels

for the same time-slot.

Fig. 2. Cycle structure in TSCH [42]

IV. PROBLEM FORMALIZATION AS A DYNAMIC MABB

A. Background on multi-armed bandits

The MAB problem is a classical optimization problem that

explores the trade-off between exploitation and exploration in

reinforcement learning. The problem consists of a machine with

𝐽 arms, and an agent that selects and pulls a sequence of arms,

each of which generates some reward or penalty as a return for

the agent. The goal of the agent is to minimize the regret, which

is the difference between the reward gained by following a

specific policy and the reward gained by selecting the best arm

(in hindsight) after a sequence of arm selections. In MAB, the

agent should compromise between exploration (discovering the

unknown by selecting new arms to find their reward

probability) and exploitation (using the formerly known arms

to accrue high reward values). In standard MAB, it is assumed

that the probabilistic model of rewards does not change over

time, i.e., the optimal arm is the same in all time. A MAB

problem with static reward distributions is also known as the

stationary or static MAB problem in the literature (e.g., [43]).

The channel hopping problem can be readily mapped into a

MAB setting in which each IoT device acts as the learning

agent, the channels are considered as arms, and the expected

PDR is defined to be the optimization objective. However, due

to the time-varying nature of external interference (c.f., Section

III.A.2), the optimal choice may change over time, and thus the

assumption of static reward distributions is not adequate. As

such, we should resort to non-stationary variants of the MAB

formalism [33] where the underlying distribution of rewards for

each arm may be time-varying (much the same as the

probability of presence/absence of external interferences).

Also, given that the outcome of a packet transmission

(success/failure) can be described by a Bernoulli random

variable, among the existing dynamic MAB formalisms, we

adopt the one specifically tailored for dynamic “Bernoulli”

processes, namely the “Dynamic MABB” [22], [23]. In this

MAB formalism, the sequence of rewards/penalties obtained

from each arm forms a timey-varying Bernoulli process with an

unknown reward/penalty probability.

B. Problem formulation

In order to formalize the channel hopping problem as a

Dynamic MABB, we use 𝑛 𝜖 ℕ to index discrete time. At each

scheduled time-slot, the receiving node 𝑘 of each link �́� → 𝑘

chooses a channel 𝑗(𝑛) from the set of available channels 𝕁.
Remark 1. In order to streamline notation, we drop the

subscript 𝑘 in 𝑗(𝑛) and in almost all variables maintained

internally by any decision making node 𝑘. Also, in Algorithm

1, we present a so-called DMABB-CH algorithm which can be

executed independently by any given receiving node in the

network topology. As such, the particular node index is mostly

irrelevant to the discussion in the sequel. Where needed,

however, the symbol 𝑘 has been used for more clarity.

The binary random variable 𝑌𝑗(𝑛) determines the success or

failure of the transmission over channel 𝑗 at time 𝑛. Let 𝜇𝑗(𝑛) =

𝔼[𝑌𝑗(𝑛)] to denote the mean reward for channel 𝑗 at time 𝑛. Our

aim is to optimize the channel selection sequence and maximize

the total expected reward (PDR) ∑ 𝜇𝑗(𝑛)(𝑛)
𝑁
𝑛=1 , or equivalently,

minimize the total regret, defined as [22]:min
𝑠
𝑠 𝑠

ℛ(𝑁) ≝ ∑𝜇𝑗∗(𝑛)(𝑛)

𝑁

𝑛=1

−∑𝜇𝑗(𝑛)(𝑛)

𝑁

𝑛=1

,

 (6)

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 06,2021 at 21:05:00 UTC from IEEE Xplore. Restrictions apply.

1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3110720, IEEE Sensors
Journal

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX

𝑗∗(𝑛) is the optimal channel at time 𝑛 and can be described as:

𝑗∗(𝑛) = 𝑎𝑟𝑔max
𝑗∈𝕁

𝜇𝑗(𝑛) (7)

Intuitively, we would like the regret to be as small as

possible. In Section VI, we propose a learning-based algorithm

that is capable of achieving and maintaining a sub-linear regret

value by swiftly identifying the switching of the optimal arm.

In fact, a sub-linear regret value signifies that the expected

difference in total rewards obtained by an optimal policy (the

policy that chooses 𝐽∗(𝑛) in every moment) and the total reward

actually earned by the device vanishes in the long run.

V. THE PROPOSED ADAPTIVE HOPPING ALGORITHM

Several popular procedures exist for arm selection in static

MAB problems, namely; 휀-Greedy [24], Upper Confidence

Bound (UCB) [25], and Thompson Sampling (TS) [26]. These

procedures start with exploration and as the process goes

forward, and experience accumulate, switch to exploitation, i.e.,

converging to only selecting the optimal arm, simply by

selecting the arms with frequencies proportional to their

probabilities of being optimal. These techniques are designed

for settings where the reward probabilities of the bandit arms

remain constant. In non-stationary scenarios, where the reward

probabilities are dynamically evolving, we need procedures that

can track the potential reward probability changes.

In a Dynamic MABB setting, an estimator needs to be in

place to track the expectation of rewards via putting more

weight on the more recent reward history. Some example

procedures include: the 휀-Greedy algorithm coupled with an

exponentially-weighted moving average estimator [28],

sliding-window UCB (SW-UCB) [29], and Dynamic

Thompson Sampling (DTS) [30]. It is worth noting that, as

argued in [22], these procedures are based on complex

algorithms that call for precise tuning of some of their

configuration parameters, which are dependent on the

knowledge of the underlying stochastic process. For instance,

to tune the window size of SW-UCB, the number of switch

points must be known (i.e., how many times the optimal arm

switches).

Lately, a number of innovative schemes have been reported

in [22] that are specifically crafted for computing a learning

policy in dynamic MABB problems. These schemes are quite

easy to implement, and far less complicated compared to prior

procedures in the sense that the tuning of key parameters is

automated, and there is no need for prior knowledge of the

model structure. These features are particularly useful for

applicability in IoT devices which operate on low-quality

hardware (e.g., small embedded processors) and offer limited

software and power capabilities (i.e., very small -size batteries).

Exploring the proposed schemes in [22], we choose the AFF-

OTS procedure as the basis for designing our channel hopping

algorithm. Actually, AFF-OTS involves fewer computational

steps, allows for more flexible tuning and, as demonstrated

through exhaustive simulations in [22], outperforms the

competing schemes in terms of total regret.

The learning-theoretic framework presented in [22],

describes a two-step procedure for tracking the optimal arm in

a dynamic MABB problem: estimation step and selection step.

In our context, these steps would correspond to learning the

reward distribution of each channel and selecting one channel

to transmit, respectively. Accordingly, in the following section,

we provide a short description of how channel hopping can take

place adaptively using AFF-OTS as a dynamic MABB solver.

To prevent redundancy while ensuring that the paper remains

self-contained, we only present the key ideas, leaving out much

of the technicalities, and refer the interested reader to [22].

A. Estimating the expected PDR of each channel

In order to make a proper channel selection at each time step,

each node must correctly and efficiently trace the expected PDR

of the channels, especially when it is affected by time-evolving

interference. To this end, the AFF-OTS algorithm resorts to an

adaptive estimation technique in which the weight on older

feedbacks is gradually decreased as new feedbacks come in.

