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Abstract—In IEEE 802.15.4 standard for low-power low-
range wireless communications, only one channel is 
employed for transmission which can result in increased 
energy consumption, high network delay and poor packet 
delivery ratio (PDR). In the subsequent IEEE 802.15.4-2015 
standard, a Time-slotted Channel Hopping (TSCH) 
mechanism has been developed which allows for a periodic 
yet fixed frequency hopping pattern over 16 different 
channels. Unfortunately, however, most of these channels are 
susceptible to high-power coexisting Wi-Fi signal 
interference and to possibly some other ISM-band 
transmissions. This interference manifests itself in the form 
of the presence/absence of other devices with either or both 
static and dynamic channel selection policies. In order to isolate channels with undesirable conditions, blacklisting 
mechanisms are defined to adapt the channel hopping process. However, the existing solutions which form blacklists 
unrealistically assume that the statistical model of the external interference remains fixed, and do not vary over time. 
In this paper, we realistically assume that the impact of external interferes on 802.15.4 may generally follow a non-
stationary pattern, and accordingly formulate the adaptive channel hopping problem as a Dynamic Multi-Armed 
Bernoulli Bandit (Dynamic MABB) process from the machine learning theory. We then propose an online learning 
algorithm with track-ability properties for computing an adaptive hopping policy. Simulations confirm that when the 
statistics of the external interference has a switching regime, the proposed solution outperforms the previous schemes 
in terms of both energy efficiency as well as two important KPIs for TSCH-based networks, i.e., PDR and latency. 

 
Index Terms— IEEE 802.15.4, TSCH, Channel Hopping, Blacklisting, Dynamic MABB Problem.  

 

 

I. INTRODUCTION 

N recent years, the concept of the Internet of Things (IoT) has 

been evolving rapidly, making it increasingly possible to 

connect any device to the Internet (as well as to each other) [1]. 

One basic requirement in the IoT connectivity landscape is to 

ensure that nodes are reliably connected to the Internet [2]. 

Given this key demand, IoT-based settings are expected to 

satisfy the required specifications mandated by the standards 

such as IEEE 802.15.4 [3] (which imposes a set of protocols for 

the provision of two-way multi-hop interconnections between 

devices with limited power), and LoRa [4] (which mainly 

defines Medium Access Control (MAC) layer and message 

formats for single-hop device-to-BS long distance 

communications). 

IEEE 802.15.4 is a popular standard that specifies the 

physical and MAC layer for low-power low data rate 

communications [5]. However, it is a single-channel standard 

in which communications can be heavily affected by 

interference and fading, and thus incur high delay and a low 

packet delivery ratio [6]. IEEE 802.15.4-2015 [12] was later 

introduced as an improved version to IEEE 802.15.4e, 
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presenting a new time-slotted channel hopping (TSCH) 

operating mode to ensure higher reliability by using several 

channels [7]. In TSCH, at the time of sending a packet over a 

channel, if the desired channel is affected by destructive factors 

such as interference, it is possible to resend it on a different 

channel at another time-slot (possibly in another slot-frame 

cycle). More specifically, TSCH employs a deterministic 

periodic hopping pattern on 16 different channels [8]. A 

drawback with default TSCH operation is that most of its 

channels are susceptible to interfering transmissions from the 

2.4GHz ISM band technologies such as IEEE 802.11 (Wi-Fi) 

and Bluetooth [9]. 

Also, in TSCH networks not only can the interference from 

the uncoordinated neighboring Wi-Fi (or Bluetooth) networks 

be problematic, multipath fading can also pose problems, e.g. 

reduced network reliability [10]. It should be noted however 

that the occupancy of the different frequency channels by the 

surrounding radio signals is not evenly balanced. Some ISM 

sub-bands are less occupied or jammed than others, and this 

diversity should be adaptively exploited to intelligently hop 

over channels and make a better use of the spectrum. 
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Obviously, to provide for such adaptability, one needs to go 

beyond default TSCH (which offers a fixed hopping pattern).   

Adaptive channel hopping in TSCH-based networks can be 

realized through blacklisting mechanisms [11]. Blacklisting is 

a technique to omit channels with undesirable conditions from 

the hopping list. As the statistics of absence/presence of 

interference sources are neither usually pre-determined nor are 

their behavior constant, a spatiotemporal prediction is not 

possible, and instead, blacklisting policies should be computed 

on-the-fly using model-free learning procedures. 

Recently, several blacklisting schemes have been introduced 

for enabling adaptive TSCH channel hopping. We present an 

exhaustive review of the related work in Section II.C. However, 

one common assumption in the existing blacklisting schemes is 

that the probabilistic model of external interference is stationary 

in the sense that the statistical properties of the external 

interference is time-invariant [15-17]. This assumption rarely 

holds in practice as real-life communications often involve 

underlying processes that are dynamically evolving [18]. In 

fact, the presence/absence of external users associated with 

other wireless technologies do not necessarily exhibit a nice 

stationary statistical property; also, each non-802.15.4 protocol 

indeed uses its own rules for channel selection, user 

partitioning, etc., and all this leads to a hectic use of the 

spectrum that cannot be expressed in terms of a time-invariant 

probabilistic model, and has to be learnt and tracked 

dynamically. 

In a departure from the previous works, in this paper, we 

explore a more realistic approach and generalize the idea of 

adaptive channel hopping to non-stationary settings. Prior work 

has mainly utilized a so-called stochastic “multi-armed bandit” 

(MAB) model [19] to frame the adaptive channel hopping 

problem (e.g., [20], [21]). MAB is a formalism from the 

machine learning theory and can be used as a systematic way 

for a decision-maker to choose among multiple options with 

uncertain rewards. In particular, the classical MAB describes a 

setting in which a gambler has to operate a slot machine with 

multiple arms (levers). The gambler has to decide which arm to 

play, how many times to play each arm and in which order to 

play them, and whether to continue with the current arm or try 

a different arm. In MAB, each arm provides a random reward 

from an unknown probability distribution specific to that arm. 

The objective of the gambler is to maximize the sum of rewards 

earned through a sequence of arm pulls. In modeling the 

adaptive channel hopping problem as a MAB, the available 

physical channels can be considered as arms and average PDR 

as the optimization objective. 

In this paper, we formulate the adaptive channel hoping 

problem in TSCH-networks as a Dynamic Multi-Armed 

Bernoulli Bandit (Dynamic MABB) process [22] which is one 

of the many non-stationary variants [23] of the classical MAB 

specifically tailored for MABs with Bernoulli 

rewards/penalties. In the context of our problem, the sequence 

of rewards/penalties gained from each arm (channel) indeed 

forms a Bernoulli process (corresponding to 

successful/unsuccessful packet transmissions) with an 

unknown distribution. Also, given the time-varying nature of 

the external interference, the underlying Bernoulli process 

would be non-stationary, thereby making Dynamic MABB a 

very much expressive framework for our case.  

In MAB, an online learning algorithm needs to be deployed 

to tackle with a crucial tradeoff at each trial which is between 

exploitation of the arm that has the highest estimated payoff and 

exploration to get more information about the payoffs of the 

other arms. In stochastic MAB, some popular learning 

algorithms include 𝜀-Greedy [24], Upper Confidence Bound 

(UCB) [25], and Thompson Sampling (TS) [26]. However, such 

algorithms cannot be justifiably employed for Dynamic MABB 

as they use sample means to estimate the expected reward of 

each arm. In stationary MABs, given that the sequence of 

rewards is i.i.d., forming sample means is sensible from a 

theoretical perspective, and one could invoke various 

asymptotic results (e.g., law of large numbers, central limit 

theorem, etc.) as justification. However, when the underlying 

distribution changes significantly with time, sample mean-

based estimation is not theoretically valid, and can also result 

in performance bottleneck from a practical viewpoint [27]. 

Armed with this understanding, in this paper, we consider 

deploying a different learning algorithm (the so-called AFF-

OTS from [22]) which uses an estimator with track-ability 

properties and is inspired from the adaptive filtering theory 

[27]. The key idea behind adaptive estimation is to track a time 

evolving data stream by gradually reducing the weight on older 

data as new data arrives. There are many learning procedures 

proposed for arm selection in non-stationary MAB settings 

(e.g., [28, 29 and 30]), but the recent AFF-OTS procedure 

proposed in [22] is particularly suited for implementation in an 

IoT setting as it is a lightweight algorithm, requires very little 

tuning effort, is quite robust to tuning parameters and unlike 

prior work in Dynamic MABB, its initialization does not 

require knowledge about the model structure in advance. 

Another notable point is that channel hopping in a TSCH-

based network takes influence from the underlying scheduling 

mechanism. Nonetheless, the standard only provides a 

framework, without actually mandating a specific scheduling 

mechanism for time and frequency slot allocation [31]. As such, 

several interesting scheduling algorithms have been proposed 

to fill the void (e.g., [31], [54], [55]). In the default single-offset 

scheduling, however, only one channel is offered to each link 

in every time-slot [32]. This is while an adaptive channel 

hopping scheme needs to be built on a multi-offset schedule in 

which several offsets can be offered to each node at each time-

slot. Realizing this and using graph-theoretical algorithms, we 

use a multi-offset version of our scheduling scheme in [31] that 

allows each node to select the most suitable offset based on the 

proposed learning procedure. 

