Ant Colony Optimization

Part 1: Introduction

Spring 2009
Instructor: Dr. Masoud Yaghini

Ant Colony Optimization: Part 1

Outline

- Introduction
- Real Ants
- Artificial Ants
- Simple Ant Colony Optimization (S-ACO)
- Experiments with S-ACO
- References

Introduction

Ant Colony Optimization: Part 1

Swarm Intelligence

- Swarm intelligence (SI) is artificial intelligence based on the collective behavior of decentralized, self-organized systems.
- The expression was introduced by Gerardo Beni and Jing Wang in 1989.
- The natural examples of SI includes the behaviors of certain ants, honeybees, wasps, beetles, caterpillars, and termites

Swarm Intelligence

- Example of swarm intelligence algorithms:
- Ant colony optimization
- Particle swarm optimization
- Stochastic diffusion search
- Swarm robotics

Ant Colony Optimization

- Ant Colony Optimization (ACO) is inspired by the foraging behavior of ant colonies
- ACO algorithms are used for solving Discrete optimization problems.
- ACO is one of the most successful examples of metaheuristic algorithms.

Ant Colony Optimization: Part 1

Ant Colony Optimization

- Examples of ACO algorithms
- Ant System (AS)
- Elitist Ant System (EAS)
- Rank-Based Ant System (ASrank)
- Min-Max Ant System (MMAS)
- Ant Colony System (ACS)
- Approximate Nondeterministic Tree Search (ANTS)
- Hyper-Cube Framework

Ant Colony Optimization: Part 1

ACO Brief History

- 1989 \& 1990:
- By Goss et al. \& Deneuborg et al.
- Experiments with Argentine ants
- The ants prefer the shortest path from the nest to the food source
- 1991:
- By Dorigo et. al.
- Ant System (AS) was the first ACO algorithm presented for shortest paths
- 1998:
- Ant Colony Optimization is the name given by Dorigo (Milan, Italy),
- A class of algorithms whose first member was AS.

Ant Colony Optimization: Part 1

ACO Applications

Problem type	Problem name	Main references
Routing	Traveling salesman	Dorigo, Maniezzo, \& Colorni (1991a, b, 1996)
	Dorigo (1992)	
Gambardella \& Dorigo (1995)		
	Dorigo \& Gambardella (1997a, b)	
	Stützle \& Hoos (1997, 2000)	
	Bullnheimer, Hartl, \& Strauss (1999c)	
	Cordón, de Viana, Herrera, \& Morena (2000)	
	Vehicle routing	Bullnheimer, Hartl, \& Strauss (1999a,b)
	Gambardella, Taillard, \& Agazzi (1999)	
	Reimann, Stummer, \& Doerner (2002)	
	Gambardella \& Dorigo (1997, 2000)	

ACO Applications		
Problem type	Problem name	Main references
Assignment	Quadratic assignment	Maniezzo, Colorni, \& Dorigo (1994) Stützle (1997b) Maniezzo \& Colorni (1999) Maniezzo (1999) Stützle \& Hoos (2000)
	Graph coloring	Costa \& Hertz (1997)
	Generalized assignment	Lourenço \& Serra (1998, 2002)
	Frequency assignment	Maniezzo \& Carbonaro (2000)
	University course timetabling	Socha, Knowles, \& Sampels (2002) Socha, Sampels, \& Manfrin (2003)

Ant Colony Optimization: Part 1

ACO Applications

Problem type	Problem name	Main references
Scheduling	Job shop	Colorni, Dorigo, Maniezzo, \& Trubian (1994)
	Open shop	Pfahringer (1996)
	Flow shop	Stützle (1998a)
	Total tardiness	Bauer, Bullnheimer, Hartl, \& Strauss (2000)
	Total weighted tardiness	den Besten, Stützle, \& Dorigo (2000)
	Merkle \& Middendorf (2000, 2003a)	
	Gagné, Price, \& Gravel (2002)	
	Project scheduling	Merkle, Middendorf, \& Schmeck (2000a, 2002)
	Group shop	Blum (2002a, 2003a)

Ant Colony Optimization: Part 1

ACO Applications

Problem type	Problem name	Main references
Subset	Multiple knapsack	Leguizamón \& Michalewicz (1999)
	Max independent set	Leguizamón \& Michalewicz (2000)
	Redundancy allocation	Liang \& Smith (1999)
	Set covering	Leguizamón \& Michalewicz (2000)
	Wadji, Rahoual, Talbi, \& Bachelet (2000) Weight constrained graph	Cordone \& Maffioli (2001)
	Arc-weighted l-cardinality tree	Blum \& Blesa (2003)
	Maximum clique	Fenet \& Solnon (2003)