More specifically, an adaptive forgetting factor 𝜆 (AFF for

short) is applied whose value can be adjusted at each time step

to ensure improved adaptation. Such an estimator would be

capable of responding swiftly to changes in external

interference without having prior knowledge of this process.

Assume a single channel, and suppose that {𝑌𝑛}𝑛=1:𝑁 is the

history of successful/unsuccessful transmissions over this

channel up to time 𝑁. Eq. (8) gives a sample mean �̂�𝑁 of the

sequence {𝑌𝑛}𝑛=1:𝑁 in an “adaptive forgetting” manner:

�̂�𝑁 =
1

𝑤𝑁
∑(∏𝜆𝑝

𝑁−1

𝑝=𝜏

)

𝑁

𝜏=1

𝑌𝜏 (8)

in which:

𝑤𝑁 =∑(∑𝜆𝑝

𝑁−1

𝑝=𝜏

)

𝑁

𝜏=1

 (9)

is a normalizing constant to make the estimate �̂�𝑁 unbiased for

the case when the underlying interference process is i.i.d. It is

worth noting that a more efficient method to compute �̂�𝑁 is to

run incremental updates as listed in Eqs. (10) to (12):

�̂�𝑁 =
𝑚𝑁

𝑤𝑁
 (10)

𝑚𝑁 = 𝜆𝑁−1𝑚𝑁−1 + 𝑌𝑁 (11)

𝑤𝑁 = 𝜆𝑁−1𝑤𝑁−1 + 1 (12)

The AFF sequence 𝝀𝑁 ≝ {𝜆𝑛}𝑛=1:𝑁 applied to the above

equations should produce a desirable tracking performance

(e.g., in terms of the one-step-ahead squared prediction error

𝐿𝑛 ≝ (�̂�𝑛−1 − 𝑌𝑛)
2
 between the sample mean �̂�𝑛−1 and the

latest observed reward 𝑌𝑛); in particular, AFF 𝜆𝑛 is computed

via a single gradient descent step:

𝜆𝑛 = 𝜆𝑛−1 − 휂Δ(𝐿𝑛 , 𝜆𝑛−2) (13)

where 휂(휂 ≪ 1) is the step size, and Δ(𝐿𝑛 , 𝜆𝑛−2) is given as:

Δ(𝐿𝑛 , 𝜆𝑛−2) = lim
𝜖→0

𝐿𝑛(𝜆𝑛−2+𝜖)−𝐿𝑛(𝜆𝑛−2)

𝜖
 (14)

where for any 𝜆, 𝐿𝑛(𝜆) means evaluating Ln using the forgetting

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 06,2021 at 21:05:00 UTC from IEEE Xplore. Restrictions apply.

1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3110720, IEEE Sensors
Journal

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX

factor 𝜆. Also, the expression in (14) may be interpreted as the

derivative of 𝐿𝑛 w.r.t. the forgetting factors 1, . . . , 𝑛−2.

Therefore, 𝛥(𝐿𝑛, 𝜆𝑛−2) is an online derivative-like function for

Ln w.r.t. 𝑛−2 which contains pre-computed values; if the value

of 𝜆𝑛 which was calculated using (13) is greater than 1 (or less

than 0), it is truncated to 1 (or 0) to ensure that 𝜆𝑛 ∈ [0,1].
Finally, the following recursions is required in order to

sequentially compute 𝛥(𝐿𝑛, 𝜆𝑛−2):

Δ(𝐿𝑛 , 𝜆𝑛−2) = 2(�̂�𝑛−1 − 𝑌𝑛) (
�̇�𝑛−1−�̇�𝑛−1�̂�𝑛−1

𝑤𝑛−1
) (15)

�̇�𝑛 = 𝜆𝑛−1�̇�𝑛−1 +𝑚𝑛−1 (16)

�̇�𝑛 = 𝜆𝑛−1�̇�𝑛−1 +𝑤𝑛−1 (17)

where �̇�1 = 0, and �̇�1 = 0. Note that �̇�𝑛−1 and �̇�𝑛−1 are

defined as the derivative of 𝑚𝑛−1 and 𝑤𝑛−1 , respectively, and

w.r.t. 𝜆𝑛−2, which are similar to Δ(𝐿𝑛 , 𝜆𝑛−2). However, they are

denoted by overhead dot rather than Δ(𝑚𝑛−1, 𝜆𝑛−2)and

Δ(𝑤𝑛−1, 𝜆𝑛−2) for notational simplicity.

TABLE II
SUMMARY OF SYMBOLS

Symbol Description

𝑗 ∈ 𝕁 frequency channel offset in IEEE 802.15.4 (TSCH)

𝑖 ∈ 𝕀 frequency channel offset of external interferers (Wi-Fi/BLE)

𝑆𝐹𝑙𝑒𝑛𝑔𝑡ℎ slot-frame length

𝑃𝑖𝑗 interference probability between the 𝑖 and j channels

𝛾𝑖𝑗
binary random variable of occurrence or absence of interference

between the 𝑖 and 𝑗 channels

ℙ probability mass function of 𝛾

𝛹𝑗 probabilistic regimes for the interference on the j channel

n time index

𝐹𝜓𝑗 probability distribution of the regime 𝜓𝑗

𝜇𝜓𝑗 finite average value of 𝐹𝜓𝑗

𝑇𝜓𝑗 random duration of establishing the regime 𝜓𝑗

𝛿𝜓𝑗(𝑛)
2 to represent the variance of the regime 𝜓𝑗

𝑍𝑗(𝑛) stochastic process of the switching nature

𝑄 regimes transitions matrix

𝜆 adaptive forgetting factor (AFF)

{𝑌𝑛}𝑛=1:𝑁 history of rewards gained from a channel up to time 𝑁

�̂�𝑁 sample mean of the sequence {𝑌𝑛}𝑛=1:𝑁

𝑤𝑁 normalizing constant

𝐿𝑛 one-step-ahead squared prediction error

휂 step size

Δ derivative function for Ln

𝐵𝑒𝑡𝑎() conjugate prior to the Bernoulli distribution

n the first Beta distribution parameter at time n

n the second Beta distribution parameter at time n

B. Updating PDR estimates for unselected channels

Each IoT node in our proposed setting will keep a PDR

estimate for each TSCH channel. However, a given node can

only observe one channel at a time which means that the

estimations and intermediate quantities of an unobserved

channel will retain their previous values (if channel 𝑗 is not

observed at time 𝑛). Not being able to update estimators gives

rise to more challenges in dynamic cases. Although the

estimator tracks the expected reward thoroughly at any given

instant, the tracking precision may decrease quickly once it

stops taking new observations, making it harder to achieve a

balance between exploration and exploitation. We can make

changes to the procedure that was presented in Section VI.A to

keep updating PDR estimates even for unselected channels by

discounting 𝑚𝑛 and 𝑤𝑛. In particular, we introduce new

quantities �̃�𝑛 and �̃�𝑛 which are computed as:

�̃�𝑛 = (𝜆𝑛)
𝑛−𝑛𝑙𝑎𝑠𝑡

|𝐽| 𝑚𝑛 (18)

�̃�𝑛 = (𝜆𝑛)
𝑛−𝑛𝑙𝑎𝑠𝑡

|𝐽| 𝑤𝑛 (19)

where 𝑛𝑙𝑎𝑠𝑡 denotes the last time that the channel was selected.