In sum, our contributions are as follows: 

 We formulate the problem of adaptive channel hopping on 

top of a multi-offset TSCH schedule using the dynamic 

(non-stationary) MAB formalism [33] with the goal of 

maximizing the average PDR. Our formulation is more 

realistic compared to prior work in that it accounts for the 

possible non-stationarity of the external interference. 

Based on recent results in MAB theory [22], we deploy a 
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learning algorithm for computing the channel selection 

policy. Our algorithm is suitable for TSCH-based networks 

susceptible to non-stationary external interference as it has 

the capability of tracking the time-varying statistical model 

of the interference. Also, since our algorithm works based 

on a number of low cost recursive update formula, it is 

particularly lightweight with few parameters to adjust, 

making it suitable for IoT settings.  

 Through simulations, we experimentally evaluate our 

proposed scheme against default TSCH [7] as well as some 

prior work which assumes stationary interference [21]. 

Also, a small physical setup is implemented to showcase 

the memory footprint of the proposed algorithm.  

The rest of the paper is organized as follows: in Section II, 

background and motivation of the paper are described and some 

relevant studies on adaptive frequency channel hopping for 

TSCH networks are reviewed. In Section III, our system model 

including the assumptions is described. In Section IV, the 

problem is formulated on the basis of Dynamic MABB 

framework and in Section V the proposed adaptive channel 

hopping mechanism is presented.  In Section VI, our simulation 

results are presented and the proposed scheme is evaluated 

against some baseline schemes.  In Section VII, we explain a 

physical setup for evaluating the memory footprint of the 

proposed algorithm. Finally, Section VIII concludes the paper 

with highlights of its main results. 

II. BACKGROUND 

In this section, we first give a brief overview of default TSCH 

channel hopping, and then discuss the rationale behind adaptive 

hopping. We also discuss a number of related studies, highlight 

the research gap and motivate our idea in this paper. For ease of 

reference, important acronyms are summarized in Table I. 

A. Default channel hopping in TSCH 

In order to combat internal interference in TSCH-based 

networks, the nodes use a simple, blind and periodic pattern for 

frequency hopping in which all the channels are uniformly 

selected. At each time-slot, a node maps the channel offset into 

a physical frequency according to the following equation: 

Frequency = MAP [(ASN + Ch_Off) mod nCh] (1) 

where ASN is the network’s absolute sequence number of the 

time-slot, nCh is the number of available channels, Ch_Off is 

the current scheduled channel offset, and MAP is a bijective 

function mapping an integer between 0 and nCh-1 into the 

frequency channel. The standard provides a two-dimensional 

scheduling scheme in which each cell corresponds to a pair of 

time-slot and channel offset. A TSCH schedule allocates a set 

of cells to each radio link. It is clear that by employing this blind 

channel hopping, all the channels are uniformly picked up 

irrespective of their quality. 

B. Adaptive Channel Hopping 

In real environments, signal attenuations (e.g., due to 

multipath fading and co-existing transmissions) increase the 

rate of packet transmission failure, thereby leading to a high 

number of retransmission attempts and energy wastage [9]. In 

contrast to the neutral round-robin hopping pattern of the 

default TSCH, an adaptive hopping algorithm constantly tries 

to detect and avoid undesirable channels with low packet 

delivery ratio, effectively increasing the energy efficiency. 

Adaptive frequency channel hopping schemes can be 

classified as being either model-based or model-free. Model-

based schemes are built on the assumption that a statistical 

model of the channel dynamics is known at design time (i.e., 

prior to actual network deployment and operation). The model-

free schemes, on the other hand, are typically based on machine 

learning algorithms in which a network node starts from a 

basically zero knowledge of the network dynamics, and adapts 

itself intelligently with environmental changes to learn the 

channel qualities dynamically [34]. In particular, in these 

methods, each network node acts as a learning agent which 

gradually estimates channel conditions based on the history of 

its experience with the channels in the past, and becomes more 

inclined towards channels with higher estimated success rate in 

its future transmissions. In general, model-free schemes are 

particularly interesting in most practical scenarios in which the 

model of the channel variations change over time, or it is not 

possible to obtain reliable statistical information about the 

process before node deployments. In the sequel, we review the 

related work on adaptive channel hopping in IEEE 802.15.4. 
TABLE I 

USED MAIN ACRONYMS 

TSCH Time-Slotted Channel Hopping 

MAB Multi-Armed Bandits 

MABB Multi-Armed Bernoulli Bandits 

LoRa Long Range 

LoRaWAN Long Range Wide Area Network 

ASN Absolute Sequence Number 

AFF Adaptive Forgetting Factor 

PDR Packet Delivery Ratio 

ACK Acknowledgement Message 

TS Thompson Sampling 

C. Related Work 

The A-TSCH algorithm in [15] is among the pioneer work in   

adaptive channel hopping which provides enhanced reliability 

on the basis of the TSCH technique of IEEE 802.15.4-2015 

standard. A-TSCH hops selectively among a subset of channels 

considered “reliable”, unlike TSCH which indiscriminately 

uses all 16 channels in the 2.4 GHz band. However, the 

evaluation of the channel quality in [15] is based on a costly 

spectrum sensing technique which requires detecting the 

ambient energy level to gauge the intensity of channel 

utilization. This process exerts a massive load on the system 

which eventually causes higher energy consumption and delay. 

Alternatively, the ETSCH algorithm in [16] applies a non-

intrusive channel quality estimation by energy detection during 

idle periods of time-slots. Then, the hopping sequence is 

propagated in the network including channels with high quality 

as whitelist. ETSCH is most efficient when the time-slot 

duration is sufficient to compensate clock drifts, while leaving 

enough time for energy detection. Handling multi-hop 

topologies remains a challenging issue and dedicated time-slots 

for energy detection may be required. In [36], the authors have 

presented an improved version of ETSCH with a Distributed 
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Channel Sensing mechanism (ETSCH+DCS) which finds 

channels with suitable conditions for packet transmission. A 

hybrid technique is employed for channel quality estimation 

which combines a central method with a distributed method. 

The central method uses Non-Intrusive Channel-quality 

Estimation (NICE) to compute energy consumption at the 

coordinator node, while the distributed channel estimation 

determines the sources of interference throughout the entire 

network. However, much overhead is still imposed on the end-

nodes to identify interference sources hidden from the 

coordinator. Also, ETSCH+DCS assumes that the coordinator 

can directly communicate with all network nodes, which is not 

realistic in most industrial deployments. 

In [20], a transmitter-side channel selection scheme is 

formulated as an independent process using packet transmission 

status (packet acknowledgement status) and Clear Channel 

Assessment (CCA) failures on that channel. The channel list is 

sent to the coordinator by augmenting it to the information 

element of the TSCH packet, and the coordinator broadcasts the 

newly updated list of channels. However, some implementation 

details are missing; for example, how the list of “good 

channels” is chosen. Further, it is required that the receiving 

node remain aware of the transmitted packet rate, which is not 

a realistic assumption in some event-driven sensing scenarios.   

An approach for blacklist formation in TSCH-based 

networks is presented in [39]. In this method, each pair of nodes 

communicating with each other have their own blacklist. In 

particular, the nodes at each connection contact each other by 

exchanging control packets and agree on a blacklist. These 

control packets are sent at certain time-slots and use the ratio of 

received packets as a criterion to build the blacklist. However, 

non-blacklisted channels are selected at random without caring 

for scheduling constraints, which could cause interference 

between communication links.  

In MABO-TSCH algorithm of [21], every pair of nodes 

locally blacklists physical channels. In order to reach an 

agreement between the transmitter and the receiver on the same 

blacklist, the list is interchanged via ACK packets to avoid 

network overhead. Using a MAB-based formalism, each 

physical channel is considered as an arm and the nodes estimate 

their PDR. Simulation results show that MABO-TSCH results 

in 23% more throughput compared to the basic frequency 

hopping technique, and that MAB is able to choose the best 

channels in 75% of cases. This method is particularly suited for 

networks with low neighborhood cardinality because 

negotiation for blacklist creation would involve too many 

connections between the neighbors. 

In [17], every node holds a list of channels with unfavorable 

condition as well as channels that affect the connection 

negatively but are not yet placed permanently in blacklist. Once 

a channel is added to the temporary list, this information must 

be distributed in the entire network so that all the nodes hold the 

same blacklist for channel hopping. Also, when a channel is 

temporarily blacklisted, it will be ultimately blacklisted after a 

certain time. Some studies have conducted exhaustive 

experiments to showcase the importance of adaptive channel 

hopping as well as to evaluate the efficacy of the existing 

strategies. For example, in [37], an experiment has been 

conducted to evaluate the efficiency of a TSCH network in an 

airplane cabin affected by external disturbances generated by a 

Wi-Fi network. The investigation assumes there are 16 channels 

available and measures a packet error rate of approximately 

35%. It is also concluded that throughput decrease whenever a 

smaller number of channels are used. In [35], the authors have 

extensively experimented with some reinforcement learning 

strategies for adaptive channel hopping. In the simulation 

process, PDR is employed to assess and compare the methods. 