Ant Colony Optimization: Part 1

ACO Applications

Problem type	Problem name	Main references
Machine learning	Classification rules	Parpinelli, Lopes, \& Freitas (2002b)
	Bayesian networks	de Campos, Gámez, \& Puerta (2002b)
	Fuzzy systems	Casillas, Cordón, \& Herrera (2000)
Network routing	Connection-oriented	
	network routing	Rothkrantz (1996)
		Schoonderwoerd, Holland, \& Bruten (1997)
		White, Pagurek, \& Oppacher (1998)
		Di Caro \& Dorigo (1998d)
		Theraulaz (1998)
	Di Caro \& Dorigo (1997, 1998c,f)	
	Connectionless network	Subramanian, Druschel, \& Chen (1997)
	routing	Heusse, Snyers, Guérin, \& Kuntz (1998)
		Van der Put (1998)
	Optical network routing	Navarro Varela, \& Sinclair (1999)

Real Ants

Ant Colony Optimization: Part 1

Stigmergy

- Ant colonies, in spite of the simplicity of their individuals, present a highly structured social organization.
- As a result of this organization, ant colonies can accomplish complex.
- Ants coordinate their activities via stigmergy

Ant Colony Optimization: Part 1

Stigmergy

- Stigmergy is a form of indirect communication mediated by modifications of the environment.
- an individual modifies the environment
- other individuals respond to that change at a later time
- The environment mediates the communication among individuals
- A foraging ant deposits a chemical on the ground which increases the probability that other ants will follow the same path.

Pheromones

- The communication among individuals, or between individuals and the environment, is based on the use of chemicals produced by the ants.
- These chemicals are called pheromones.
- Trail pheromone is a specific type of pheromone that some ants use for marking paths on the ground, for example, paths from food sources to the nest.

Ant Colony Optimization: Part 1

Double Bridge Experiments

- Deneubourg and colleagues have shown that foraging ants can find the shortest path between their nest and a food source
- They used a double bridge connecting a nest of ants and a food source.
- They ran experiments varying the length of the two branches of the double bridge.

Ant Colony Optimization: Part 1

Double Bridge Experiments

Ant Colony Optimization: Part 1

First Experiment

Ant Colony Optimization: Part 1

Second Experiment

Ant Colony Optimization: Part 1

Foraging behavior of Ants

- 2 ants start with equal probability of going on either path.

Ant Colony Optimization: Part 1

Foraging behavior of Ants

- The ant on shorter path has a shorter to-and-fro time from it's nest to the food.

Ant Colony Optimization: Part 1

Foraging behavior of Ants

- The density of pheromone on the shorter path is higher because of 2 passes by the ant (as compared to 1 by the other).

Ant Colony Optimization: Part 1

Foraging behavior of Ants

- The next ant takes the shorter route.

Ant Colony Optimization: Part 1

Foraging behavior of Ants

- Over many iterations, more ants begin using the path with higher pheromone, thereby further reinforcing it.

Ant Colony Optimization: Part 1

Foraging behavior of Ants

- After some time, the shorter path is almost exclusively used.

Ant Colony Optimization: Part 1 Foraging behavior of Ants

Inspiring Source of ACO

- This collective trail-laying and trail-following behavior whereby an ant is influenced by a chemical trail left by other ants is the inspiring source of ACO.

Artificial Ants

Ant Colony Optimization: Part 1

Artificial Ants

- The double bridge experiments show clearly that ant colonies have a built-in optimization capability
- By the use of probabilistic rules based on local information they can find the shortest path between two points in their environment.
- It is possible to design artificial ants that, by moving on a graph modeling the double bridge, find the shortest path between the two nodes corresponding to the nest and to the food source.

Ant Colony Optimization: Part 1

Artificial Ants

- As a first step toward the definition of artificial ants, consider this graph

- The graph consists of two nodes (1 and 2, representing the nest and the food respectively)

Ant Colony Optimization: Part 1

Artificial Ants

- The nodes are connected by a short and a long arc
- In the example the long arc is r times longer than the short arc, where r is an integer number.
- We assume the time to be discrete ($\mathfrak{t}=1,2, \ldots$) and that at each time step each ant moves toward a neighbor node at constant speed of one unit of length per time unit.