Note that if a channel is actually chosen by an IoT node, the two

sets of quantities are identical; i.e., �̃�𝑛 = 𝑚𝑛 and �̃�𝑛 = 𝑤𝑛. On

the contrary, when a channel is not selected, 𝑚𝑛 and 𝑤𝑛 are

discounted by the forgetting factor that was obtained when it

was selected the last time (bear in mind that) the forgetting

factor n of an unselected arm remains the same as 𝜆𝑛𝑙𝑎𝑠𝑡.

C. Adaptive channel selection scheme

Now that we have seen how an IoT node can estimate and

track the mean PDR associated with each channel, we can

describe the channel selection process based on the AFF-OTS

algorithm in [22]. AFF-OTS is itself based on standard

Thompson Sampling (TS) [26] procedure in MAB theory. The

idea in TS is to form and update Bayesian beliefs on the

expected reward of each arm. In particular, an initial belief (a

so-called "conjugate prior") is first assigned to the expected

reward of each channel, and then the posterior distribution of

the expected reward is incrementally updated through

successive channel selections. Now, a decision rule is

constructed based on this posterior distribution: At each round,

a random sample is drawn from the posterior distribution of

each channel, and the channel with the highest sample value is

selected. Now, in our Bernoulli bandit problem, we have to

select the Beta distribution, 𝐵𝑒𝑡𝑎(𝛼0, 𝛽0), as the standard

conjugate prior to the Bernoulli distribution. The posterior

distribution is then 𝐵𝑒𝑡𝑎(𝛼𝑛, 𝛽𝑛) at time n, and the parameters

n and n can be updated recursively as follows:

𝛼𝑛 = 𝛼0 + �̃�𝑛 (20)

𝛽𝑛 = 𝛽0 + �̃�𝑛 − �̃�𝑛 (21)

In other words, by using the discounted quantities �̃�𝑛 and

�̃�𝑛, exploration of unselected channels are boosted

(reinforced). More specifically, the posterior distribution is

flattened for an unselected channel, and the longer the channel

is unselected, the further its posterior distribution is flattened.

The pseudo-code for the complete algorithm is given in

Algorithm 1 (which is referred to as DMABB-CH). Also,

important notations are collected in Table II for easier

reference. In the beginning, a very short initialization period is

applied to make initial estimations. Normally, the initialization

duration is 𝑂(|𝐽|), i.e., selecting each channel only once. In line

8, the drawn sample value 𝑥(𝑗) for channel 𝑗 is replaced by its

posterior mean 휁 provided that the latter score is greater. This

means that for each channel the score on which a decision is

made will never be smaller than the posterior mean. This is

because the AFF-OTS algorithm is based on a somewhat

modified version of the conventional TS procedure, which is

known as Optimistic Thompson Sampling (OTS) [44]. OTS

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 06,2021 at 21:05:00 UTC from IEEE Xplore. Restrictions apply.

1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3110720, IEEE Sensors
Journal

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX

leads to added improvement regarding exploration of highly

uncertain channels compared to TS and the reason as it

increases the probability of attaining a high score for channels

with greater posterior variance.

 Now, we discuss how DMABB-CH is actually executed in

the network. As with most tree-based data collection

applications, we also consider “receiver-based” channel

selection [21]. Hence, every receiver node indexed by 𝑘 (the

parent in link �́� → 𝑘) executes the algorithm independently for

every link it has with its immediate child nodes. In each

scheduled time-slot 𝑛 ∈ 𝒯𝑘, node 𝑘 tunes on its previously

channel 𝑗𝑛 ∈ 𝒞𝑘
𝒯 to receive data from �́�. In case of a successful

reception, the Bernoulli reward 𝑌𝑛(𝑗𝑛) is set to 1 and 0

otherwise. Also, node 𝑘 selects the channel 𝑗𝑛+1 for the

upcoming transmission opportunity and notifies the

corresponding sender �́� by piggybacking the chosen channel

index on the feedback message for the recent transmission; i.e.,

either as part of the Ack for a successfully received message or

along with the Nack for an expected (yet missed) message. This

piggybacking causes negligible overhead.

Algorithm 1 Pseudo-code of DMABB-CH algorithm running on a receiver node k

 𝑘 for each communication link �́� → 𝑘, ∀�́� ∈ 𝑐ℎ𝑖𝑙𝑑(𝑘)

input: Allocated time-slots 𝒯�́�→𝑘 and associated channel offsets 𝒞�́�→𝑘

𝒯

begin

// INITIA1LIZATION

Set initial shape parameters for Beta distribution: 𝛼0(𝑗), 𝛽0(𝑗) for ∀𝑗 ∈ 𝕁;
Set (0, 1);

for 𝐽=|𝕁| slot-frames do

 Select some fixed offset from 𝒞�́�→𝑘
𝒯 and run default TSCH to receive over

 all physical channels 𝑗 𝕁 according to the standard hopping sequence;

end for

// MAIN

00: for n=ASN, . . ., N do // from current absolute sequence number onward…

01: if n (mod SF_length) 𝒯�́�→𝑘 then // link �́� → 𝑘 is scheduled in time-slot n

02: Tune to receive over channel 𝑗𝑛;

03: Determine reward 𝑌𝑛(𝑗𝑛) = {
0, 𝑛𝑜 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 �́�

1, 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 �́�
;

04: for all 𝑗 𝕁 do
05: Update 𝛼𝑛(𝑗) and 𝛽𝑛(𝑗) according to (20) and (21);

06: Draw a sample x(j) from 𝐵𝑒𝑡𝑎(𝛼𝑛(𝑗), 𝛽𝑛(𝑗));

07: if 𝑥(𝑗) < 휁 ≝
𝛼𝑛(𝑗)

𝛼𝑛(𝑗)+𝛽𝑛(𝑗)
 then

08:
09:

 Replace x(j) with 휁;

 end if

10: end for

11: Select channel jn+1=arg max
𝑗′ 𝕁(𝒞𝑘)

𝑥(𝑗′);

12: Send feedback (Ack/Nack) message to node �́� embedding jn+1;
13: end if

14: end for

15: end

D. Discussion on computational complexity

 In this section, we discuss how much work needs to be

performed by the algorithm in each iteration. In each iteration

of the MAIN loop, the receiving node 𝑘 initially updates the

Beta distribution parameters for all possible channels (typically

16 channels in IEEE 802.15.4) based on its recent reception

experience on the chosen channel, i.e., 𝑌𝑛(𝑗𝑛). In order to

update the parameters 𝛼𝑛(𝑗) and 𝛽𝑛(𝑗), we utilize the simple

formulae in (20) and (21). These formulae entail primitive

addition/subtraction operations over the new values for the

parameters �̃�𝑛 and �̃�𝑛. Also, according to (18) and (19), �̃�𝑛

and �̃�𝑛 are in turn computed from the new values of 𝑚𝑛, 𝑤𝑛,

and 𝜆𝑛. However, these parameters are also updated using

simple recursive/incremental equations from their previous

values using a few primitive addition/subtraction/multiplication

operations. Then, to determine the channel for the next

transmission, node 𝑘 samples a value 𝑥(𝑗) from the Beta

distribution for each channel 𝑗. This is just a basic random

number generation. Next, a comparison is made between 𝑥(𝑗)
and 휁 to determine the final value for 𝑥(𝑗), and we exit the loop

on the channel set. Following that, channel selection is made by

finding argmax
𝑗
𝑥(𝑗), to identify the channel with the largest

𝑥(𝑗). In sum, all the operations performed in each iteration of

the DMABB-CH algorithm are as follows:

- Random number generation (once for each channel, 16

total)

- Simple comparison (once for each channel, 16 total)

- Maximization (over the channel set with 16 elements)

- Evaluation of some very simple recursive update equations

(once for each channel, 16 total)
 Each parent node has to execute this algorithm

independently for each of its children. However, in each time-

slot, only one instance of DMABB-CH is running on a given

node, which has very low processing overhead. Also, assuming

a tree topology with even a moderate branching factor, the

memory footprint would also be reasonably small.