External interference is simulated through placing two wireless 

connections in one location as well as multipath fading caused 

by reception of different replicas of a signal from diverse paths. 

D. Motivation 

IEEE 802.15.4 uses the license-free 2.4 GHz band which is 

also exploited in other standards and protocols such as Wi-Fi; 

therefore, an efficient scheme is needed to combat the 

interference caused by co-existing entities. The default channel 

hopping in TSCH is not suitable for reducing the effect of 

interference because it is based on a circulatory simple formula 

that lacks the intelligence to enable proper selection of desirable 

frequency channels for hopping. Recently, some adaptive 

channel hopping methods have been published which attempt 

to learn the channels’ conditions and create a blacklist of 

undesirable channels. To the best of our knowledge, previous 

studies in adaptive channel hopping for TSCH-based networks 

have all assumed a stationary statistical model for the external 

interference. However, in real world environments, it is 

reasonable to assume that the external interference, such as that 

caused by Wi-Fi or Bluetooth, often displays non-stationary 

behavior since the interfering sources often appear/disappear in 

a time-varying way and they also typically use the channels 

based on a dynamic policy that is not constant over time.  

The non-stationarity of external interference has recently 

been addressed in designing new MAC mechanisms in 

LoRaWAN-based IoT settings [40 and 41]. For example, in 

[41], the authors have proposed two learning-based methods, 

(i.e., UCB and Thomson Sampling) for spectrum access in non-

stationary IOT environments. However, these learning 

procedures have so many algorithmic parameters which should 

be tuned across a large number of IoT devices for proper 

execution. Also, LoRaWAN systems have some key 

differences with the case of IEEE 802.15.4 standard addressed 

in this paper: they operate in a different ISM frequency band 

(863-870 MHz in Europe and 902-928 MHz in US) which is 

not susceptible to 2.4 GHz Wi-Fi interference. This is while Wi-

Fi constitutes the main source of interference for IEEE 

802.15.4. Also, LoRaWAN is used for long-range single-hop 

node-to-gateway IoT communications, while IEEE 802.15.4 

TSCH is typically used for multi-hop short range 

communications.  

In this study, to handle non-stationary external interference 

in TSCH networks, we use the Dynamic MABB theory [23], 

and propose a lightweight algorithm to be applied iteratively by 

the IoT nodes to determine their hopping pattern dynamically. 

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 06,2021 at 21:05:00 UTC from IEEE Xplore.  Restrictions apply. 



1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3110720, IEEE Sensors
Journal

8  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

III. SYSTEM MODEL 

We consider a tree-like topology consisting of half-duplex 

wireless nodes similar to Fig. 1 in which each node sends data 

to its upstream (parent) node. The blue lines depict useful 

communication links, which extend from each child to its 

corresponding parent. The orange lines represent interference 

as we elaborate in the sequel. As can be seen from Fig. 1, there 

is a gateway node in which the data is gathered eventually. 

A. Interference Model 

TSCH-based networks are susceptible to two types of 

interference: internal and external. Internal interference is due 

to the limitations imposed by the network topology and should 

be avoided through scheduling algorithms. The orange lines in 

Fig. 1 represent the internal interference. For example, a 

transmission from node 3 is not only heard by node 6, but it also 

affects node 7 as interference. On the other hand, external 

interference is due to the simultaneous use of the frequency 

band of the IEEE 802.15.4 by equipment that are based on other 

standards and protocols. The main focus of the present study 

will be on external interference. Our interference model is 

based on collision, which means that if interference occurs, 

there will be no weakening, but the useful signal will totally be 

corrupted [42]. 

Node 1

Node 2
Node 3 Node 4

Node 5

Node 7Node 6
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Transmission 

Link

Access 

Point

Interference 

Link

IoT 

Node

R6A R7A

R16

R26
R36 R47

R57

 

Fig. 1.  An IEEE 802.15.4 TSCH network with a tree-like topology.  

1) Stationary external interference 

In order to provide a mathematical definition for the 

stochastic process of presence or absence of the external 

interferer in IEEE 802.15.4 channels, we use the symbol 𝕁 =
{1. … . 𝑗. … . 𝐽} to denote the set of offsets of the frequency 

channel used in the TSCH schedule, and the symbol 𝕀 =
{1. … . 𝑖. … . 𝐼} to show the set of offsets of the frequency 

channels used by the interferer. We also represent the binary 

random variable of occurrence or absence of interference 

between an offset channel such as 𝑖 𝜖 𝕀  (of the interferer) and 

some offset channel such as 𝑗 𝜖 𝕁 (of IEEE 802.15.4) by the 

symbol 𝛾𝑖𝑗  𝜖 {0,1}, which has the probability mass function of 

ℙ(𝛾𝑖𝑗 = 1) = 𝑝𝑖𝑗  and ℙ(𝛾𝑖𝑗 = 0) = 1 − 𝑝𝑖𝑗 , respectively. 

Let the binary random variable 𝑌𝑗(𝑛) indicate the occurrence 

or absence of interference in the jth offset during time-slot n, 

then the following assumption can be made on the stationary 

nature of the external interference: 

Assumption 1 (stationary external interference): The 

stochastic process {𝑌𝑗(𝑛)}𝑛𝜖ℕ is a stationary time series, when:  

𝑌𝑗(𝑛) =  𝛾𝑗,   ∀𝑛𝜖ℕ , ∀𝑗𝜖𝕁  (2) 

where 𝛾𝑗𝜖{0,1} is a Bernoulli random variable with the 

following probability mass function: 

ℙ(𝛾𝑗 = 1) = 𝑝𝑗 , (3) 

ℙ(𝛾𝑗 = 0) = 1 − 𝑝𝑗 , (4) 

𝑝𝑗 = ∑ 𝑝𝑖𝑗𝑖∈𝕀 . (5) 

 
In other words, under the assumption of stationarity, the 

probability of interference occurrence for each channel offset 

remains constant over time.  

2) Non-stationary external interference 

To describe precisely the behavior of the non-stationary 

interference, we use 𝛹𝑗  to denote a finite and countable set of 

probabilistic regimes for the occurrence of interference on the 

𝑗-th channel offset. Each probabilistic regime such as 𝜓𝑗𝜖𝛹𝑗 

corresponds to a separate probability distribution such as 

𝐹𝜓𝑗(. ), a finite average value of 𝜇𝜓𝑗, and a finite variance 

denoted by the symbol 𝛿𝜓𝑗
2 . The symbol 𝑇𝜓𝑗 represents the 

random time during which regime 𝜓𝑗 governs the interference 

process. Also, let 𝜓𝑗(𝑛) ϵ Ψ𝑗 represent the probabilistic regime 

that holds during time-slot n. Accordingly, we use 𝐹𝜓𝑗(𝑛)(. ) to 

represent the probabilistic distribution corresponding to the 

current regime, 𝛿𝜓𝑗(𝑛)
2  to represent the variance of this regime, 

and 𝜇𝜓𝑘(𝑛) represents its mean value.  

Note that we do not make any assumption about the specifics 

of the regime switching process (i.e., replacement of the 

probabilistic regimes over time) as the approach presented in 

this paper is applicable to any general non-stationary 

interference pattern. That being said, however, for the purpose 

of simulation, we intentionally emphasize on a special regime 

switching process which occurs according to a first-order 

Markov chain (see Definition 1 below):  

Definition 1 (Markovian switching non-stationarity): The 

stochastic process {𝑌𝑗(𝑛)}𝑛𝜖ℕ is a non-stationary time series of 

with Markovian switching nature when 𝜓𝑗 corresponds to the 

state space of a discrete-time Finite-State Markov Chain 

(FSMC), and the transitions between any two regimes 

𝜓𝑗  , 𝜓𝑗′ 𝜖 Ψ𝑗 occurs according to a stochastic matrix such as 

𝑄 = [𝑞𝑗𝑗′].   

B. Framing Model and Multi-Offset Scheduling  

In compliance with IEEE 802.15.4 TSCH, the network-wide 

transmission schedule is represented in the form of a two-

dimensional channel-slot matrix similar to Fig. 2, which repeats 

over time. A TSCH schedule determines which pair of nodes 

should exchange data packets on which channel and in which 

time-slot [32]. According to Eq. (1), although each link (or 

sender-receiver pair) has a constant position in the schedule, 

they will all eventually be assigned to different physical channel 

numbers over time (due to the cyclic pattern of the slot-frames).  

Most existing algorithms for constructing TSCH schedules 
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are single-offset in the sense that if a link is scheduled in a given 

time-slot, the transmission has to occur on the uniquely 

specified channel corresponding to that offset. This is while an 

adaptive channel hopping scheme needs to be built on a multi-

offset schedule in which several offsets can be offered to each 

node at each time-slot. Realizing this, here we use a multi-offset 

variant of our proposed throughput-centric scheduling scheme 

in [31]. Our algorithm is centrally executed and has two phases: 

in the first phase, a conflict graph is formed that captures non-

allowable simultaneous transmissions (e.g., due to single-radio 

half-duplex restrictions). We use graph-theoretical algorithms 

for the computation of independent sets in this conflict graph. 

