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Swarm Intelligence

� Swarm intelligence (SI) is artificial intelligence 

based on the collective behavior of 

decentralized, self-organized systems. 

� The expression was introduced by Gerardo 

Beni and Jing Wang in 1989.Beni and Jing Wang in 1989.

� The natural examples of SI includes the 

behaviors of certain ants, honeybees, wasps, 

beetles, caterpillars, and termites
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Swarm Intelligence

� Example of swarm intelligence algorithms:

– Ant colony optimization

– Particle swarm optimization

– Stochastic diffusion search

– Swarm robotics – Swarm robotics 
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Ant Colony Optimization

� Ant Colony Optimization (ACO) is inspired by 

the foraging behavior of ant colonies

� ACO algorithms are used for solving Discrete 

optimization problems.

� ACO is one of the most successful examples of � ACO is one of the most successful examples of 

metaheuristic algorithms. 
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Ant Colony Optimization

� Examples of ACO algorithms

– Ant System (AS)

– Elitist Ant System (EAS)

– Rank-Based Ant System (ASrank)

– Min-Max Ant System (MMAS)– Min-Max Ant System (MMAS)

– Ant Colony System (ACS)

– Approximate Nondeterministic Tree Search (ANTS)

– Hyper-Cube Framework
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ACO Brief History

� 1989 & 1990: 

– By Goss et al. & Deneuborg et al.

– Experiments with Argentine ants
– The ants prefer the shortest path from the nest to the food 

source

� 1991: 
– By Dorigo et. al.– By Dorigo et. al.
– Ant System (AS) was the first ACO algorithm presented for 

shortest paths

� 1998: 
– Ant Colony Optimization is the name given by Dorigo

(Milan, Italy), 
– A class of algorithms whose first member was AS.
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ACO Applications
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ACO Applications



Real Ants
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Stigmergy

� Ant colonies, in spite of the simplicity of their 

individuals, present a highly structured social 

organization.

� As a result of this organization, ant colonies 

can accomplish complex.can accomplish complex.

� Ants coordinate their activities via stigmergy
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Stigmergy

� Stigmergy is a form of indirect 

communication mediated by modifications of 

the environment.

– an individual modifies the environment 

– other individuals respond to that change at a later – other individuals respond to that change at a later 

time

� The environment mediates the communication 

among individuals

� A foraging ant deposits a chemical on the 

ground which increases the probability that 

other ants will follow the same path.
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Pheromones

� The communication among individuals, or 

between individuals and the environment, is 

based on the use of chemicals produced by the 

ants.

� These chemicals are called pheromones.� These chemicals are called pheromones.

� Trail pheromone is a specific type of 

pheromone that some ants use for marking 

paths on the ground, for example, paths from 

food sources to the nest.
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Double Bridge Experiments

� Deneubourg and colleagues have shown that 

foraging ants can find the shortest path 

between their nest and a food source

� They used a double bridge connecting a nest 

of ants and a food source. of ants and a food source. 

� They ran experiments varying the length of the 

two branches of the double bridge.
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Double Bridge Experiments
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First Experiment
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Second Experiment



Ant Colony Optimization: Part 1

Foraging behavior of Ants

� 2 ants start with equal probability of going on 

either path.
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Foraging behavior of Ants

� The ant on shorter path has a shorter to-and-fro 

time from it’s nest to the food.



Ant Colony Optimization: Part 1

Foraging behavior of Ants

� The density of pheromone on the shorter path is 

higher because of 2 passes by the ant (as 

compared to 1 by the other).
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Foraging behavior of Ants

� The next ant takes the shorter route.
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Foraging behavior of Ants

� Over many iterations, more ants begin using the 

path with higher pheromone, thereby further 

reinforcing it.
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Foraging behavior of Ants

� After some time, the shorter path is almost 

exclusively used.
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Foraging behavior of Ants
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Inspiring Source of ACO

� This collective trail-laying and trail-following 

behavior whereby an ant is influenced by a 

chemical trail left by other ants is the inspiring 

source of ACO.