VI. SIMULATION RESULTS

A. Simulation setup

1) Simulation Parameters

We set up a network with a tree topology deployed in a 200

× 200 m2 area. Each node is positioned in a random place in the

network and has a coverage radius of 50m and a neighborhood

cardinality varying in the range [2, 20]. We evaluate the

performance in several scenarios, varying the total number of

nodes from 20 to 40. For evaluating the energy consumption,

we use the measurements on the GINA mote presented in [45].

NS-3 [38] is used as simulator and the simulation parameters

are specified as in Table III. We simulate Wi-Fi interference as

the main culprit for external interference.
TABLE III

PARAMETERS AND VALUES USED IN SIMULATION

Parameter Value

Number of nodes 30 (default, varies in some experiments)
IoT device TX power 10 mW

Simulation duration 20,000 slots

Packet size 100 bytes
Network offered load (default) 500 Kb/s

Number of channel (|J|) 16

Time-slot duration (𝜏𝑠𝑙𝑜𝑡) 10 msec

Slot-frame length (𝑆𝐹𝑙𝑒𝑛𝑔𝑡ℎ) 8

a) Stationary interference parameters

Under stationary interference, we use a single collision

probability matrix to simulate the interference between each of

the 802.11 and 802.15.4 channels, as can be seen in Table IV.

Each row represents channel offsets in the 802.15.4 standard,

with 16 offsets specified from 11 to 26, and each column

denotes the 802.11g offsets. The number in each cell indicates

the probability of two channels interfering.

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 06,2021 at 21:05:00 UTC from IEEE Xplore. Restrictions apply.

1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3110720, IEEE Sensors
Journal

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX

b) Non-Stationary interference parameters

In the non-stationary mode, the statistical pattern of presence

or absence of interference may vary over time. We simulate this

statistical pattern using four interference probability matrices

(similar to the sample matrix given in Table IV). Switching

between these probabilistic regimes is generally governed by a

Markovian process. More details are given in the sequel.

TABLE IV
INTERFERENCE PROBABILITY MATRIX IN STATIONARY MODE

802.11 channels

802.15.4 channels

1 2 3 4 5 6 7 8 9 10 11 12 13

11 0.44 0.03 0 0 0 0 0 0 0 0 0 0 0

12 0.6 0.35 0.04 0 0 0 0 0 0 0 0 0 0

13 0.33 0.7 0.53 0.04 0 0.02 0 0 0 0 0 0 0

14 0.08 0.42 0.74 0.35 0.05 0.08 0.02 0.01 0 0 0 0 0

15 0 0.1 0.49 0.82 0.24 0.12 0.04 0.03 0 0 0 0 0

16 0 0 0.06 0.44 0.78 0.28 0.11 0.07 0.01 0 0 0 0

17 0 0 0.01 0.13 0.33 0.69 0.34 0.1 0.03 0 0 0 0

18 0 0 0 0.07 0.11 0.28 0.74 0.42 0.15 0.02 0 0 0

19 0 0 0 0.01 0.06 0.15 0.28 0.85 0.48 0.16 0 0 0

20 0 0 0 0 0.03 0.07 0.07 0.65 0.78 0.51 0.08 0 0

21 0 0 0 0 0.01 0.03 0.02 0.04 0.66 0.79 0.37 0.06 0

22 0 0 0 0 0 0.01 0.02 0 0.07 0.54 0.88 0.41 0.03

23 0 0 0 0 0 0 0 0 0 0.09 0.4 0.69 0.48

24 0 0 0 0 0 0 0 0 0 0 0.03 0.47 0.83

25 0 0 0 0 0 0 0 0 0 0 0 0.06 0.48

26 0 0 0 0 0 0 0 0 0 0 0 0 0.09

2) Compared methods

In order to evaluate the performance of the proposed

solution, comparison is made against two baseline schemes:

 Default channel hopping in TSCH [7]: There is no

intelligence in the standard channel hopping of TSCH which

uses the default non-adaptive periodic hopping formula (Eq.

(1)). As such, a node may blindly use desirable/undesirable

channels alike. In this scheme, it is also enough to use a

single-offset scheduler.

 MAB-based channel hopping [21]: In this method, each

node, using a Q-learning-based MAB algorithm, estimates

the quality of the available physical channels, and at each

round, selects the channel with highest estimated PDR. The

method in [21] also uses a multi-offset schedule. It,

however, follows a static MAB formulation which can only

combat stationary 2.4 GHz interference.

3) Scenarios

We consider three main scenarios to simulate Wi-Fi

interference: stationary interference, slow Markov non-

stationary scenario, and fast Markov non-stationary scenario.

We also consider a fourth practical interference pattern to

account for stochastic interference processes with memory.

However, due to space considerations, we conduct limited

experiments with this fourth model only in terms of average

PDR (c.f., Section VI.B.2). In both slow and fast Markov

scenarios, the probabilistic regime of the interference can

switch between four tables, i.e. Table IV and three other similar

tables (not shown here to save space). In fact, each of these four

probability matrices of interference is considered as a state of a

Markov chain, and transitions from one regime to another

happens according to the transition kernel given in Table V in

the slow Markov case and according to Table VI in the fast

Markov scenario. Unlike the fast case, a slow Markov transition

matrix has a near-diagonal structure so as to elongate the

expected duration time between jump changes that the system

parameters remain constant. As for stochastic interference with

memory, the interferer activity is modeled as a 𝑘th-order

Markov chain, resulting in interference with memory up to 𝑘

time-slots. In the experiments, we only consider three memory

levels (corresponding to first, second, and third-order Markov

chains). In fact, a first-order Markov model has a 10 msec

history, a second-order process has 20 msec, and a third order

Markov model accounts for a 30 msec history. Knowing the

transition probabilities for each, artificial traces are generated

from all the three models and the algorithms are evaluated

against these traces. The results have been averaged over 50

independent chain realizations.

TABLE V
PROBABILITY TRANSITION MATRIX FOR SLOW MARKOV SCENARIO

 State 1 State 2 State 3 State 4

State 1 0.85 0.05 0.05 0.05

State 2 0.05 0.85 0.05 0.05

State 3 0.05 0.05 0.85 0.05

State 4 0.05 0.05 0.05 0.85

TABLE VI
PROBABILITY TRANSITION MATRIX FOR FAST MARKOV SCENARIO

 State 1 State 2 State 3 State 4

State 1 0.1 0.4 0.35 0.15

State 2 0.25 0.05 0.3 0.4

State 3 0.25 0.3 0.05 0.4

State 4 0.4 0.25 0.3 0.05

B. Simulation Results

In this section, we discuss the simulation results on the

convergence properties of our algorithm, PDR, energy

efficiency as well as the average end-to-end delay.