Let 𝑘 and �́� be the two ends of a given communication link �́� →
𝑘. The output from phase one is the allocated slot-frame time-

slots 𝒯�́�→𝑘 for each link �́� → 𝑘. In the second phase, we aim at 

omitting internal interferences by accounting for hidden 

terminals. In each time-slot, distinct channel offsets are 

assigned to interfering links, while non-interfering links can be 

grouped as a single set and be associated with the same offset. 

Now, in each given time-slot, if unused offsets are still 

available, they will exhaustively be allocated to the links 

scheduled in that slot in such a way that the total network 

throughput is maximized. This way, if a link �́� → 𝑘 is scheduled 

for activation in a given time-slot, the output from phase two 

determines all the legitimate channel offsets 𝒞�́�→𝑘
𝒯  from which 

a single channel can be chosen by our proposed hopping 

algorithm in Section V.C for actual transmission. More 

specifics on the computation of 𝒯�́�→𝑘 and 𝒞�́�→𝑘
𝒯  calls for a 

complete discussion of the scheduling algorithm, which 

remains outside the scope of this paper. As a final note, while 

the adopted scheduling algorithm is centralized, but the 

proposed channel hopping scheme is orthogonal to scheduling 

as long as it offers multiple offsets for each communication link 

in each time slot. In fact, the only interaction of our DMABB-

CH scheme (Algorithm 1) with the underlying scheduling 

algorithm is in its input stage where the running node needs to 

receive the list of allocated slot-frame time-slots 𝒯�́�→𝑘 and 

associated channel offsets 𝒞�́�→𝑘
𝒯 . Hence, DMABB-CH can as 

easily run alongside a distributed scheduling scheme as it can 

run over a centralized scheduling algorithm. As it turns out, the 

newly emerging distributed TSCH scheduling algorithms (such 

as ALICE in [47] and OST in [48]) work in a link-based fashion 

in the sense that they allocate cells to each directional link (a 

pair of nodes and traffic direction), and use multiple channels 

for the same time-slot. 

 
Fig. 2.  Cycle structure in TSCH [42] 

IV. PROBLEM FORMALIZATION AS A DYNAMIC MABB  

A. Background on multi-armed bandits 

The MAB problem is a classical optimization problem that 

explores the trade-off between exploitation and exploration in 

reinforcement learning. The problem consists of a machine with 

𝐽 arms, and an agent that selects and pulls a sequence of arms, 

each of which generates some reward or penalty as a return for 

the agent. The goal of the agent is to minimize the regret, which 

is the difference between the reward gained by following a 

specific policy and the reward gained by selecting the best arm 

(in hindsight) after a sequence of arm selections. In MAB, the 

agent should compromise between exploration (discovering the 

unknown by selecting new arms to find their reward 

probability) and exploitation (using the formerly known arms 

to accrue high reward values). In standard MAB, it is assumed 

that the probabilistic model of rewards does not change over 

time, i.e., the optimal arm is the same in all time. A MAB 

problem with static reward distributions is also known as the 

stationary or static MAB problem in the literature (e.g., [43]).  

The channel hopping problem can be readily mapped into a 

MAB setting in which each IoT device acts as the learning 

agent, the channels are considered as arms, and the expected 

PDR is defined to be the optimization objective. However, due 

to the time-varying nature of external interference (c.f., Section 

III.A.2), the optimal choice may change over time, and thus the 

assumption of static reward distributions is not adequate. As 

such, we should resort to non-stationary variants of the MAB 

formalism [33] where the underlying distribution of rewards for 

each arm may be time-varying (much the same as the 

probability of presence/absence of external interferences). 

Also, given that the outcome of a packet transmission 

(success/failure) can be described by a Bernoulli random 

variable, among the existing dynamic MAB formalisms, we 

adopt the one specifically tailored for dynamic “Bernoulli” 

processes, namely the “Dynamic MABB” [22], [23]. In this 

MAB formalism, the sequence of rewards/penalties obtained 

from each arm forms a timey-varying Bernoulli process with an 

unknown reward/penalty probability.  

B. Problem formulation  

In order to formalize the channel hopping problem as a 

Dynamic MABB, we use 𝑛 𝜖 ℕ to index discrete time. At each 

scheduled time-slot, the receiving node 𝑘 of each link �́� → 𝑘 

chooses a channel 𝑗(𝑛) from the set of available channels 𝕁.  
Remark 1. In order to streamline notation, we drop the 

subscript 𝑘 in 𝑗(𝑛) and in almost all variables maintained 

internally by any decision making node 𝑘. Also, in Algorithm 

1, we present a so-called DMABB-CH algorithm which can be 

executed independently by any given receiving node in the 

network topology. As such, the particular node index is mostly 

irrelevant to the discussion in the sequel. Where needed, 

however, the symbol 𝑘 has been used for more clarity.  

The binary random variable 𝑌𝑗(𝑛) determines the success or 

failure of the transmission over channel 𝑗 at time 𝑛. Let 𝜇𝑗(𝑛) =

𝔼[𝑌𝑗(𝑛)] to denote the mean reward for channel 𝑗 at time 𝑛. Our 

aim is to optimize the channel selection sequence and maximize 

the total expected reward (PDR) ∑ 𝜇𝑗(𝑛)(𝑛)
𝑁
𝑛=1 , or equivalently, 

minimize the total regret, defined as [22]:min
𝑠
𝑠 𝑠 

ℛ(𝑁) ≝ ∑𝜇𝑗∗(𝑛)(𝑛)

𝑁

𝑛=1

−∑𝜇𝑗(𝑛)(𝑛)

𝑁

𝑛=1

, 
 

     (6) 
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𝑗∗(𝑛) is the optimal channel at time 𝑛 and can be described as:  

𝑗∗(𝑛) = 𝑎𝑟𝑔max
𝑗∈𝕁

𝜇𝑗(𝑛) (7) 

Intuitively, we would like the regret to be as small as 

possible. In Section VI, we propose a learning-based algorithm 

that is capable of achieving and maintaining a sub-linear regret 

value by swiftly identifying the switching of the optimal arm. 

In fact, a sub-linear regret value signifies that the expected 

difference in total rewards obtained by an optimal policy (the 

policy that chooses 𝐽∗(𝑛) in every moment) and the total reward 

actually earned by the device vanishes in the long run. 

V. THE PROPOSED ADAPTIVE HOPPING ALGORITHM 

Several popular procedures exist for arm selection in static 

MAB problems, namely; 𝜀-Greedy [24], Upper Confidence 

Bound (UCB) [25], and Thompson Sampling (TS) [26]. These 

procedures start with exploration and as the process goes 

forward, and experience accumulate, switch to exploitation, i.e., 

converging to only selecting the optimal arm, simply by 

selecting the arms with frequencies proportional to their 

probabilities of being optimal. These techniques are designed 

for settings where the reward probabilities of the bandit arms 

remain constant. In non-stationary scenarios, where the reward 

probabilities are dynamically evolving, we need procedures that 

can track the potential reward probability changes.  

In a Dynamic MABB setting, an estimator needs to be in 

place to track the expectation of rewards via putting more 

weight on the more recent reward history. Some example 

procedures include: the 𝜀-Greedy algorithm coupled with an 

exponentially-weighted moving average estimator [28], 

sliding-window UCB (SW-UCB) [29], and Dynamic 

Thompson Sampling (DTS) [30]. It is worth noting that, as 

argued in [22], these procedures are based on complex 

algorithms that call for precise tuning of some of their 

configuration parameters, which are dependent on the 

knowledge of the underlying stochastic process. For instance, 

to tune the window size of SW-UCB, the number of switch 

points must be known (i.e., how many times the optimal arm 

switches). 

Lately, a number of innovative schemes have been reported 

in [22] that are specifically crafted for computing a learning 

policy in dynamic MABB problems. These schemes are quite 

easy to implement, and far less complicated compared to prior 

procedures in the sense that the tuning of key parameters is 

automated, and there is no need for prior knowledge of the 

model structure. These features are particularly useful for 

applicability in IoT devices which operate on low-quality 

hardware (e.g., small embedded processors) and offer limited 

software and power capabilities (i.e., very small -size batteries). 

Exploring the proposed schemes in [22], we choose the AFF-

OTS procedure as the basis for designing our channel hopping 

algorithm. Actually, AFF-OTS involves fewer computational 

steps, allows for more flexible tuning and, as demonstrated 

through exhaustive simulations in [22], outperforms the 

competing schemes in terms of total regret.  

The learning-theoretic framework presented in [22], 

describes a two-step procedure for tracking the optimal arm in 

a dynamic MABB problem: estimation step and selection step. 

In our context, these steps would correspond to learning the 

reward distribution of each channel and selecting one channel 

to transmit, respectively. Accordingly, in the following section, 

we provide a short description of how channel hopping can take 

place adaptively using AFF-OTS as a dynamic MABB solver. 

To prevent redundancy while ensuring that the paper remains 

self-contained, we only present the key ideas, leaving out much 

of the technicalities, and refer the interested reader to [22]. 