Ant Colony Optimization: Part 1

Artificial Ants

- Ants add one unit of pheromone to the arcs they use.
- Ants move on the graph by choosing the path probabilistically:
- $P_{i s}(t)$ is the probability for an ant located in node i at time t to choose the short path, and
- $P_{i j}(t)$ the probability to choose the long path.
- These probabilities are a function of the pheromone trails $\varphi_{i a}$ that ants in node i

Ant Colony Optimization: Part 1

Artificial Ants

- The probabilities

$$
\begin{aligned}
& p_{i s}(t)=\frac{\left[\varphi_{i s}(t)\right]^{\alpha}}{\left[\varphi_{i s}(t)\right]^{\alpha}+\left[\varphi_{i l}(t)\right]^{\alpha}} \\
& p_{i l}(t)=\frac{\left[\varphi_{i l}(t)\right]^{\alpha}}{\left[\varphi_{i s}(t)\right]^{\alpha}+\left[\varphi_{i l}(t)\right]^{\alpha}}
\end{aligned}
$$

Ant Colony Optimization: Part 1

Artificial Ants

- Trail update on the two branches is performed as follows:

$$
\begin{array}{r}
\varphi_{i s}(t)=\varphi_{i s}(t-1)+p_{i s}(t-1) m_{i}(t-1)+p_{j s}(t-1) m_{j}(t-1), \\
(i=1, j=2 ; i=2, j=1), \\
\varphi_{i l}(t)=\varphi_{i l}(t-1)+p_{i l}(t-1) m_{i}(t-1)+p_{j l}(t-r) m_{j}(t-r), \\
(i=1, j=2 ; i=2, j=1),
\end{array}
$$

- Where $m_{i}(t)$ the number of ants on node i at time t, is given by

$$
\begin{array}{r}
m_{i}(t)=p_{j s}(t-1) m_{j}(t-1)+p_{j l}(t-r) m_{j}(t-r) \\
(i=1, j=2 ; i=2, j=1)
\end{array}
$$

Ant Colony Optimization: Part 1

Artificial Ants

- Another way of modeling:

- In this model each arc of the graph has the same length, and a longer branch is represented by a sequence of arcs.
- In the figure, for example, the long branch is twice as long as the short branch.

Ant Colony Optimization: Part 1

Artificial Ants

- Pheromone updates are done with one time unit delay on each arc.
- The two models are equivalent from a computational point of view, yet the second model permits an easier algorithmic implementation when considering graphs with many nodes.
- By setting the number of ants to 20 , the branch length ratio to $r=2$, and the parameter α to 2 , and $t=100$, the system converges rapidly toward the use of the short branch.

Ant Colony Optimization: Part 1

Artificial Ants

Minimum Cost Paths

Ant Colony Optimization: Part 1

Artificial Ants

- Let us consider a static, connected graph $G=(N, A)$, where N is the set of nodes and A is the set of undirected arcs connecting them.

Ant Colony Optimization: Part 1

Artificial Ants

- Artificial ants whose behavior is a straightforward extension of the behavior of the real ants, while building a solution, may generate loops.
- As a consequence of the forward pheromone trail updating mechanism, loops tend to become more and more attractive and ants can get trapped in them.

Ant Colony Optimization: Part 1

Artificial Ants

- Artificial ants are given a limited form of memory in which they can store:
- The paths they have followed so far, and
- The cost of the links they have traversed.
- Via the use of memory, the ants can implement a number of useful behaviors

Ant Colony Optimization: Part 1

Artificial Ants

- The artificial ants have these behaviors:

1. Probabilistic solution construction biased by pheromone trails, without forward pheromone updating
2. Deterministic backward path with loop elimination and with pheromone updating
3. Evaluation of the quality of the solutions generated and use of the solution quality in determining the quantity of pheromone to deposit

Simple Ant Colony Optimization (S-ACO)

Ant Colony Optimization: Part 1

S-ACO

- The simple ACO algorithm (S-ACO) can be used to find a solution to the shortest path problem defined on the graph.
- A complete cycle of S-ACO:
- Forward ants and solution construction
- Backward ants and loop elimination
- Pheromone updates
- Pheromone evaporation

Ant Colony Optimization: Part 1

Forward ants and solution construction

- There are two working modes for the ants: either forwards or backwards.
- Each ant builds, starting from the source node, a solution to the problem by applying a step-by-step decision policy.
- The ants memory allows them to retrace the path it has followed while searching for the destination node
- Pheromones are only deposited in backward mode.

Ant Colony Optimization: Part 1

Forward ants and solution construction

- Assume a connected graph $G=(N, A)$.
- Associated with each edge (i, j) of the graph there is a variable $\tau_{i j}$ termed artificial pheromone trail.
- Every artificial ant is capable of "marking" an edge with pheromone and "smelling" (reading) the pheromone on the trail.
- At the beginning of the search process, a constant amount of pheromone (e.g., $\tau_{i j}=1$) is assigned to all the arcs.