1) Convergence

In order to show the convergence behavior of our DMABB-

CH algorithm, we only focus on the most challenging case

which is the fast switching environment. A similar behavior can

be seen in the other two cases but with a less noisy waveform

and relatively faster convergence speed. The plot in Fig. 3

illustrates the normalized regret of the proposed learning policy

in the fast Markov scenario as a function of time. As expected,

the regret approaches zero as the time horizon grows large.

Fig. 3. Average regret over time

2) Packet Delivery Ratio

PDR is the ratio of the number of packets correctly received

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 06,2021 at 21:05:00 UTC from IEEE Xplore. Restrictions apply.

1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3110720, IEEE Sensors
Journal

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX

at the destination to the number of packets sent out by a source.

Under the settings shown in Table III, Fig. 4 plots the average

PDR for the three methods under all the three scenarios. As a

general observation, the dynamics of the environment has a

deteriorating impact on PDR performance. This impact is worst

for the pure channel hopping of default TSCH as it has no

intelligence for adaptation. Under a stationary pattern of

interference, the MAB-based hopping in [21] has almost a

similar limiting PDR as ours, but performs progressively worse

under higher interference dynamics. In Fig. 5, we plot the

average PDR as the network size increases in the number of

nodes. For this experiment, all the simulation parameters are as

shown in Table III except for the number of nodes which varies

from 20 to 40. In general, if the number of scheduling resource

blocks (cells) remains the same, PDR decreases in more

crowded topologies. Fig. 5 shows this decreasing trend for the

algorithms in all three configurations. Next, in Fig. 6, we plot

the average PDR versus the variations in the offered load. In a

topology of 30 nodes, we simulate both lightly and heavily-

loaded scenarios by varying the load introduced by the active

connections. Similarly, to the case of increasing network size,

the PDR performance degrades as the load intensifies.

The results are given in Table VII. In general, in higher order

models, a node running a MAB-based algorithm remembers

more “history”, and since additional history gives the node

more predictive power, the performance of the learning

algorithm has improved accordingly. In contrast, the PDR

performance of the standard TSCH has no meaningful

relationship with the memory level of the stochastic

interference process.

Fig. 4. Average PDR over time

Fig. 5. PDR vs. Network size.

Fig. 6. PDR vs. Offered load.

TABLE VII
PDR UNDER INTERFERENCE PROCESS WITH MEMORY

MEMORY

LEVEL
PROPOSED

(DMABB-CH)
MAB TSCH

1 0.69 0.64 0.28

2 0.75 0.71 0.31

3 0.82 0.76 0.29

3) Energy efficiency

In this experiment, we focus on energy efficiency defined as

the energy required per successfully delivered packet (or bit).

An intelligent and adaptive channel hopping strategy would be

able to reduce the total number of unnecessary packet

transmissions and receptions in the global network. The results

in Fig. 7 were obtained for the duration of simulation in which

packets flow from downstream nodes all the way up to the

gateway. The plot sufficiently demonstrates that a lower

number of packets are sent by each sensor node when the

proposed approach is used when compared to the two baseline

approaches. Under all network sizes, the proposed approach

improves the overall energy efficiency of the network by

reducing the number of retransmission attempts.

Fig. 7. Energy Efficiency vs. Network size.

4) Average end-to-end delay

In order to measure the average end-to-end delay, we focus

on the worst case scenario by considering a given node and

assuming that the packet is generated at the beginning of the

frame. Let 𝒯�́�→𝑘 = {𝑡1
�̀�→𝑘, . . , 𝑡𝕟�̀�→𝑘

�̀�→𝑘 } be the times-slots allocated

by the scheduling subsystem to the communication link �̀� → 𝑘.

Also, we denote by 𝕟𝑇𝑋
�̀�→𝑘 the number (re)transmissions actually

occurred until the packet generated by �̀� in time-slot 0 is

delivered to the next hop 𝑘. Given that the packet has to be

queued until the next outgoing cell, the ℎ𝑜𝑝_𝑑𝑒𝑙𝑎𝑦�̀�→𝑘 can be

measured by the following formula:

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 06,2021 at 21:05:00 UTC from IEEE Xplore. Restrictions apply.

1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3110720, IEEE Sensors
Journal

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX

ℎ𝑜𝑝_𝑑𝑒𝑙𝑎𝑦�̀�→𝑘 = 𝜏𝑠𝑙𝑜𝑡 ×

{

((⌈

𝕟𝑇𝑋
�̀�→𝑘

𝕟�̀�→𝑘
⌉ − 1) × 𝑆𝐹𝑙𝑒𝑛𝑔𝑡ℎ + 𝑡𝕟

�̀�→𝑘

�̀�→𝑘 + 1) , 𝕟�̀�→𝑘|𝕟𝑇𝑋,�̀�→𝑘

((⌈
𝕟𝑇𝑋
�̀�→𝑘

𝕟�̀�→𝑘
⌉ − 1) × 𝑆𝐹𝑙𝑒𝑛𝑔𝑡ℎ + 𝑡

𝕟𝑇𝑋
�̀�→𝑘 (𝑚𝑜𝑑 𝕟�̀�→𝑘)

�̀�→𝑘 + 1) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.

Obviously, if the successful transmission occurs with a

greater number of attempts, the delay increases as well. In

measuring the average end-to-end delay, we use ℎ𝑜𝑝_𝑑𝑒𝑙𝑎𝑦�̀�→𝑘

to compute the delay experienced over all the communication

links along the path from the packet source to the final

destination. Fig. 8 plots the delay associated with all the

schemes versus the network size. A slight increasing trend is

witnessed in general as the number of nodes increases. Again,

in all cases, the proposed approach results in fewer number of

retransmissions, thereby reducing the end-to-end latency.

Fig. 8. End-to-end delay vs. Network size.

VII. EXPERIMENTAL SETUP

In this section, we briefly report on a small experiment based

on a physical setup to measure the memory footprint of

Algorithm 1 in an embedded IoT device. Additionally, we

compare the measurements obtained from our implementation

with the results of simulation under similar settings.

TABLE VIII
HARDWARE COMPONENTS USED IN THE EXPERIMENT

Hardware Component Manufacturer # Specifications

CC2650STK

SensorTag
Texas Instrument 2 2.4 GHz RF transceiver

Debugger DevPack Texas Instrument 2 -

JN5168 dongle

NXP

Semiconductors
2

2.4 GHz RF transceiver

32-bit RISC processor,
programmable clock speed

32 kB RAM and

4 kB EEPROM memory

256 KB memory flashed with

Contiki OS v. 3.0

A. Implementation setup and memory footprint

The hardware components used in our setup are listed in

Table VIII. Our test consists of two miniature networks: one 2.4

GHz Bluetooth-based network which acts as external interferer

and one IEEE 802.15.4 TSCH-based sender-receiver pair (See

Fig. 9 for a block diagram illustration). The Bluetooth-based

network consists of two CC2650STK SensorTags [49] (See Fig.

10(a)). Each tag is essentially a wireless Micro Controller Unit

(MCU) which is connected to the USB port on a PC via a

debugger development package (Debugger DevPack) (See Fig.