A. Estimating the expected PDR of each channel 

In order to make a proper channel selection at each time step, 

each node must correctly and efficiently trace the expected PDR 

of the channels, especially when it is affected by time-evolving 

interference. To this end, the AFF-OTS algorithm resorts to an 

adaptive estimation technique in which the weight on older 

feedbacks is gradually decreased as new feedbacks come in. 

More specifically, an adaptive forgetting factor 𝜆 (AFF for 

short) is applied whose value can be adjusted at each time step 

to ensure improved adaptation. Such an estimator would be 

capable of responding swiftly to changes in external 

interference without having prior knowledge of this process.  

Assume a single channel, and suppose that {𝑌𝑛}𝑛=1:𝑁 is the 

history of successful/unsuccessful transmissions over this 

channel up to time 𝑁. Eq. (8) gives a sample mean �̂�𝑁 of the 

sequence {𝑌𝑛}𝑛=1:𝑁 in an “adaptive forgetting” manner: 

�̂�𝑁 =
1

𝑤𝑁
∑(∏𝜆𝑝

𝑁−1

𝑝=𝜏

)

𝑁

𝜏=1

𝑌𝜏 (8) 

in which: 

𝑤𝑁 =∑(∑𝜆𝑝

𝑁−1

𝑝=𝜏

)

𝑁

𝜏=1

 (9) 

is a normalizing constant to make the estimate �̂�𝑁 unbiased for 

the case when the underlying interference process is i.i.d. It is 

worth noting that a more efficient method to compute �̂�𝑁 is to 

run incremental updates as listed in Eqs. (10) to (12): 

�̂�𝑁 =
𝑚𝑁

𝑤𝑁
 (10) 

𝑚𝑁 = 𝜆𝑁−1𝑚𝑁−1 + 𝑌𝑁  (11) 

𝑤𝑁 = 𝜆𝑁−1𝑤𝑁−1 + 1 (12) 

The AFF sequence 𝝀𝑁 ≝ {𝜆𝑛}𝑛=1:𝑁 applied to the above 

equations should produce a desirable  tracking performance 

(e.g., in terms of the one-step-ahead squared prediction error 

𝐿𝑛 ≝ (�̂�𝑛−1 − 𝑌𝑛)
2
 between the sample mean �̂�𝑛−1 and the 

latest observed reward 𝑌𝑛); in particular, AFF 𝜆𝑛 is computed 

via a single gradient descent step: 

𝜆𝑛 = 𝜆𝑛−1 − 𝜂Δ(𝐿𝑛 , 𝜆𝑛−2) (13) 

where 𝜂(𝜂 ≪ 1) is the step size, and Δ(𝐿𝑛 , 𝜆𝑛−2) is given as:  

Δ(𝐿𝑛 , 𝜆𝑛−2) = lim
𝜖→0

𝐿𝑛(𝜆𝑛−2+𝜖)−𝐿𝑛(𝜆𝑛−2)

𝜖
 (14) 

where for any 𝜆, 𝐿𝑛(𝜆) means evaluating Ln using the forgetting 
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factor 𝜆. Also, the expression in (14) may be interpreted as the 

derivative of 𝐿𝑛 w.r.t. the forgetting factors 1, . . . ,  𝑛−2. 

Therefore, 𝛥(𝐿𝑛, 𝜆𝑛−2) is an online derivative-like function for 

Ln w.r.t. 𝑛−2 which contains pre-computed values; if the value 

of 𝜆𝑛 which was calculated using (13) is greater than 1 (or less 

than 0), it is truncated to 1 (or 0) to ensure that 𝜆𝑛 ∈ [0,1]. 
Finally, the following recursions is  required in order to 

sequentially compute 𝛥(𝐿𝑛, 𝜆𝑛−2): 

Δ(𝐿𝑛 , 𝜆𝑛−2) = 2(�̂�𝑛−1 − 𝑌𝑛) (
�̇�𝑛−1−�̇�𝑛−1�̂�𝑛−1

𝑤𝑛−1
) (15) 

�̇�𝑛 = 𝜆𝑛−1�̇�𝑛−1 +𝑚𝑛−1 (16) 

�̇�𝑛 = 𝜆𝑛−1�̇�𝑛−1 +𝑤𝑛−1 (17) 

where �̇�1 = 0, and �̇�1 = 0. Note that �̇�𝑛−1 and �̇�𝑛−1 are 

defined as the derivative of 𝑚𝑛−1 and 𝑤𝑛−1 , respectively, and 

w.r.t. 𝜆𝑛−2, which are similar to Δ(𝐿𝑛 , 𝜆𝑛−2). However, they are 

denoted by overhead dot rather than Δ(𝑚𝑛−1, 𝜆𝑛−2)and 

Δ(𝑤𝑛−1, 𝜆𝑛−2) for notational simplicity. 

TABLE II  
SUMMARY OF SYMBOLS 

Symbol Description 

𝑗 ∈ 𝕁 frequency channel offset in IEEE 802.15.4 (TSCH) 

𝑖 ∈ 𝕀 frequency channel offset of external interferers (Wi-Fi/BLE) 

𝑆𝐹𝑙𝑒𝑛𝑔𝑡ℎ slot-frame length 

𝑃𝑖𝑗 interference probability between the 𝑖 and j channels 

𝛾𝑖𝑗 
binary random variable of occurrence or absence of interference 

between the 𝑖 and  𝑗 channels 

ℙ probability mass function of 𝛾 

𝛹𝑗 probabilistic regimes for the interference on the j channel 

n time index 

𝐹𝜓𝑗 probability distribution of the regime 𝜓𝑗 

𝜇𝜓𝑗 finite average value of 𝐹𝜓𝑗 

𝑇𝜓𝑗 random duration of establishing the regime 𝜓𝑗 

𝛿𝜓𝑗(𝑛)
2  to represent the variance of the regime 𝜓𝑗 

𝑍𝑗(𝑛) stochastic process of the switching nature 

𝑄 regimes transitions matrix 

𝜆 adaptive forgetting factor (AFF) 

{𝑌𝑛}𝑛=1:𝑁 history of rewards gained from a channel up to time 𝑁 

�̂�𝑁 sample mean of the sequence {𝑌𝑛}𝑛=1:𝑁 

𝑤𝑁 normalizing constant 

𝐿𝑛 one-step-ahead squared prediction error 

𝜂 step size 

Δ derivative function for Ln 

𝐵𝑒𝑡𝑎() conjugate prior to the Bernoulli distribution 

n the first Beta distribution parameter at time n 

n the second Beta distribution parameter at time n 

B. Updating PDR estimates for unselected channels  

Each IoT node in our proposed setting will keep a PDR 

estimate for each TSCH channel. However, a given node can 

only observe one channel at a time which means that the 

estimations and intermediate quantities of an unobserved 

channel will retain their previous values (if channel 𝑗 is not 

observed at time 𝑛). Not being able to update estimators gives 

rise to more challenges in dynamic cases. Although the 

estimator tracks the expected reward thoroughly at any given 

instant, the tracking precision may decrease quickly once it 

stops taking new observations, making it harder to achieve a 

balance between exploration and exploitation. We can make 

changes to the procedure that was presented in Section VI.A to 

keep updating PDR estimates even for unselected channels by 

discounting 𝑚𝑛 and 𝑤𝑛. In particular, we introduce new 

quantities �̃�𝑛 and �̃�𝑛 which are computed as: 

�̃�𝑛 = (𝜆𝑛)
𝑛−𝑛𝑙𝑎𝑠𝑡

|𝐽| 𝑚𝑛 (18) 

�̃�𝑛 = (𝜆𝑛)
𝑛−𝑛𝑙𝑎𝑠𝑡

|𝐽| 𝑤𝑛  (19) 

where 𝑛𝑙𝑎𝑠𝑡  denotes the last time that the channel was selected. 

Note that if a channel is actually chosen by an IoT node, the two 

sets of quantities are identical; i.e., �̃�𝑛 = 𝑚𝑛 and  �̃�𝑛 = 𝑤𝑛. On 

the contrary, when a channel is not selected, 𝑚𝑛 and 𝑤𝑛 are 

discounted by the forgetting factor that was obtained when it 

was selected the last time (bear in mind that) the forgetting 

factor n of an unselected arm remains the same as 𝜆𝑛𝑙𝑎𝑠𝑡.  

C. Adaptive channel selection scheme 

Now that we have seen how an IoT node can estimate and 

track the mean PDR associated with each channel, we can 

describe the channel selection process based on the AFF-OTS 

algorithm in [22]. AFF-OTS is itself based on standard 

Thompson Sampling (TS) [26] procedure in MAB theory. The 

idea in TS is to form and update Bayesian beliefs on the 

expected reward of each arm. In particular, an initial belief (a 

so-called "conjugate prior") is first assigned to the expected 

reward of each channel, and then the posterior distribution of 

the expected reward is incrementally updated through 

successive channel selections. Now, a decision rule is 

constructed based on this posterior distribution: At each round, 

a random sample is drawn from the posterior distribution of 

each channel, and the channel with the highest sample value is 

selected. Now, in our Bernoulli bandit problem, we have to 

select the Beta distribution, 𝐵𝑒𝑡𝑎(𝛼0, 𝛽0), as the standard 

conjugate prior to the Bernoulli distribution. The posterior 

distribution is then 𝐵𝑒𝑡𝑎(𝛼𝑛, 𝛽𝑛) at time n, and the parameters 

n and n can be updated recursively as follows: 

𝛼𝑛 = 𝛼0 + �̃�𝑛 (20) 

𝛽𝑛 = 𝛽0 + �̃�𝑛 − �̃�𝑛 (21) 

In other words, by using the discounted quantities �̃�𝑛 and 

�̃�𝑛, exploration of unselected channels are boosted 

(reinforced). More specifically, the posterior distribution is 

flattened for an unselected channel, and the longer the channel 

is unselected, the further its posterior distribution is flattened.    