Artificial Ants
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Artificial Ants

� The double bridge experiments show clearly 

that ant colonies have a built-in optimization 

capability

� By the use of probabilistic rules based on local 

information they can find the shortest path information they can find the shortest path 

between two points in their environment.

� It is possible to design artificial ants that, by 

moving on a graph modeling the double bridge, 

find the shortest path between the two nodes 

corresponding to the nest and to the food 

source.
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Artificial Ants

� As a first step toward the definition of artificial 

ants, consider this graph

� The graph consists of two nodes (1 and 2, 

representing the nest and the food 

respectively)
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Artificial Ants

� The nodes are connected by a short and a 

long arc 

� In the example the long arc is r times longer 

than the short arc, where r is an integer 

number.number.

� We assume the time to be discrete (tً=1, 2, …) 

and that at each time step each ant moves 

toward a neighbor node at constant speed of 

one unit of length per time unit.
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Artificial Ants

� Ants add one unit of pheromone to the arcs 

they use. 

� Ants move on the graph by choosing the path 

probabilistically: 

– P (t) is the probability for an ant located in node i at – Pis(t) is the probability for an ant located in node i at 

time t to choose the short path, and 

– Pil(t) the probability to choose the long path.

� These probabilities are a function of the 

pheromone trails φia that ants in node i
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Artificial Ants

� The probabilities
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Artificial Ants

� Trail update on the two branches is performed as 

follows:

� Where mi(t) the number of ants on node i at time t, is 

given by
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Artificial Ants

� Another way of modeling:

� In this model each arc of the graph has the same 

length, and a longer branch is represented by a 

sequence of arcs. 

� In the figure, for example, the long branch is twice as 

long as the short branch. 
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Artificial Ants

� Pheromone updates are done with one time 

unit delay on each arc. 

� The two models are equivalent from a 

computational point of view, yet the second 

model permits an easier algorithmic model permits an easier algorithmic 

implementation when considering graphs with 

many nodes.

� By setting the number of ants to 20, the 

branch length ratio to r=2, and the parameter 

α to 2, and t=100, the system converges 

rapidly toward the use of the short branch.
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Artificial Ants



Minimum Cost Paths
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Artificial Ants

� Let us consider a static, connected graph G = (N, A), 

where N is the set of nodes and A is the set of 

undirected arcs connecting them.
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Artificial Ants

� Artificial ants whose behavior is a 

straightforward extension of the behavior of the 

real ants, while building a solution, may 

generate loops.

� As a consequence of the forward pheromone � As a consequence of the forward pheromone 

trail updating mechanism, loops tend to 

become more and more attractive and ants can 

get trapped in them.
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Artificial Ants

� Artificial ants are given a limited form of 

memory in which they can store:

– The paths they have followed so far, and

– The cost of the links they have traversed.

� Via the use of memory, the ants can implement � Via the use of memory, the ants can implement 

a number of useful behaviors
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Artificial Ants

� The artificial ants have these behaviors: 

1. Probabilistic solution construction biased by 

pheromone trails, without forward pheromone 

updating

2. Deterministic backward path with loop elimination Deterministic backward path with loop elimination 
and with pheromone updating 

3. Evaluation of the quality of the solutions 

generated and use of the solution quality in 

determining the quantity of pheromone to deposit



Simple Ant Colony Optimization 
(S-ACO)
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S-ACO

� The simple ACO algorithm (S-ACO) can be 

used to find a solution to the shortest path 

problem defined on the graph.

� A complete cycle of S-ACO:

– Forward ants and solution construction– Forward ants and solution construction

– Backward ants and loop elimination

– Pheromone updates

– Pheromone evaporation
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Forward ants and solution construction

� There are two working modes for the ants: 

either forwards or backwards.

� Each ant builds, starting from the source node, 

a solution to the problem by applying a step-

by-step decision policy.by-step decision policy.

� The ants memory allows them to retrace the 

path it has followed while searching for the 

destination node 

� Pheromones are only deposited in backward 

mode. 
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Forward ants and solution construction

� Assume a connected graph G = (N, A). 

� Associated with each edge (i, j) of the graph 

there is a variable τij termed artificial 

pheromone trail.