10(b)) used to program the SensorTag node [50]. The Debugger

DevPack is comprised of a small XDS110 JTAG debugger with

a USB connection to ensure MCU does not turn off in the midst

of the testing. The 2.4 GHz transceiver on CC2650STK allows

for Bluetooth or 6LowPAN communications. External

interference is mimicked by these two SensorTags where one

acts as master (receiver) and the other as slave (sender). The

slave node generates one packet at a random point during an

interval ranging from 10 msec to 80 msec to emulate high and

low interference. The use of frequency band by the SensorTags

is left to the default configuration in the Bluetooth frequency

hopping module. As for our TSCH setup, we use a pair of USB-

operated JN5168 dongles manufactured by NXP

semiconductors [51] (See Fig. 11). The two dongles are flashed

with Contiki OS v. 3.0 [52] which supports TSCH

implementation. The DMABB-CH algorithm has been

developed as a Contiki application running on the receiving

dongles. After initial association, the application stands idle and

only continuously listens on the UART interface. The process

on the sending dongle generates one TSCH packet per timeslot.

Upon reception of the very first sequence of packets, the

process on the receiving dongle tunes to all physical channels

according to the standard hopping sequence, and then it starts

iterating over the MAIN loop in Algorithm 1 with a total of 𝑁 =
20000 iterations.

The binary file size for Algorithm 1 developed for the

receiving dongle was 10 KB, which can be read off from the

SRAM usage in the .map file generated by gcc. Also, a custom

routine has been developed to approximately profile the RAM

usage during the runtime. At the end of the iterations, a total of

2856 bytes have been used by the program. Hence, it is possible

to execute DMABB-CH on the JN5168 dongles directly.

However, the maximum number of child nodes that can be

supported can be within the range of 6 to 10.

PC/

Laptop

Debugger

DevPack

Debugger

DevPack

Master

CS2650 STK

Sensor Tag

Slave

CS2650 STK

Sensor Tag

TSCH

Receiver

(JN5168)

TSCH

Sender

(JN5168)

USB

USB
USB

Bluetooth Network TSCH Network

Fig. 9. Physical Setup to Measure Memory Footprint.

(a) (b)

Fig. 10. (a) C2650STK SensorTag. (b) Debugger DevPack.

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 06,2021 at 21:05:00 UTC from IEEE Xplore. Restrictions apply.

1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3110720, IEEE Sensors
Journal

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX

Fig. 11. NXP JN5168 USB wireless dongle.

B. Performance measurements

In this section, we compare our hardware measurements

against the simulation results. Obviously, our miniature single-

hop setting cannot be used for end-to-end measurements.

Alternatively, we turn our attention to more elemental metrics:

link-layer Packet Acknowledgement Ratio (PAR) and single-

hop delay. PAR is the ratio of the number of packets

acknowledged by a given node’s neighbor to the number of

packets sent to that neighbor. This is an informative metric as it

can be used as the main proxy for PDR. A low PAR indicates

that several retransmissions are required to achieve high end-

to-end PDR. As for single-hop delay, we argue that it is an even

better metric to isolate the impact of the channel hopping

strategy compared to end-to-end delay. This is because the

latter is also very much affected by the scheduling algorithm.

In Section VI, we reported on NS-3 simulation results based

on Wi-Fi interference. Here, to match with our physical test-

bed, we need to simulate the impact of a Bluetooth interferer.

The official release of NS-3 still lacks BLE support, but we used

the extension in [53] as the BLE stack (BLE 4.1) for our

simulation. In both the simulation and the test setup, we model

the Bluetooth interference activity as a two-state ON/OFF

Markov chain (See Fig. 12). In the ON state, the slave node in

the Bluetooth network generates data packets with mean

Poisson rate 𝜒 pkts/sec, and transmits to the master node with

average TX power of 10 mW. In the plots, we report results for

𝜒 ∈ {5,10,20} pkts/sec. In the OFF state, the Bluetooth network

is dormant. This simple ON/OFF model can capture non-

stationary and bursty interference behavior. The 2.4 GHz

channel occupancy is left to the default Bluetooth frequency

hopping module. In simulation, we place the TSCH and the

Bluetooth sender-receiver pairs in close proximity to mimic the

test setup. The rest of the parameters for the TSCH network are

chosen according to Table III for both the simulation and the

physical setup. Fig. 13 and Fig. 14 show the results obtained for

average PAR and average single-hop delay, respectively. The

plots demonstrate the impact of the aggressiveness of the

Bluetooth interference activity on the performance of our

DMABB-CH algorithm as well as the two baseline schemes,

and are drawn with 95% confidence level in stacked bar graph.

The superiority of DMABB-CH in all cases of Bluetooth

interference is consistent with the simulation results given for

Wi-Fi interference in Section VI. A slight difference is noted

between the values obtained from simulating Bluetooth

interference and the results obtained from hardware

measurements. In fact, the simulation results are more

optimistic across all three schemes. This is partially caused by

the blacklisting method that is used by the Bluetooth hopping

module. It should be noted that blacklisting methods may differ

across Bluetooth stack implementations. Moreover, although

the empirical tests have been conducted in an isolated lab to

ensure no outsider interference (except for the coexisting

Bluetooth transmitter), generating the same context via

simulation is no mean feat. It is very much dependent on the

tuning of the physical layer parameters and the selected

propagation models.

𝑃11 𝑃12 𝑃22 𝑃21

0.98 0.02 0.97 0.03

Fig. 12. The Bluetooth interferer ON/OFF model.

Fig. 13. Comparison of average PAR.

Fig. 14. Comparison of average single-hop delay.

VIII. CONCLUSION

We addressed the problem of channel hopping in IEEE

802.15.4-2015 TSCH networks. Assuming that the statistics of

the external interference is not known beforehand, we proposed

a lightweight learning-based algorithm that can be used

independently by the receiving end of each link to select near-

optimal physical channels over time. The proposed algorithm

has low computational complexity. Also, by implementing a

physical test setup, it was shown that its memory footprint is

within the confines of embedded devices used in IoT scenarios.

Through simulations, the proposed scheme has been compared

against default TSCH and a state-of-the-art multi-armed bandit-

based scheme. As evidenced by the results, accounting for the

non-stationarity of the interference can improve the network

performance in terms of packet delivery ratio, thereby resulting

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 06,2021 at 21:05:00 UTC from IEEE Xplore. Restrictions apply.

1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3110720, IEEE Sensors
Journal

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX

in higher energy efficiency and lower end-to-end delay.

REFERENCES

[1] L. Chettri and R. Bera, “A Comprehensive Survey on Internet of Things

(IoT) Toward 5G Wireless Systems,” IEEE Internet of Things Journal,
vol. 7, no. 1, pp. 16-32, 2020.

[2] L. E. Lima, B. Y. L. Kimura and V. Rosset, "Experimental Environments

for the Internet of Things: A Review," IEEE Sensors Journal, vol. 19, no.
9, pp. 3203-3211, 2019.

[3] M. Mohamadi, B. Djamaa and Mustapha Reda Senouci, “Industrial

internet of things over IEEE 802.15.4 TSCH networks: design and
challenges,” International Journal of Internet Technology and Secured

Transactions, vol. 10, no. 1/2, pp. 61-80, 2020.