The pseudo-code for the complete algorithm is given in 

Algorithm 1 (which is referred to as DMABB-CH). Also, 

important notations are collected in Table II for easier 

reference. In the beginning, a very short initialization period is 

applied to make initial estimations. Normally, the initialization 

duration is 𝑂(|𝐽|), i.e., selecting each channel only once. In line 

8, the drawn sample value 𝑥(𝑗) for channel 𝑗 is replaced by its 

posterior mean 𝜁 provided that the latter score is greater. This 

means that for each channel the score on which a decision is 

made will never be smaller than the posterior mean. This is 

because the AFF-OTS algorithm is based on a somewhat 

modified version of the conventional TS procedure, which is 

known as Optimistic Thompson Sampling (OTS) [44]. OTS 
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leads to added improvement regarding exploration of highly 

uncertain channels compared to TS and the reason as it 

increases the probability of attaining a high score for channels 

with greater posterior variance.  

   Now, we discuss how DMABB-CH is actually executed in 

the network. As with most tree-based data collection 

applications, we also consider “receiver-based” channel 

selection [21]. Hence, every receiver node indexed by 𝑘 (the 

parent in link �́� → 𝑘) executes the algorithm independently for 

every link it has with its immediate child nodes. In each 

scheduled time-slot 𝑛 ∈ 𝒯𝑘, node 𝑘 tunes on its previously 

channel 𝑗𝑛 ∈ 𝒞𝑘
𝒯 to receive data from �́�. In case of a successful 

reception, the Bernoulli reward 𝑌𝑛(𝑗𝑛) is set to 1 and 0 

otherwise. Also, node 𝑘 selects the channel 𝑗𝑛+1 for the 

upcoming transmission opportunity and notifies the 

corresponding sender �́� by piggybacking the chosen channel 

index on the feedback message for the recent transmission; i.e., 

either as part of the Ack for a successfully received message or 

along with the Nack for an expected (yet missed) message. This 

piggybacking causes negligible overhead.  

Algorithm 1 Pseudo-code of DMABB-CH algorithm running on a receiver node k  

                     𝑘 for each communication link �́� → 𝑘, ∀�́� ∈ 𝑐ℎ𝑖𝑙𝑑(𝑘) 

 
input: Allocated time-slots 𝒯�́�→𝑘 and associated channel offsets 𝒞�́�→𝑘

𝒯  

begin 

 

// INITIA1LIZATION 

Set initial shape parameters for Beta distribution: 𝛼0(𝑗), 𝛽0(𝑗) for ∀𝑗 ∈ 𝕁; 
Set (0, 1);   

for 𝐽=|𝕁| slot-frames do 

    Select some fixed offset from 𝒞�́�→𝑘
𝒯  and run default TSCH to receive over 

    all physical channels 𝑗 𝕁 according to the standard hopping sequence; 

end for 

// MAIN       

00: for n=ASN, . . ., N  do // from current absolute sequence number onward… 

01:    if n (mod SF_length) 𝒯�́�→𝑘 then // link �́� → 𝑘 is scheduled in time-slot n 

02:       Tune to receive over channel 𝑗𝑛; 
 

03:       Determine reward 𝑌𝑛(𝑗𝑛) = {
0,   𝑛𝑜 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 �́�

1,        𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 �́�
; 

04:       for all 𝑗 𝕁 do 
05:          Update 𝛼𝑛(𝑗) and 𝛽𝑛(𝑗) according to (20) and (21); 

06:          Draw a sample x(j) from 𝐵𝑒𝑡𝑎(𝛼𝑛(𝑗), 𝛽𝑛(𝑗)); 

07:          if 𝑥(𝑗) < 𝜁 ≝
𝛼𝑛(𝑗)

𝛼𝑛(𝑗)+𝛽𝑛(𝑗)
 then 

08: 
09: 

            Replace x(j) with 𝜁; 

         end if 

10:       end for 

11:       Select channel jn+1=arg max
𝑗′ 𝕁(𝒞𝑘)

𝑥(𝑗′); 

12:       Send feedback (Ack/Nack) message to node �́� embedding jn+1; 
13:    end if 

14: end for 

15: end 

D. Discussion on computational complexity  

    In this section, we discuss how much work needs to be 

performed by the algorithm in each iteration. In each iteration 

of the MAIN loop, the receiving node 𝑘 initially updates the 

Beta distribution parameters for all possible channels (typically 

16 channels in IEEE 802.15.4) based on its recent reception 

experience on the chosen channel, i.e., 𝑌𝑛(𝑗𝑛). In order to 

update the parameters 𝛼𝑛(𝑗) and 𝛽𝑛(𝑗), we utilize the simple 

formulae in (20) and (21). These formulae entail primitive 

addition/subtraction operations over the new values for the 

parameters �̃�𝑛 and �̃�𝑛. Also, according to (18) and (19), �̃�𝑛 

and �̃�𝑛 are in turn computed from the new values of 𝑚𝑛, 𝑤𝑛, 

and 𝜆𝑛. However, these parameters are also updated using 

simple recursive/incremental equations from their previous 

values using a few primitive addition/subtraction/multiplication 

operations. Then, to determine the channel for the next 

transmission, node 𝑘 samples a value 𝑥(𝑗) from the Beta 

distribution for each channel 𝑗. This is just a basic random 

number generation. Next, a comparison is made between 𝑥(𝑗) 
and 𝜁 to determine the final value for 𝑥(𝑗), and we exit the loop 

on the channel set. Following that, channel selection is made by 

finding argmax
𝑗
𝑥(𝑗), to identify the channel with the largest 

𝑥(𝑗). In sum, all the operations performed in each iteration of 

the DMABB-CH algorithm are as follows: 

- Random number generation (once for each channel, 16 

total) 

- Simple comparison (once for each channel, 16 total) 

- Maximization (over the channel set with 16 elements) 

- Evaluation of some very simple recursive update equations 

(once for each channel, 16 total) 
   Each parent node has to execute this algorithm 

independently for each of its children. However, in each time-

slot, only one instance of DMABB-CH is running on a given 

node, which has very low processing overhead. Also, assuming 

a tree topology with even a moderate branching factor, the 

memory footprint would also be reasonably small. 

VI. SIMULATION RESULTS 

A. Simulation setup 

1) Simulation Parameters 

We set up a network with a tree topology deployed in a 200 

× 200 m2 area. Each node is positioned in a random place in the 

network and has a coverage radius of 50m and a neighborhood 

cardinality varying in the range [2, 20]. We evaluate the 

performance in several scenarios, varying the total number of 

nodes from 20 to 40. For evaluating the energy consumption, 

we use the measurements on the GINA mote presented in [45]. 

NS-3 [38] is used as simulator and the simulation parameters 

are specified as in Table III. We simulate Wi-Fi interference as 

the main culprit for external interference.  
TABLE III 

PARAMETERS AND VALUES USED IN SIMULATION 

Parameter Value 

Number of nodes  30 (default, varies in some experiments) 
IoT device TX power 10 mW 

Simulation duration 20,000 slots 

Packet size 100 bytes 
Network offered load (default) 500 Kb/s 

Number of channel (|J|) 16 

Time-slot duration (𝜏𝑠𝑙𝑜𝑡) 10 msec 

Slot-frame length (𝑆𝐹𝑙𝑒𝑛𝑔𝑡ℎ) 8 

a) Stationary interference parameters 

Under stationary interference, we use a single collision 

probability matrix to simulate the interference between each of 

the 802.11 and 802.15.4 channels, as can be seen in Table IV. 

Each row represents channel offsets in the 802.15.4 standard, 

with 16 offsets specified from 11 to 26, and each column 

denotes the 802.11g offsets. The number in each cell indicates 

the probability of two channels interfering.  
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b) Non-Stationary interference parameters 

In the non-stationary mode, the statistical pattern of presence 

or absence of interference may vary over time. We simulate this 

statistical pattern using four interference probability matrices 

(similar to the sample matrix given in Table IV). Switching 

between these probabilistic regimes is generally governed by a 

Markovian process. More details are given in the sequel.  