Ant Colony Optimization: Part 1

Forward ants and solution construction

- An ant k located at node i uses the pheromone trail $\tau_{i j}(t)$ to compute the probability of choosing j as next node:

$$
p_{i j}^{k}= \begin{cases}\frac{\tau_{i j}{ }^{\alpha}}{\sum_{j \in N_{i}^{k}} \tau_{i j}^{\alpha}}, & \text { if } j \in N_{i}^{k} \\ 0, & \text { if } j \notin N_{i}^{k}\end{cases}
$$

- Where
$-N_{i}^{k}$ is the neighborhood of ant k in node i.
$-\alpha$ is a parameter that controls the relative weight of pheromone trail

Ant Colony Optimization: Part 1

The neighborhood of ant k in node i

- The neighborhood of a node i contains all the nodes directly connected to node i in the graph $G=(N, A)$, except for the predecessor of node i (i.e., the last node the ant visited before moving to i).
- In this way the ants avoid returning to the same node they visited immediately before node i.
- Only in case N_{i}^{k} is empty, which corresponds to a dead end in the graph, node i 's predecessor is included into N_{i}^{k}.

Ant Colony Optimization: Part 1

Forward ants and solution construction

- Ants use differences paths.
- Therefore the time step at which ants reach the destination node may differ from ant to ant.
- Ants traveling on shorter paths will reach their destinations faster.

Ant Colony Optimization: Part 1

Backward ants and loop elimination

- When reaching the destination node, the ant switches from the forward mode to the backward mode
- Before moving backward on their memorized path, they eliminate any loops from it has built while searching for its destination node.
- While moving backwards, the ants leave pheromones on the arcs they traversed.

Ant Colony Optimization: Part 1

Loop elimination

- Loop elimination can be done by iteratively scanning the node identifiers position by position starting from the source node
- For the node at the i-th position, the path is scanned starting from the destination node until the first occurrence of the node is encountered
- If we have $j>i$, the subpath from position $i+1$ to position jcorresponds to a loop and can be eliminated.

Ant Colony Optimization: Part 1 The scanning process for loop elimination

Final loop free path

Ant Colony Optimization: Part 1

Pheromone Update

- During its return travel to the source, the k-th ant deposits an amount $\Delta \tau^{\star}$ of pheromone on arcs it has visited.

$$
\tau_{i j} \leftarrow \tau_{i j}+\Delta \tau^{\kappa}
$$

- By using this rule, the probability increases that forthcoming ants will use this arc.
- An important aspect is the choice of $\Delta \tau \mathrm{k}$.

Ant Colony Optimization: Part 1

Pheromone Update

Type of pheromone update:

- The same constant value:
- The same constant value for all the ants.
- Ants which have detected a shorter path can deposit pheromone earlier than ants traveling on a longer path.
- Function of the solution quality:
- The ants evaluate the cost of the paths they have traversed.
- The shorter paths will receive a greater deposit of pheromones.

Ant Colony Optimization: Part 1

Pheromone evaporation

- To avoid premature convergence pheromone evaporation is done
- Convergence: when the probability of selecting the arcs of particular path becomes close to 1
- An evaporation rule will be tied with the pheromones, which will reduce the chance for poor quality solutions.

Ant Colony Optimization: Part 1

Pheromone evaporation

- After each ant k has moved to the next node, the pheromones evaporate by the following equation to all the arcs:

$$
\tau_{i j} \leftarrow(1-p) \tau_{i j}, \quad \forall(i, j) \in A
$$

- where $p \in(0,1]$ is a parameter.

Ant Colony Optimization: Part 1

S-ACO importance aspects

- S-ACO importance aspects:
- Number of ants
- The Value of α
- Pheromone evaporation rate (p)
- Type of pheromone update

Experiments with S-ACO

Ant Colony Optimization: Part 1

First Experiments with S-ACO

- The experiments were run using the double bridge
- In this model, each arc of the graph has the same length, and a longer branch is represented by a sequence of arcs.