[4] W. Xu, J. Y. Kim, W. Huang, S. S. Kanhere, S. K. Jha and W. Hu,
"Measurement, Characterization, and Modeling of LoRa Technology in

Multifloor Buildings," IEEE Internet of Things Journal, vol. 7, no. 1, pp.

298-310, 2020.

[5] N. Choudhury, R. Matam, M. Mukherjee and J. Lloret, “A Performance-

to-Cost Analysis of IEEE 802.15.4 MAC with 802.15.4e MAC Modes,”

IEEE Access, vol. 8, pp. 41936-41950, 2020.

[6] S. Touloum, L. B. Medjkoune, D. Aissani and C. Ouanteur, “Performance

analysis of the IEEE 802.15.4e TSCH-CA algorithm under a non-ideal

channel,” International Journal of Wireless and Mobile Computing, vol.
18, no. 1, pp. 1-15, 2020.

[7] C. M. García Algora, V. Alfonso Reguera, E. M. García Fernández and

K. Steenhaut, "Parallel Rendezvous-Based Association for IEEE 802.15.4
TSCH Networks," IEEE Sensors Journal, vol. 18, no. 21, pp. 9005-9020,

1 Nov.1, 2018.

[8] R. Tavakoli, M. Nabi, T. Basten and K. Goossens “Topology

Management and TSCH Scheduling for Low-Latency Convergecast in In-

Vehicle WSNs,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 2, pp. 1082-1093, 2019.

[9] G. Cena, C. G. Demartini, M. Ghazi Vakili, S. Scanzio, A. Valenzano and

C. Zuninoa, “Evaluating and Modeling IEEE 802.15.4 TSCH Resilience
against Wi-Fi Interference in New-Generation Highly-Dependable

Wireless Sensor Networks,” Ad Hoc Networks, vol. 106, DOI:

10.1016/j.adhoc.2020.102199, 2020.

[10] J. Umer, H. Di, L. Peilin, and Y. Yueming, “Frequency hopping in IEEE

802.15.4 to mitigate IEEE 802.11 interference and fading,” IEEE Journal

of Systems Engineering and Electronics, Vol. 29, No. 3, pp.445 – 455,
2018.

[11] V. Kotsiou, G. Z. Papadopoulos, D. Zorbas, P. Chatzimisios and a. F.

Theoleyre, "Blacklisting-Based Channel Hopping Approaches in Low-
Power and Lossy Networks," IEEE Communications Magazine, vol. 57,

no. 2, pp. 48-53, 2019.

[12] “IEEE Standard for Low-Rate Wireless Networks,” IEEE Std 802.15.4-
2015 (Revision of IEEE Std 802.15.4-2011), April 2016.

[13] V. Kotsiou, G. Z. Papadopoulos, P. Chatzimisios and F. Tholeyre, “Is

local blacklisting relevant in slow channel hopping low-power wireless
networks?,” in proc. 2017 IEEE International Conference on

Communications (ICC), Paris, pp. 1-6, 2017.

[14] L. Krueger, L. Steenbrink and A. Timm-Giel, “Avoiding Local

Interference in IEEE 802.15.4 TSCH Networks using a Scheduling

Function with Distributed Blacklists,” Mobile Communication -

Technologies and Applications; 24. ITG-Symposium, Osnabrueck,
Germany, pp. 1-6, 2019.

[15] P. Du and G. Roussos, “Adaptive time-slotted channel hopping for

wireless sensor networks” in proceedings of 4th Computer Science and
Electronic Engineering Conference (CEEC), pp. 29–34, 2012.

[16] R. Tavakoli, M. Nabi, T. Basten and K. Goossens, "Enhanced Time-

Slotted Channel Hopping in WSNs Using Non-intrusive Channel-Quality
Estimation," in proceedings of the IEEE 12th International Conference

on Mobile Ad Hoc and Sensor Systems, Dallas, TX, pp. 217-225, 2015.

[17] D. Zorbas, G. Z. Papadopoulos and C. Douligeris, “Local or Global Radio
Channel Blacklisting for IEEE 802.15.4-TSCH Networks?,” in

proceedings of the IEEE International Conference on Communications

(ICC), Kansas City, MO, pp. 1-6. 2018.

[18] S. Yousefi, H. Narui, S. Dayal, S. Ermon and S. Valaee, "A Survey on

Behavior Recognition Using Wi-Fi Channel State Information," IEEE
Communications Magazine, vol. 55, no. 10, pp. 98-104, 2017.

[19] R. S. Sutton and A. G. Barto, “Reinforcement Learning,” Cambridge:

MIT Press/Bradford Books, 1998.

[20] P. Li, T. Vermeulen, H. Liy and S. Pollin, "An adaptive channel selection

scheme for reliable TSCH-based communication," in proceedings of the

International Symposium on Wireless Communication Systems (ISWCS),
Brussels, pp. 511-515, 2015.

[21] P. H. Gomes, T. Watteyne and B. Krishnamachari “MABO-TSCH:

Multihop and blacklist-based optimized time synchronized channel
hopping,” Transactions on Emerging Telecommunications Technologies,

vol. 29, no.7, e3223, 2018.

[22] X. Lu, N. Adams and N. Kantas, Aaa, “On adaptive estimation for
dynamic Bernoulli bandits,” Foundations of Data Science, vol. 1, no. 2,

pp.197–225, 2019.

[23] O. Besbes, Y. Gur and A. Zeevi, “Optimal exploration–exploitation in a
multi-armed bandit problem with non-stationary rewards,” Stochastic

Systems, vol. 9, no. 4, pp. 319–337, 2019.

[24] C. J. C. H. Watkins. “Learning from delayed rewards,” PhD thesis,
Cambridge University, 1989.

[25] P. Auer, N. Cesa-Bianchi and P. Fischer, “Finite-time analysis of the

multiarmed bandit problem,” Machine Learning, vol. 47, pp. 235-256,
2002.

[26] W. R. Thompson, “On the likelihood that one unknown probability

exceeds another in view of the evidence of two samples,” Biometrika, vol.
25, (1933), pp. 285-294, 1933.

[27] S. S. Haykin, “Adaptive Filter Theory,” 4th edition, Prentice-Hall, Upper
Saddle River, N.J., 2002.

[28] D. E. Koulouriotis and A. Xanthopoulos, “Reinforcement learning and

evolutionary algorithms for non-stationary multi-armed bandit
problems,” Applied Mathematics and Computation, vol. 196, no. 2, pp.

913-922, 2008.

[29] A. Garivier and E. Moulines, “On upper-confidence bound policies for
switching bandit problems,” Algorithmic Learning Theory, Germany,

Berlin:Springer-Verlag, vol. 6925, pp. 174-188, 2011.

[30] N. Gupta, O.-C. Granmo and A. Agrawala, “Thompson sampling for
dynamic multi-armed bandits,” in Proceedings of the 10th International

Conference on Machine Learning and Applications (ICMLA), pp. 484-

489, 2011.

[31] N. Taheri Javan, M. Sabaei and V. Hakami, “IEEE 802.15.4.e TSCH-

Based Scheduling for Throughput Optimization: A Combinatorial Multi-

Armed Bandit Approach,” IEEE Sensors Journal, vol. 20, no. 1, pp. 525-
537, 2020.

[32] S. Kharb and A. Singhrova, “A survey on network formation and

scheduling algorithms for time-slotted channel hopping in industrial
networks,” Journal of Network and Computer Applications, vol. 126, pp.