� Every artificial ant is capable of “marking” an � Every artificial ant is capable of “marking” an 

edge with pheromone and “smelling” (reading) 

the pheromone on the trail.

� At the beginning of the search process, a 

constant amount of pheromone (e.g., τij=1) is 

assigned to all the arcs.
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Forward ants and solution construction

• An ant k located at node i uses the pheromone trail τij(t) 

to compute the probability of choosing j as next node: 
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iN
 is the neighborhood of ant k in node i. 

− α is a parameter that controls the relative weight of 

pheromone trail 
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The neighborhood of ant k in node i

• The neighborhood of a node i contains all the nodes 

directly connected to node i in the graph G = (N, A), 

except for the predecessor of node i (i.e., the last node the 

ant visited before moving to i).  

• In this way the ants avoid returning to the same node they • In this way the ants avoid returning to the same node they 

visited immediately before node i.  

• Only in case 
k

iN  is empty, which corresponds to a dead 

end in the graph, node i’s predecessor is included into 
k

iN .  
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Forward ants and solution construction

� Ants use differences paths.

� Therefore the time step at which ants reach the 

destination node may differ from ant to ant.

� Ants traveling on shorter paths will reach their 

destinations faster.destinations faster.
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Backward ants and loop elimination

� When reaching the destination node, the ant 

switches from the forward mode to the 

backward mode

� Before moving backward on their memorized 

path, they eliminate any loops from it has built path, they eliminate any loops from it has built 

while searching for its destination node.

� While moving backwards, the ants leave 

pheromones on the arcs they traversed.  
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Loop elimination

� Loop elimination can be done by iteratively 

scanning the node identifiers position by 

position starting from the source node

� For the node at the i-th position, the path is 

scanned starting from the destination node scanned starting from the destination node 

until the first occurrence of the node is 

encountered

� If we have j > i, the subpath from position i + 1 

to position j corresponds to a loop and can be 

eliminated. 
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The scanning process for loop elimination
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Pheromone Update

� During its return travel to the source, the k-th 

ant deposits an amount ∆τk of pheromone on 

arcs it has visited.

τij ← τij + ∆τk
ij ij

� By using this rule, the probability increases that 

forthcoming ants will use this arc.

� An important aspect is the choice of ∆τk.
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Pheromone Update

Type of pheromone update:

� The same constant value: 
– The same constant value for all the ants.

– Ants which have detected a shorter path can 
deposit pheromone earlier than ants traveling on a 
longer path.longer path.

� Function of the solution quality:
– The ants evaluate the cost of the paths they have 

traversed.

– The shorter paths will receive a greater deposit of 
pheromones.
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Pheromone evaporation

� To avoid premature convergence pheromone 

evaporation is done

– Convergence: when the probability of selecting the 

arcs of particular path becomes close to 1

� An evaporation rule will be tied with the � An evaporation rule will be tied with the 

pheromones, which will reduce the chance for 

poor quality solutions.
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Pheromone evaporation

� After each ant k has moved to the next node, the 

pheromones evaporate by the following equation to all 

the arcs:

where                   is a parameter.

(1 ) , ( , )ij ijp i j Aτ τ← − ∀ ∈

(0,1]p ∈� where                   is a parameter.(0,1]p ∈
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S-ACO importance aspects 

� S-ACO importance aspects:

– Number of ants

– The Value of α

– Pheromone evaporation rate (p)

– Type of pheromone update– Type of pheromone update



Experiments with S-ACO
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First Experiments with S-ACO

� The experiments were run using the double bridge

� In this model, each arc of the graph has the same 

length, and a longer branch is represented by a 

sequence of arcs. 
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First Experiments

1. Run S-ACO with:

– Different values for the number m of ants

– Ants depositing a constant amount of pheromone 

on the visited arcs (∆τk =constant)

2. Run S-ACO With:2. Run S-ACO With:

– Different values for the number m of ants

– Ants depositing an amount of pheromone is ∆τk

=1/Lk, where Lk is the length of ant k’s path
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First Experiments

� For each experiment we ran 100 trials and 
each trial was stopped after each ant had 
moved 1000 steps (moving from one node to 
the next). 