TABLE IV 
INTERFERENCE PROBABILITY MATRIX IN STATIONARY MODE  

802.11 channels 

 
802.15.4 channels 

1 2 3 4 5 6 7 8 9 10 11 12 13 

11 0.44 0.03 0 0 0 0 0 0 0 0 0 0 0 

12 0.6 0.35 0.04 0 0 0 0 0 0 0 0 0 0 

13 0.33 0.7 0.53 0.04 0 0.02 0 0 0 0 0 0 0 

14 0.08 0.42 0.74 0.35 0.05 0.08 0.02 0.01 0 0 0 0 0 

15 0 0.1 0.49 0.82 0.24 0.12 0.04 0.03 0 0 0 0 0 

16 0 0 0.06 0.44 0.78 0.28 0.11 0.07 0.01 0 0 0 0 

17 0 0 0.01 0.13 0.33 0.69 0.34 0.1 0.03 0 0 0 0 

18 0 0 0 0.07 0.11 0.28 0.74 0.42 0.15 0.02 0 0 0 

19 0 0 0 0.01 0.06 0.15 0.28 0.85 0.48 0.16 0 0 0 

20 0 0 0 0 0.03 0.07 0.07 0.65 0.78 0.51 0.08 0 0 

21 0 0 0 0 0.01 0.03 0.02 0.04 0.66 0.79 0.37 0.06 0 

22 0 0 0 0 0 0.01 0.02 0 0.07 0.54 0.88 0.41 0.03 

23 0 0 0 0 0 0 0 0 0 0.09 0.4 0.69 0.48 

24 0 0 0 0 0 0 0 0 0 0 0.03 0.47 0.83 

25 0 0 0 0 0 0 0 0 0 0 0 0.06 0.48 

26 0 0 0 0 0 0 0 0 0 0 0 0 0.09 

 
2) Compared methods 

In order to evaluate the performance of the proposed 

solution, comparison is made against two baseline schemes: 

 Default channel hopping in TSCH [7]: There is no 

intelligence in the standard channel hopping of TSCH which 

uses the default non-adaptive periodic hopping formula (Eq. 

(1)). As such, a node may blindly use desirable/undesirable 

channels alike. In this scheme, it is also enough to use a 

single-offset scheduler.  

 MAB-based channel hopping [21]: In this method, each 

node, using a Q-learning-based MAB algorithm, estimates 

the quality of the available physical channels, and at each 

round, selects the channel with highest estimated PDR. The 

method in [21] also uses a multi-offset schedule. It, 

however, follows a static MAB formulation which can only 

combat stationary 2.4 GHz interference.  

3) Scenarios 

We consider three main scenarios to simulate Wi-Fi 

interference: stationary interference, slow Markov non-

stationary scenario, and fast Markov non-stationary scenario. 

We also consider a fourth practical interference pattern to 

account for stochastic interference processes with memory. 

However, due to space considerations, we conduct limited 

experiments with this fourth model only in terms of average 

PDR (c.f., Section VI.B.2). In both slow and fast Markov 

scenarios, the probabilistic regime of the interference can 

switch between four tables, i.e. Table IV and three other similar 

tables (not shown here to save space). In fact, each of these four 

probability matrices of interference is considered as a state of a 

Markov chain, and transitions from one regime to another 

happens according to the transition kernel given in Table V in 

the slow Markov case and according to Table VI in the fast 

Markov scenario. Unlike the fast case, a slow Markov transition 

matrix has a near-diagonal structure so as to elongate the 

expected duration time between jump changes that the system 

parameters remain constant. As for stochastic interference with 

memory, the interferer activity is modeled as a 𝑘th-order 

Markov chain, resulting in interference with memory up to 𝑘 

time-slots. In the experiments, we only consider three memory 

levels (corresponding to first, second, and third-order Markov 

chains). In fact, a first-order Markov model has a 10 msec 

history, a second-order process has 20 msec, and a third order 

Markov model accounts for a 30 msec history. Knowing the 

transition probabilities for each, artificial traces are generated 

from all the three models and the algorithms are evaluated 

against these traces. The results have been averaged over 50 

independent chain realizations.  

TABLE V 
PROBABILITY TRANSITION MATRIX FOR SLOW MARKOV SCENARIO 

 State 1 State 2 State 3 State 4 

State 1 0.85 0.05 0.05 0.05 

State 2 0.05 0.85 0.05 0.05 

State 3 0.05 0.05 0.85 0.05 

State 4 0.05 0.05 0.05 0.85 

TABLE VI 
PROBABILITY TRANSITION MATRIX FOR FAST MARKOV SCENARIO 

 State 1 State 2 State 3 State 4 

State 1 0.1 0.4 0.35 0.15 

State 2 0.25 0.05 0.3 0.4 

State 3 0.25 0.3 0.05 0.4 

State 4 0.4 0.25 0.3 0.05 

B. Simulation Results 

In this section, we discuss the simulation results on the 

convergence properties of our algorithm, PDR, energy 

efficiency as well as the average end-to-end delay.  
 
1) Convergence 

In order to show the convergence behavior of our DMABB-

CH algorithm, we only focus on the most challenging case 

which is the fast switching environment. A similar behavior can 

be seen in the other two cases but with a less noisy waveform 

and relatively faster convergence speed. The plot in Fig. 3 

illustrates the normalized regret of the proposed learning policy 

in the fast Markov scenario as a function of time. As expected, 

the regret approaches zero as the time horizon grows large. 

 

Fig. 3. Average regret over time 

2) Packet Delivery Ratio 

PDR is the ratio of the number of packets correctly received 
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at the destination to the number of packets sent out by a source. 

Under the settings shown in Table III, Fig. 4 plots the average 

PDR for the three methods under all the three scenarios. As a 

general observation, the dynamics of the environment has a 

deteriorating impact on PDR performance. This impact is worst 

for the pure channel hopping of default TSCH as it has no 

intelligence for adaptation. Under a stationary pattern of 

interference, the MAB-based hopping in [21] has almost a 

similar limiting PDR as ours, but performs progressively worse 

under higher interference dynamics. In Fig. 5, we plot the 

average PDR as the network size increases in the number of 

nodes. For this experiment, all the simulation parameters are as 

shown in Table III except for the number of nodes which varies 

from 20 to 40. In general, if the number of scheduling resource 

blocks (cells) remains the same, PDR decreases in more 

crowded topologies. Fig. 5 shows this decreasing trend for the 

algorithms in all three configurations. Next, in Fig. 6, we plot 

the average PDR versus the variations in the offered load. In a 

topology of 30 nodes, we simulate both lightly and heavily-

loaded scenarios by varying the load introduced by the active 

connections. Similarly, to the case of increasing network size, 

the PDR performance degrades as the load intensifies.  

The results are given in Table VII. In general, in higher order 

models, a node running a MAB-based algorithm remembers 

more “history”, and since additional history gives the node 

more predictive power, the performance of the learning 

algorithm has improved accordingly. In contrast, the PDR 

performance of the standard TSCH has no meaningful 

relationship with the memory level of the stochastic 

interference process.  

 

Fig. 4. Average PDR over time 

 

Fig. 5. PDR vs. Network size. 

 

Fig. 6. PDR vs. Offered load. 

TABLE VII 
PDR UNDER INTERFERENCE PROCESS WITH MEMORY 

MEMORY 

LEVEL 
PROPOSED 

(DMABB-CH) 
MAB TSCH 

1 0.69 0.64 0.28 

2 0.75 0.71 0.31 

3 0.82 0.76 0.29 

 

3) Energy efficiency 

In this experiment, we focus on energy efficiency defined as 

the energy required per successfully delivered packet (or bit). 

An intelligent and adaptive channel hopping strategy would be 

able to reduce the total number of unnecessary packet 

transmissions and receptions in the global network. The results 

in Fig. 7 were obtained for the duration of simulation in which 

packets flow from downstream nodes all the way up to the 

gateway. The plot sufficiently demonstrates that a lower 

number of packets are sent by each sensor node when the 

proposed approach is used when compared to the two baseline 

approaches. Under all network sizes, the proposed approach 

improves the overall energy efficiency of the network by 

reducing the number of retransmission attempts. 

 

Fig. 7. Energy Efficiency vs. Network size. 

4) Average end-to-end delay 

In order to measure the average end-to-end delay, we focus 

on the worst case scenario by considering a given node and 

assuming that the packet is generated at the beginning of the 

frame. Let 𝒯�́�→𝑘 = {𝑡1
�̀�→𝑘, . . , 𝑡𝕟�̀�→𝑘

�̀�→𝑘 } be the times-slots allocated 

by the scheduling subsystem to the communication link �̀� → 𝑘. 