59-87, 2019.

[33] O. Besbes, Y. Gur, and A. Zeevi, “Stochastic multi-armed-bandit problem
with non-stationary rewards,” Advances in neural information processing

systems, (MIT Press, Cambridge, MA), vol. 1, pp. 199–207, 2014.

[34] F. A. Aoudia and J. Hoydis, "Model-Free Training of End-to-End

Communication Systems," IEEE Journal on Selected Areas in

Communications, vol. 37, no. 11, pp. 2503-2516, 2019.

[35] H. Dakdouk, E. Tarazona, R. Alami, R. Féraud, G. Z. Papadopoulos and
P. Maillé “Reinforcement Learning Techniques for Optimized Channel

Hopping in IEEE 802.15.4-TSCH Networks,” in proceedings of the 21st

ACM International Conference on Modeling, Analysis and Simulation of
Wireless and Mobile System (MSWIM’ 18), pp. 99-107, 2018.

[36] R. Tavakoli, M. Nabi, T. Basten and K. Goossens, “Dependable

interference-aware time-slotted channel hopping for wireless sensor
networks,” ACM Transactions on Sensor Networks, vol. 14, no. 1, pp. 1–

35, 2018.

[37] V. Kotsiou, G. Z. Papadopoulos, P. Chatzimisios and F. Theoleyre,
"Whitelisting Without Collisions for Centralized Scheduling in Wireless

Industrial Networks," IEEE Internet of Things Journal, vol. 6, no. 3, pp.

5713-5721, 2019.

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 06,2021 at 21:05:00 UTC from IEEE Xplore. Restrictions apply.

1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3110720, IEEE Sensors
Journal

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX

[38] Available online: https://github.com/EIT-ICT-RICH/ns-3-dev-TSCH

(accessed on 26 June 2020).

[39] M. Gürsu, M. Vilgelm, S. Zoppi and W. Kellerer, "Reliable co-existence

of 802.15.4e TSCH-based WSN and Wi-Fi in an aircraft cabin," in proc.

IEEE International Conference on Communications Workshops (ICC),
pp. 663-668, KL, Malaysia, 2016.

[40] Ch. Boucetta, B. Nour, H. Moungla and L. Lahlou, “An IoT scheduling

and interference mitigation scheme in TSCH using latin rectangles,” in
proc. of IEEE Global Communications Conference (GLOBECOM),

Waikoloa, HI, USA, 2019.

[41] L. Besson, R. Bonnefoi and Ch. Moy, “MALIN: an Implementation of
Multi-Armed Bandits Learning Schemes for Internet-of-things

Networks,” in proc. of IEEE Wireless Communications and Networking

Conference (IEEE WCNC), Marrakech, Morocco, Apr 2019.

[42] R. Bonnefoi, L. Besson, Ch. Moy, E. Kaufmann and J. Palicot, “Multi-

Armed Bandit Learning in IoT Networks: Learning helps even in non-

stationary settings,” in proc. of International Conference on Cognitive
Radio Oriented Wireless Networks (CrownCom), pp. 173-185, Poznan,

Poland, 2017.

[43] D. D. Guglielmo, S. Brienza and G. Anastasi, “A model-based beacon

scheduling algorithm for IEEE 802.15.4e TSCH networks,” in proc. of

17th IEEE International Symposium on A World of Wireless, Mobile and

Multimedia Networks (WoWMoM), pp. 1–9, 2016.

[44] S. S. Villar, J. Bowden, and J. Wason, “Multi-armed bandit models for

the optimal design of clinical trials: Benefits and challenges,” Statistical

Science, vol. 30, no. 2, pp. 199-215, 2015.

[45] B. C. May, N. Korda, A. Lee and D. S. Leslie, “Optimistic Bayesian

sampling in contextual-bandit problems,” The Journal of Machine
Learning Research, vol. 13, pp. 2069-2106, 2012.

[46] X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T. Chang, and K.S.J.

Pister, “A Realistic Energy Consumption Model for TSCH Networks,”
IEEE Sensors Journal, Vol. 14, NO. 2, pp. 482-489, (Feb 2014).

[47] S. Kim, H.-S. Kim, and C. Kim, “ALICE: autonomous link-based cell

scheduling for TSCH,” in ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN), 2019.

[48] S. Jeong, H.-S. Kim, J. Paek, and S. Bahk, “OST: On-Demand TSCH

Scheduling with traffic-awareness,” in Proc. IEEE INFOCOM, July 2020,
pp. 69–78.

[49] Texas Instruments, Multi-Standard CC2650 SensorTag Design Guide, 3

2015. Available at: http://www.ti.com/lit/ug/tidu862/tidu862.pdf.

[50] Texas Instruments, “CC2640/CC2650 Bluetooth low energy Software

Developers Guide (Rev. E).”

[51] NXP Semiconductors, Data Sheet: JN516x, IEEE802.15.4 Wireless
Microcontroller, 2013. Available at https://www.nxp.com/docs/en/data-

sheet/JN516X.pdf, version 1.3.

[52] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in 29th Annual

IEEE International Conference on Local Computer Networks, pp. 455–

462, Nov 2004.

[53] Available online: Stijn Geysen, https://gitlab.com/Stijng/ns3-ble-

module/-/tree/master/ble (accessed on 17 July 2021).

[54] M. O. Ojo, S. Giordano, D. Adami, and M. Pagano, “Throughput

maximizing and fair scheduling algorithms in industrial Internet of Things

networks,” IEEE Trans. Ind. Informat., vol. 15, no. 6, pp. 3400–3410, Jun.

2019.

[55] O. Tavallaie, J. Taheri and A. Y. Zomaya, "Design and Optimization of

Traffic-Aware TSCH Scheduling for Mobile 6TiSCH Networks," in

Proceedings of the International Conference on Internet-of-Things
Design and Implementation, 2021, pp. 243-246.

Nastooh Taheri Javan (S’12-M’14-

SM’20) received his Ph.D. in computer

engineering from Amirkabir University of

Technology (Tehran Polytechnic), Tehran,

Iran, in 2017. Dr. Taheri Javan is currently

a post-doc fellow in the Computer

Engineering department at Amirkabir

University of Technology (Tehran

Polytechnic). His research interests include

wireless networks, network coding and optimization.

Masoud Sabaei is an Associate Professor

with the Computer Engineering department

at Amirkabir University of Technology, in

Tehran, Iran. Dr. Sabaei received his Ph.D.

in computer engineering from Amirkabir

University of Technology, Tehran, Iran, in

2000. His research interests are wireless

networks and software-defined networks.

 Vesal Hakami received his Ph.D. in

computer networking from Amirkabir

University of Technology, Tehran, Iran, in

2015. In 2016, Dr. Hakami joined as an

Assistant Professor to the School of

Computer Engineering, Iran University of

Science and Technology, Tehran, Iran. His

research focuses on resource control and

optimization for computer networks.

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 06,2021 at 21:05:00 UTC from IEEE Xplore. Restrictions apply.

https://github.com/EIT-ICT-RICH/ns-3-dev-TSCH
http://www.ti.com/lit/ug/tidu862/tidu862.pdf
https://gitlab.com/Stijng/ns3-ble-module/-/tree/master/ble
https://gitlab.com/Stijng/ns3-ble-module/-/tree/master/ble