Ant Colony Optimization: Part 1

First Experiments

1. Run S-ACO with:

- Different values for the number m of ants
- Ants depositing a constant amount of pheromone on the visited $\operatorname{arcs}\left(\Delta \tau^{k}=\right.$ constant $)$

2. Run S-ACO With:

- Different values for the number m of ants
- Ants depositing an amount of pheromone is $\Delta \tau^{k}$ $=1 / L^{k}$, where L^{k} is the length of ant k's path

Ant Colony Optimization: Part 1

First Experiments

- For each experiment we ran 100 trials and each trial was stopped after each ant had moved 1000 steps (moving from one node to the next).
- Evaporation was set to $p=0$
- The parameter α was set to 2
- At the end of the trial we checked whether the pheromone trail was higher on the short or on the long path.

Ant Colony Optimization: Part 1

Results of First Experiments

- Percentage of trials in which S-ACO converged to the long path

m	1	2	4	8	16	32	64	128	256	512
without path length	50	42	26	29	24	18	3	2	1	0
with path length	18	14	8	0	0	0	0	0	0	0

- The results obtained in experiment 2 with pheromone updates based on solution quality are much better.

Ant Colony Optimization: Part 1

Influence of the parameter α

- In additional experiments, we examined the influence of the parameter α on the convergence behavior of S-ACO:
- Investigating the cases where a was changed in step sizes of 0.25 from 1 to 2.
- In the first case we found that increasing \boldsymbol{a} had a negative effect on the convergence behavior
- In the second case the results were rather independent of the particular value of α.

Ant Colony Optimization: Part 1

First Experiments

- The results with S-ACO indicate that differential path length alone can be enough to let S-ACO converge to the optimal solution on small graphs
- at the price of having to use large colony sizes, which results in long simulation times.

Ant Colony Optimization: Part 1

Second Experiments with S-ACO

- In a second set of experiments, we studied the influence that pheromone trail evaporation.
- Experiments were run using the extended double bridge graph

Second Experiments

- The ants deposit an amount of pheromone that is the inverse of their path length (i.e., $\Delta \tau^{k}$ $=1 / L^{A}$)
- Before depositing pheromone, ants eliminate loops

Ant Colony Optimization: Part 1

Second Experiments

- We ran experiments with S-ACO and different settings for the evaporation rate:

$$
\rho \in\{0,0.01,0.1\}
$$

- $\quad \alpha=1$ and $m=128$ in all experiments.

Ant Colony Optimization: Part 1

Plot of Second Experiments

- To evaluate the behavior of the algorithm we observe the development of the path lengths found by the ants.
- We plot the moving averages of the path lengths after loop elimination (moving averages are calculated using the 4 most recent paths found by the ants).
- In the graph of figure a point is plotted each time an ant has completed a journey from the source to the destination and back

Ant Colony Optimization: Part 1

Number of shortest paths found

Pheromone Evaporation

- If $p=0$, no pheromone evaporation takes place.
- An evaporation rate of $p=0.1$ is rather large,
- Because evaporation takes place at each iteration of the S-ACO algorithm
- After ten iterations, which corresponds to the smallest number of steps that an ant needs to build the shortest path and to come back to the source, roughly 65% of the pheromone on each arc evaporates,
- While with $p=0.01$ this evaporation is reduced to around 10%.

Ant Colony Optimization: Part 1

Results: No evaporation

- If no evaporation is used, the algorithm does not converge
- It can be seen by the fact that the moving average has approximately the value 7.5 , which does not correspond to the length of any path
- With these parameter settings, this result typically does not change if the run lasts a much higher number of iterations.

Ant Colony Optimization: Part 1

Results: With Evaporation

- With pheromone evaporation, the behavior of S-ACO is significantly different.
- After a short transitory phase, S-ACO converges to a single path
- For $p=0.01$ the value of shortest path is 5
- For $p=0.1$ the path of length is 6

Ant Colony Optimization: Part 1

Results: Pheromone Updates

- Without pheromone updates based on solution quality, S-ACO performance is much worse.
- The algorithm converges very often to the suboptimal solution of length 8
- The larger the parameters α or p, the faster SACO converges to this suboptimal solution.

Ant Colony Optimization: Part 1
 Results: Pheromone Evaporation Rate

- The pheromone evaporation rate p can be critical.
- when evaporation was set to a value that was too high, S-ACO often converged to suboptimal paths.
- For example, in fifteen trials with p set to 0.2, S-ACO converged:
- once to a path of length 8,
- once to a path of length 7, and
- twice to a path of length 6.
- Setting p to 0.01 S-ACO converged to the shortest path in all trials.

Results: Values of α

- Large values of α generally result in a worse behavior of S-ACO
- Because they excessively emphasize the initial random fluctuations.

References

Ant Colony Optimization: Part 1

References

- M. Dorigo and T. Stützle. Ant Colony Optimization, MIT Press, Cambridge, 2004.

The End