Also, we denote by 𝕟𝑇𝑋
�̀�→𝑘 the number (re)transmissions actually 

occurred until the packet generated by �̀� in time-slot 0 is 

delivered to the next hop 𝑘. Given that the packet has to be 

queued until the next outgoing cell, the ℎ𝑜𝑝_𝑑𝑒𝑙𝑎𝑦�̀�→𝑘 can be 

measured by the following formula:  
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ℎ𝑜𝑝_𝑑𝑒𝑙𝑎𝑦�̀�→𝑘 = 𝜏𝑠𝑙𝑜𝑡 × 

{
  
 

  
 
((⌈

𝕟𝑇𝑋
�̀�→𝑘

𝕟�̀�→𝑘
⌉ − 1) × 𝑆𝐹𝑙𝑒𝑛𝑔𝑡ℎ + 𝑡𝕟

�̀�→𝑘

�̀�→𝑘 + 1) , 𝕟�̀�→𝑘|𝕟𝑇𝑋,�̀�→𝑘 

((⌈
𝕟𝑇𝑋
�̀�→𝑘

𝕟�̀�→𝑘
⌉ − 1) × 𝑆𝐹𝑙𝑒𝑛𝑔𝑡ℎ + 𝑡

𝕟𝑇𝑋
�̀�→𝑘 (𝑚𝑜𝑑 𝕟�̀�→𝑘)

�̀�→𝑘 + 1) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

Obviously, if the successful transmission occurs with a 

greater number of attempts, the delay increases as well. In 

measuring the average end-to-end delay, we use ℎ𝑜𝑝_𝑑𝑒𝑙𝑎𝑦�̀�→𝑘 

to compute the delay experienced over all the communication 

links along the path from the packet source to the final 

destination. Fig. 8 plots the delay associated with all the 

schemes versus the network size. A slight increasing trend is 

witnessed in general as the number of nodes increases. Again, 

in all cases, the proposed approach results in fewer number of 

retransmissions, thereby reducing the end-to-end latency. 

 

Fig. 8. End-to-end delay vs. Network size. 

VII. EXPERIMENTAL SETUP 

In this section, we briefly report on a small experiment based 

on a physical setup to measure the memory footprint of 

Algorithm 1 in an embedded IoT device. Additionally, we 

compare the measurements obtained from our implementation 

with the results of simulation under similar settings. 

TABLE VIII 
HARDWARE COMPONENTS USED IN THE EXPERIMENT 

Hardware Component Manufacturer # Specifications 

CC2650STK 

SensorTag 
Texas Instrument 2 2.4 GHz RF transceiver 

Debugger DevPack Texas Instrument 2 - 

 

JN5168 dongle 

NXP 

Semiconductors 
2 

2.4 GHz RF transceiver 

32-bit RISC processor, 
programmable clock speed 

32 kB RAM and 

4 kB EEPROM memory 

256 KB memory flashed with 

Contiki OS v. 3.0 

A. Implementation setup and memory footprint 

The hardware components used in our setup are listed in 

Table VIII. Our test consists of two miniature networks: one 2.4 

GHz Bluetooth-based network which acts as external interferer 

and one IEEE 802.15.4 TSCH-based sender-receiver pair (See 

Fig. 9 for a block diagram illustration). The Bluetooth-based 

network consists of two CC2650STK SensorTags [49] (See Fig. 

10(a)). Each tag is essentially a wireless Micro Controller Unit 

(MCU) which is connected to the USB port on a PC via a 

debugger development package (Debugger DevPack) (See Fig. 

10(b)) used to program the SensorTag node [50]. The Debugger 

DevPack is comprised of a small XDS110 JTAG debugger with 

a USB connection to ensure MCU does not turn off in the midst 

of the testing. The 2.4 GHz transceiver on CC2650STK allows 

for Bluetooth or 6LowPAN communications. External 

interference is mimicked by these two SensorTags where one 

acts as master (receiver) and the other as slave (sender). The 

slave node generates one packet at a random point during an 

interval ranging from 10 msec to 80 msec to emulate high and 

low interference. The use of frequency band by the SensorTags 

is left to the default configuration in the Bluetooth frequency 

hopping module. As for our TSCH setup, we use a pair of USB-

operated JN5168 dongles manufactured by NXP 

semiconductors [51] (See Fig. 11). The two dongles are flashed 

with Contiki OS v. 3.0 [52] which supports TSCH 

implementation. The DMABB-CH algorithm has been 

developed as a Contiki application running on the receiving 

dongles. After initial association, the application stands idle and 

only continuously listens on the UART interface. The process 

on the sending dongle generates one TSCH packet per timeslot. 

Upon reception of the very first sequence of packets, the 

process on the receiving dongle tunes to all physical channels 

according to the standard hopping sequence, and then it starts 

iterating over the MAIN loop in Algorithm 1 with a total of 𝑁 =
20000 iterations. 

The binary file size for Algorithm 1 developed for the 

receiving dongle was 10 KB, which can be read off from the 

SRAM usage in the .map file generated by gcc. Also, a custom 

routine has been developed to approximately profile the RAM 

usage during the runtime. At the end of the iterations, a total of 

2856 bytes have been used by the program. Hence, it is possible 

to execute DMABB-CH on the JN5168 dongles directly. 

However, the maximum number of child nodes that can be 

supported can be within the range of 6 to 10.  

PC/

Laptop

Debugger

DevPack

Debugger

DevPack

Master

CS2650 STK

Sensor Tag

Slave

CS2650 STK

Sensor Tag

TSCH

Receiver

(JN5168)

TSCH

Sender

(JN5168)

USB

USB
USB

Bluetooth Network TSCH Network
 

Fig. 9. Physical Setup to Measure Memory Footprint. 

  
(a) (b) 

Fig. 10. (a) C2650STK SensorTag. (b) Debugger DevPack. 
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Fig. 11. NXP JN5168 USB wireless dongle. 

B. Performance measurements  

In this section, we compare our hardware measurements 

against the simulation results. Obviously, our miniature single-

hop setting cannot be used for end-to-end measurements. 

Alternatively, we turn our attention to more elemental metrics: 

link-layer Packet Acknowledgement Ratio (PAR) and single-

hop delay. PAR is the ratio of the number of packets 

acknowledged by a given node’s neighbor to the number of 

packets sent to that neighbor. This is an informative metric as it 

can be used as the main proxy for PDR. A low PAR indicates 

that several retransmissions are required to achieve high end-

to-end PDR. As for single-hop delay, we argue that it is an even 

better metric to isolate the impact of the channel hopping 

strategy compared to end-to-end delay. This is because the 

latter is also very much affected by the scheduling algorithm.  

In Section VI, we reported on NS-3 simulation results based 

on Wi-Fi interference. Here, to match with our physical test-

bed, we need to simulate the impact of a Bluetooth interferer. 

The official release of NS-3 still lacks BLE support, but we used 

the extension in [53] as the BLE stack (BLE 4.1) for our 

simulation. In both the simulation and the test setup, we model 

the Bluetooth interference activity as a two-state ON/OFF 

Markov chain (See Fig. 12). In the ON state, the slave node in 

the Bluetooth network generates data packets with mean 

Poisson rate 𝜒 pkts/sec, and transmits to the master node with 

average TX power of 10 mW. In the plots, we report results for 

𝜒 ∈ {5,10,20} pkts/sec. In the OFF state, the Bluetooth network 

is dormant. This simple ON/OFF model can capture non-

stationary and bursty interference behavior. The 2.4 GHz 

channel occupancy is left to the default Bluetooth frequency 

hopping module. In simulation, we place the TSCH and the 

Bluetooth sender-receiver pairs in close proximity to mimic the 

test setup. The rest of the parameters for the TSCH network are 

chosen according to Table III for both the simulation and the 

physical setup. Fig. 13 and Fig. 14 show the results obtained for 

average PAR and average single-hop delay, respectively. The 

plots demonstrate the impact of the aggressiveness of the 

Bluetooth interference activity on the performance of our 

DMABB-CH algorithm as well as the two baseline schemes, 

and are drawn with 95% confidence level in stacked bar graph. 

The superiority of DMABB-CH in all cases of Bluetooth 

interference is consistent with the simulation results given for 

Wi-Fi interference in Section VI. A slight difference is noted 

between the values obtained from simulating Bluetooth 

interference and the results obtained from hardware 

measurements. In fact, the simulation results are more 

optimistic across all three schemes. This is partially caused by 

the blacklisting method that is used by the Bluetooth hopping 

module. It should be noted that blacklisting methods may differ 

across Bluetooth stack implementations. Moreover, although 

the empirical tests have been conducted in an isolated lab to 

ensure no outsider interference (except for the coexisting 

Bluetooth transmitter), generating the same context via 

simulation is no mean feat. It is very much dependent on the 

tuning of the physical layer parameters and the selected 

propagation models. 

 

 
𝑃11 𝑃12 𝑃22 𝑃21 

0.98 0.02 0.97 0.03 
 

Fig. 12. The Bluetooth interferer ON/OFF model. 

 

Fig. 13. Comparison of average PAR. 

 

Fig. 14. Comparison of average single-hop delay. 

VIII. CONCLUSION 

We addressed the problem of channel hopping in IEEE 

802.15.4-2015 TSCH networks. Assuming that the statistics of 

the external interference is not known beforehand, we proposed 

a lightweight learning-based algorithm that can be used 

independently by the receiving end of each link to select near-

optimal physical channels over time. The proposed algorithm 

has low computational complexity. Also, by implementing a 

physical test setup, it was shown that its memory footprint is 

within the confines of embedded devices used in IoT scenarios. 

Through simulations, the proposed scheme has been compared 

against default TSCH and a state-of-the-art multi-armed bandit-

based scheme. As evidenced by the results, accounting for the 

non-stationarity of the interference can improve the network 

performance in terms of packet delivery ratio, thereby resulting 
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in higher energy efficiency and lower end-to-end delay. 
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