� Evaporation was set to p = 0

� The parameter α was set to 2

� At the end of the trial we checked whether the 
pheromone trail was higher on the short or on 
the long path.
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Results of First Experiments

� Percentage of trials in which S-ACO converged to the 

long path

� The results obtained in experiment 2 with pheromone 

updates based on solution quality are much better.
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Influence of the parameter α

� In additional experiments, we examined the 

influence of the parameter α on the 

convergence behavior of S-ACO:

� Investigating the cases where a was changed 

in step sizes of 0.25 from 1 to 2.in step sizes of 0.25 from 1 to 2.

– In the first case we found that increasing α had a 

negative effect on the convergence behavior 

– In the second case the results were rather 

independent of the particular value of α.
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First Experiments

� The results with S-ACO indicate that 

differential path length alone can be enough to 

let S-ACO converge to the optimal solution on 

small graphs

– at the price of having to use large colony sizes, – at the price of having to use large colony sizes, 

which results in long simulation times.
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Second Experiments with S-ACO

� In a second set of experiments, we studied the 

influence that pheromone trail evaporation. 

� Experiments were run using the extended double 
bridge graph
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Second Experiments

� The ants deposit an amount of pheromone that 

is the inverse of their path length (i.e., ∆τk

=1/Lk) 

� Before depositing pheromone, ants eliminate 

loopsloops
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Second Experiments

� We ran experiments with S-ACO and different settings 

for the evaporation rate:

� α = 1 and m = 128 in all experiments.
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Plot of Second Experiments

� To evaluate the behavior of the algorithm we 

observe the development of the path lengths 

found by the ants. 

� We plot the moving averages of the path 

lengths after loop elimination (moving averages lengths after loop elimination (moving averages 

are calculated using the 4  most recent paths 

found by the ants). 

� In the graph of figure a point is plotted each 

time an ant has completed a journey from the 

source to the destination and back 
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Number of shortest paths found
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Pheromone Evaporation

� If p = 0, no pheromone evaporation takes 

place. 

� An evaporation rate of p =0.1 is rather large, 

– Because evaporation takes place at each iteration 

of the S-ACO algorithmof the S-ACO algorithm

– After ten iterations, which corresponds to the 

smallest number of steps that an ant needs to build 

the shortest path and to come back to the source, 

roughly 65% of the pheromone on each arc 

evaporates, 

– While with p = 0.01 this evaporation is reduced to 

around 10%.
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Results: No evaporation 

� If no evaporation is used, the algorithm does 

not converge

� It can be seen by the fact that the moving 

average has approximately the value 7.5, 

which does not correspond to the length of any which does not correspond to the length of any 

path 

� With these parameter settings, this result 

typically does not change if the run lasts a 

much higher number of iterations.
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Results: With Evaporation

� With pheromone evaporation, the behavior of 

S-ACO is significantly different. 

� After a short transitory phase, S-ACO 

converges to a single path

� For p = 0.01 the value of shortest path is 5 � For p = 0.01 the value of shortest path is 5 

� For p = 0.1  the path of length is 6 
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Results: Pheromone Updates 

� Without pheromone updates based on solution 

quality, S-ACO performance is much worse. 

� The algorithm converges very often to the 

suboptimal solution of length 8

� The larger the parameters α or p, the faster S-� The larger the parameters α or p, the faster S-

ACO converges to this suboptimal solution.
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Results: Pheromone Evaporation Rate

� The pheromone evaporation rate p can be 

critical. 

� when evaporation was set to a value that was 

too high, S-ACO often converged to suboptimal 

paths. paths. 

� For example, in fifteen trials with p set to 0.2, 

S-ACO converged:

– once to a path of length 8, 

– once to a path of length 7, and 

– twice to a path of length 6.

� Setting p to 0.01 S-ACO converged to the 

shortest path in all trials.
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Results: Values of α

� Large values of α generally result in a worse 

behavior of S-ACO 

� Because they excessively emphasize the initial 

random fluctuations.
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